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§1 Polynomials

Example 1.1. Factorize the polynomial x8 + x4 + 1 into factors of at most
the second degree.

Summary — Expressing an expression as a difference of two squares yields a
factorization.

Solution 1. Note that

x8 + x4 + 1

= x8 + 2x4 + 1− x4

= (x4 + 1)4 − (x2)2

= (x4 − x2 + 1)(x4 + 1 + x2)

= (x4 + 2x2 + 1− 3x2)(x4 + 2x2 + 1− x2)

= ((x2 + 1)2 − (
√
3x)2)((x2 + 1)2 − x2)

= (x2 −
√
3x+ 1)(x2 +

√
3x+ 1)(x2 − x+ 1)(x2 + x+ 1).

■

Example 1.2. Show that

2a2b2+2b2c2+2c2a2−a4− b4− c4 = (a+ b+ c)(a+ b− c)(b+ c−a)(c+a− b).

2 The content posted here and at this blog by Evan Chen are quite useful.
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Summary — Complete the squares.

Walkthrough —

(a) Try to see what would happen if we were allowed to change the signs!

(b) Change the signs and consider

a4 + b4 + c4 − 2a2b2 − 2b2c2 − 2c2a2.

This is “almost” (a2 − b2 − c2)2!! To be precise

(a2 − b2 − c2)2 = a4 + b4 + c4 − 2a2b2 + 2b2c2 − 2c2a2.

(c) Let us continue with the above, and write 2a2b2+2b2c2+2c2a2−a4−b4−c4

in terms (a2 − b2 − c2)2 as follows.

2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4

= 4b2c2 − (a4 + b4 + c4 − 2a2b2 + 2b2c2 − 2c2a2).

(d) Does the above help?

Solution 2. Note that

2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4

= 4b2c2 − (a4 + b4 + c4 − 2a2b2 + 2b2c2 − 2c2a2)

= (2bc)2 − (a2 − b2 − c2)2

= (2bc− (a2 − b2 − c2))(2bc+ a2 − b2 − c2)

= (2bc+ b2 + c2 − a2)(a2 − (b2 + c2 − 2bc))

= ((b+ c)2 − a2)(a2 − (b− c)2)

= (a+ b+ c)(b+ c− a)(a+ b− c)(a− b+ c)

= (a+ b+ c)(a+ b− c)(b+ c− a)(c+ a− b).

■

Solution 3. Write1

a = y + z,

1It is good ask the following simple and innocent question: how can one write a, b, c as
stated above? Does it mean that given any three real numbers a, b, c, one can find real
numbers x, y, z such that a = y + z, b = z + x, c = x+ y? A crucial point to note is that
one very often deals with indeterminates (aka variables) instead of real numbers. In the
above, a, b, c could be indeterminates instead of being real numbers! What do we do in
that case? Is it so that there are indeterminates x, y, z such that the six indeterminates
a, b, c, x, y, z satisfy a = y + z, b = z + x, c = x+ y? As of now, let’s not worry about any
of these!. Just keep in mind the message that at times, we need to be quite careful about
what we do!

Some style files, prepared by Evan Chen, have been adapted here. 3
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b = z + x,

c = x+ y.

Note that

2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4

= 2(y + z)2(z + x)2 + 2(z + x)2(x+ y)2 + 2(x+ y)2(y + z)2

− (y + z)4 − (z + x)4 − (x+ y)4

= 2(z2 + 2yz + y2)(z2 + 2zx+ x2)

+ 2(x2 + 2zx+ z2)(x2 + 2xy + y2)

+ 2(y2 + 2xy + x2)(y2 + 2yz + z2)

− (y + z)4 − (z + x)4 − (x+ y)4

= 2
∑
cyc

(
x4 + x2(y2 + z2 + 2x(y + z)) + yz(2x+ y)(2x+ z)

)
−
∑
cyc

(x+ y)4

= 2
∑
cyc

(
x4 + x2y2 + z2x2 + 2x3(y + z) + 4x2yz + 2xyz(y + z) + y2z2

)
−
∑
cyc

(x+ y)4

= 2(x4 + y4 + z4) + 6(x2y2 + y2z2 + z2x2) + 16xyz(x+ y + z) + 4
∑
cyc

x3(y + z)

−
∑
cyc

(x+ y)4

= 2(x4 + y4 + z4) + 6(x2y2 + y2z2 + z2x2) + 16xyz(x+ y + z) + 4
∑
cyc

x3(y + z)

−
∑
cyc

(x4 + 4x3y + 6x2y2 + 4xy3 + y4)

= 16xyz(x+ y + z)

= (a+ b+ c)(a+ b− c)(b+ c− a)(c+ a− b).

■

Remark. Please go through the footnote next to the word Write from the above
solution. This footnote would explain that just writing Write a = y + z, b =
z + x, c = x + y requires more care! To address this issue, replace Write
a = y + z, b = z + x, c = x+ y in the above solution by the following.

Consider the real numbers x, y, z defined by

x =
1

2
(b+ c− a),

y =
1

2
(c+ a− b),

4 The content posted here and at this blog by Evan Chen are quite useful.
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z =
1

2
(a+ b− c).

Note that
a = y + z, b = z + x, c = x+ y

holds.

Example 1.3. Find numbers a, b, c, d for which the equation

2x− 7

4x2 + 16x+ 15
=

a

x+ c
+

b

x+ d

would be an identity.

Walkthrough — Factorize the denominator into linear factors. Then express-
ing the numerator as a linear combination of those factors would provide such
an identity.

Solution 4. Note that

2x− 7

4x2 + 16x+ 15
=

2x− 7

(2x+ 3)(2x+ 5)
.

Hence, if 2x− 7 can be expressed as

p(2x+ 3) + q(2x+ 5),

then 2x−7
4x2+16x+15 can be expressed as a sum of two fractions, each having a

constant in the numerator and a linear polynomial in the denominator.

One way to find if there are any such p, q, is to assume first that there are
such real numbers p and q such that

2x− 7 = p(2x+ 3) + q(2x+ 5)

holds2. Substituting x = − 5
2 , we obtain −2p = −12, which gives p = 6. Next,

substituting x = − 3
2 , we obtain 2q = −10, which implies q = −5.

Note that

6(2x+ 3) + (−5)(2x+ 5) = 12x+ 18− 10x− 25 = 2x− 7

2and try to see what conditions get imposed on p, q. It may happen that the conditions
that get imposed, may suggest that there are no such p, q. However, it may also happen
that we would be able to find out which p, q would work!

Some style files, prepared by Evan Chen, have been adapted here. 5
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holds3. Using it, we obtain

2x− 7

4x2 + 16x+ 15
=

2x− 7

(2x+ 3)(2x+ 5)

=
6(2x+ 3) + (−5)(2x+ 5)

(2x+ 3)(2x+ 5)

=
6

2x+ 5
− 5

2x+ 3

=
3

x+ 5
2

−
5
2

x+ 3
2

.

Hence, we may take

a = 3, b = −5

2
, c =

5

2
, d =

3

2
.

■

Exercise 1.4. Are there other choices for a, b, c, d for which the identify would
hold?

Example 1.5. Determine the remainder obtained upon dividing x100 by
x2 − 3x+ 2.

Solution 5. Let q(x) (resp. r(x)) denote the quotient (resp. the remainder)
obtained upon dividing x100 by x2−3x+2. Note that r(x) is a linear polynomial,
i.e. r(x) = ax+ b for some real numbers a, b. Then we have

x100 = q(x)(x2 − 3x+ 2) + r(x).

Substituting x = 1, it yields

1 = r(1) = a+ b.

Similarly, substituting x = 2, it gives

2100 = r(2) = 2a+ b.

This shows that
a = 2100 − 1, b = 1− a = 2− 2100.

3It should be noted that p, q were assumed to exist such that p(2x+3)+ q(2x+5) = 2x− 7
holds. Under this hypothesis, we obtained p = 6, q = −5. At this point, we cannot
immediately conclude that 6(2x+ 3) + (−5)(2x+ 5) = 2x− 7 holds (unless we verify it),
because if we do so, then we would do it under the same hypothesis.

• Even then, what would go wrong with that?

• Can a hypothesis (possibly combined with some of its consequences) be a justifica-
tion for itself to hold? Think about this point.

6 The content posted here and at this blog by Evan Chen are quite useful.
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Hence, the remainder obtained upon dividing x100 by x2 − 3x+ 2 is equal to

(2100 − 1)x+ 2− 2100.

■

Example 1.6 (USAMO 1975 P3). [GA17, Problem 151] A polynomial P (x)
of degree n satisfies

P (k) =
k

k + 1
for k = 0, 1, 2, . . . , n.

Find P (n+ 1).

Solution 6. Note that xP (x+ 1)− x is a polynomial of degree n+ 1, and it
vanishes at the n+ 1 integers 0, 1, 2, . . . , n. It follows that

(x+ 1)P (x)− x = cx(x− 1)(x− 2) . . . (x− n)

for some nonzero real number c. Substituting x = −1 yields

1 = (−1)n+1c(n+ 1)!,

which gives c = (−1)n+1

(n+1)! . This implies that

(n+ 2)P (n+ 1) = n+ 1 + (−1)n+1,

and consequently,

P (n+ 1) =
n+ 1 + (−1)n+1

n+ 2
.

■

Example 1.7. Let g(x) and h(x) be polynomials with real coefficients such
that

g(x)(x2 − 3x+ 2) = h(x)(x2 + 3x+ 2)

and f(x) = g(x)h(x) + (x4 − 5x2 + 4). Prove that f(x) has at least four real
roots.

Solution 7. Note that g(x) and h(x) satisfy

g(x)(x− 1)(x− 2) = h(x)(x+ 1)(x+ 2),

which shows that
g(−1), g(−2), h(1), h(2)

are equal to 0. Also note that

x4 − 5x2 + 4 = (x2 − 1)(x2 − 4)

= (x− 1)(x+ 1)(x+ 2)(x− 2).

Hence, the polynomials g(x)h(x) and x4 − 5x2 + 4 vanish at 1,−1, 2,−2.
Consequently, f also vanishes at these four points. ■

Some style files, prepared by Evan Chen, have been adapted here. 7
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Example 1.8. Let n be a positive integer. Show that

xn − 1 = (x− 1)(xn−1 + xn−2 + · · ·+ x+ 1).

Solution 8. Note that

(x− 1)(xn−1 + xn−2 + · · ·+ x+ 1)

= x(xn−1 + xn−2 + · · ·+ x+ 1)− (xn−1 + xn−2 + · · ·+ x+ 1)

= xn + xn−1 + · · ·+ x2 + x− (xn−1 + xn−2 + · · ·+ x+ 1)

= xn − 1.

■

Example 1.9. Prove that the polynomial x44 + x33 + x22 + x11 +1 is divisible
by the polynomial x4 + x3 + x2 + x+ 1.

Solution 9. Note that

x44 + x33 + x22 + x11 + 1

= x40 · x4 + x30 · x3 + x20 · x2 + x10 · x+ 1

= (x40 − 1)x4 + (x30 − 1)x3 + (x20 − 1)x2 + (x10 − 1)x

+ x4 + x3 + x2 + x+ 1.

Hence, to prove that the polynomial x44 + x33 + x22 + x11 + 1 is divisible by
x4 + x3 + x2 + x+ 1, it suffices to show that x4 + x3 + x2 + x+ 1 divides the
polynomials

x40 − 1, x30 − 1, x20 − 1, x10 − 1.

Since

x5 − 1 = (x− 1)(x4 + x3 + x2 + x+ 1),

x10 − 1 = (x5 − 1)(x5 + 1),

it follows that x4 + x3 + x2 + x+ 1 divides x10 − 1. Moreover, the polynomial
x10−1 divides all of

x40 − 1, x30 − 1, x20 − 1, x10 − 1.

Hence, x4 + x3 + x2 + x+ 1 divides the polynomials

x40 − 1, x30 − 1, x20 − 1, x10 − 1.

■

8 The content posted here and at this blog by Evan Chen are quite useful.
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Exercise 1.10. Show that the polynomial x580 + x390 + x326 + x262 + x198 +
x134 + 1 is divisible by x6 + x5 + x4 + x3 + x2 + x+ 1.

Example 1.11 (Moscow MO 1946 Grades 7–8 P5). Prove that after completing
the multiplication and collecting the terms

(1− x+ x2 − x3 + · · · − x99 + x100)(1 + x+ x2 + · · ·+ x99 + x100)

has no monomials of odd degree.

Summary — What happens if x is replaced by −x?

Solution 10. Let P (x) denote the polynomial

(1− x+ x2 − x3 + · · · − x99 + x100)(1 + x+ x2 + · · ·+ x99 + x100).

Note that P (x) = P (−x). By the Claim below, it follows that P (x) has no
monomials of odd degree.

Claim — Let Q(x) be a polynomial satisfying Q(x) = Q(−x). Then
Q(x) has no monomials of odd degree.

Proof of the Claim. Note that

Q(x) =
Q(x) +Q(−x)

2
+

Q(x)−Q(−x)

2

holds. Using Q(x) = Q(−x), it follows that Q(x) = Q(x)+Q(−x)
2 . Consequently,

Q(x) has no monomials of odd degree.

■

Remark. The above decomposition of Q(x) is a special case of general phe-
nomenaa.

aCan you think of a few? Which general phenomena is referred to?!

Remark. The above solution is more elegant, and less cumbersome. Moreover,
it also highlights the underlying reason, whereas the solution below obscures
the conceptual viewpoint.

Solution 11. One can multiply the polynomials to note that

1− x+ x2 − x3 + · · · − x99 + x100

= 1− x+ x2(1− x) + x4(1− x) + x6(1− x) + · · ·+ x98(1− x) + x100

= (1− x)(1 + x2 + x4 + x6 + · · ·+ x98) + x100.

Some style files, prepared by Evan Chen, have been adapted here. 9
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Using this, we obtain

(1− x+ x2 − x3 + · · · − x99 + x100)(1 + x+ x2 + · · ·+ x99 + x100)

=
(
(1− x)(1 + x2 + x4 + x6 + · · ·+ x98) + x100)(1 + x+ x2 + · · ·+ x99 + x100)

= (1− x)(1 + x2 + x4 + x6 + · · ·+ x98)(1 + x+ x2 + · · ·+ x99 + x100)

+ x100(1 + x+ x2 + · · ·+ x99 + x100)

= (1 + x2 + x4 + x6 + · · ·+ x98)(1− x101)

+ x100(1 + x+ x2 + · · ·+ x99 + x100)

= (1 + x2 + x4 + x6 + · · ·+ x98)(1− x101)

+ x100(x+ x3 + x5 + · · ·+ x99)

+ x100(1 + x2 + x4 + · · ·+ x98 + x100)

= (1 + x2 + x4 + x6 + · · ·+ x98)(1− x101)

+ x101(1 + x2 + x4 + x6 + · · ·+ x98)

+ x100(1 + x2 + x4 + · · ·+ x98 + x100)

= 1 + x2 + x4 + x6 + · · ·+ x98 + x100(1 + x2 + x4 + · · ·+ x98 + x100),

which has no monomial of odd degree. ■

The following exercise is quite similar to the Claim proved in the solution to
Example 1.11.

Exercise 1.12. Let Q(x) be a polynomial satisfying Q(x) = −Q(−x). Then
Q(x) has no monomials of even degree.

The exercise below relies on Example 1.8.

Example 1.13 (Moscow MO 2015 Grade 9 P6). Do there exist two polynomials
with integer coefficients such that each of them has a coefficient with absolute
value exceeding 2015, but no coefficient of their product has absolute value
exceeding 1?

Summary — Try to come up with enough polynomials g1(x), g2(x), g3(x), . . .
and h1(x), h2(x), h3(x), . . . such that each of the products g1g2g3 . . . and
h1h2h3 . . . have at least one coefficient which is large in absolute value, and all
the coefficients of the product (g1g2g3 . . . )(h1h2h3 . . . ) are at most 1 in absolute
value.

Walkthrough —

(a) Try to come up with a polynomial P (x) whose coefficients are at most
1 in absolute value, and it can be written as a product of enough fac-
tors (say f1(x), f2(x), . . . ) such that each of such factor fi(x) admits a
decomposition into the product of two polynomials gi(x) and hi(x).

10 The content posted here and at this blog by Evan Chen are quite useful.
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(b) Can you make sure that the product of the gi’s, and the product of the
hi’s have to have at least one large coefficient?

(c) For instance, would taking g1(x) = g2(x) = g3(x) = · · · = 1− x work for
some suitable choice of h1(x), h2(x), . . . ?

(d) Does taking

h1(x) = 1 + x,

h2(x) = 1 + x+ x2,

h3(x) = 1 + x+ x2 + x3,

etc. work?

(e) Note that the product of enough gi’s would have a large coefficient
(namely, the coefficient of the second largest power of x). On the other
hand, the product of enough hi’s would have a large coefficient (namely,
the coefficient of the power of x).

(f) What can be said about the absolute value of the coefficients of the
product of these two products?

The above seems to work except that having a control on the coefficients of
the product (g1g2g3 . . . )(h1h2h3 . . . ) seems hard4.

Solution 12. Consider the polynomial

P (x) = (1− x)(1− x2)(1− x4)(1− x8) · · · (1− x22016).

Since
1 + 2 + 22 + 23 + · · ·+ 2n−1 < 2n,

it follows that the coefficients of P (x) are at most 1 in absolute value. Note
that

P (x) = Q(x)R(x)

holds where

Q(x) = (1− x)2017,

R(x) = (1 + x)(1 + x+ x2 + x3) · · · (1 + x+ x2 + · · ·+ x22016−1).

The coefficient of x2016 in Q(x) is equal to 2017, and the coefficient of x in
R(x) is equal to 2016. This completes the proof. ■
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