Polynomials

🔗

(All-Russian Mathematical Olympiad 2007 Grade 10 Day 1 P2, AoPS, proposed by A. Khrabrov) Consider a polynomial \(P(x) = a_0 x^n + a_1 x^{n - 1} + \dots + a_{n - 1}x + a_n\) with integer coefficients. Let \(m\) denote the minimum of the integers \[ a_0, a_0 + a_1, \dots, a_0 + a_1 + \dots + a_n . \] Prove that \(P(x) \geq m x^n\) for all \(x \geq 1\).

🔗
Click here for the spoiler!

Note that

\(\begin{align*} P(x) & = a_0 x^n + a_1 x^{n - 1} + \dots + a_{n - 1}x + a_n \\ & = a_0 (x^n - x^{n - 1}) + (a_0 + a_1)(x^{n - 1} - x^{n - 2}) \\ & \quad + \dots + (a_0 + a_1 + \dots + a_{n - 1})(x - 1) + (a_0 + a_1 + \dots + a_n) \end{align*} \\)

holds, which implies that

\(\begin{align*} & P(x) - m x^n \\ & = a_0 (x^n - x^{n - 1}) + (a_0 + a_1)(x^{n - 1} - x^{n - 2}) \\ & \quad + \dots + (a_0 + a_1 + \dots + a_{n - 1})(x - 1) + (a_0 + a_1 + \dots + a_n) \\ & \quad - m (x^n - x^{n - 1}) - m (x^{n - 1} - x^{n - 2}) - \dots - m (x - 1) - m \\ & = (a_0 - m)(x^n - x^{n - 1}) + (a_0 + a_1 - m)(x^{n - 1} - x^{n - 2}) \\ & \quad + \dots + (a_0 + a_1 + \dots + a_{n - 1} - m)(x - 1) + (a_0 + a_1 + \dots + a_n - m) . \end{align*} \\)

It follows that for any \(x \geq 1\), \[ P(x) \geq m x^n . \]

Lecture notes for Math Olympiad (IOQM, RMO, INMO)

Click on the icons below to download.

Topics Links
Algebra
Combinatorics
Geometry
Number Theory
INMO Training Camp
IMO Training Camp
MOPSS
Simon Marais Mathematics Competition
Resources