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1 Systems of equations Typos may be reported to jpsaha@iiserb.ac.in.

§1 Systems of equations

§1.1 Factorization

Example 1.1. Find the integral solutions of the equation 33 — 23 = 91.
Walkthrough — Factorize y® — 2, and use the prime factorization of 91.
Also note that 2% + zy + y? is nonnegative and

I=@ S0 5 D6 e

holds for any two integers x, y.

Example 1.2. [WH96, Problem 14] Let r, s be nonzero integers. Prove that
the equation
(r? — 8%z — drszy — (r — s%)y? =1

has no solutions in integers.

Walkthrough — Note that

(r? — %2 —drszy — (r* — $*)y® = (rz — sy)® — (ry + sz)°.

¢ 6)-()

Show that

holds.

Example 1.3. [HW97, Problem 7] Prove that the equation
ot 4yt + 2t — 202y? — 2% — 2220 =24

has no solution in integers x, ¥, z.

Walkthrough — Note that

zt + y4 +21— 23U2y2 — 2y2z2 —22%22

= (2" +y* - 2°)? - (2ay)?
=—@@+y+2)ety—2)y+z—2)(z+z—y)

holds, and any two of the above four factors are of the same parity. Does 2*
divide 247

Example 1.4 (India RMO 1992 P1). Determine the set of integers n for which
n? + 19n 4 92 is a square of an integer.

Some style files, prepared by Evan Chen, have been adapted here. 3
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Solution 1. Let n be an integer such that n? + 19n + 92 = m? holds for some
non-negative integer m. This gives

(2n +19)% + 7 = (2m)?,

which yields
7=(2m —2n—19)(2m + 2n + 19).

Since 2m+2n+19 is positive, it follows that (2m—2n—19,2m+2n+19) is equal
to (7,1) or (1,7). This shows that (m,n) is equal to one of (2,—11), (2, —8),
and consequently, n is equal to one of —11, —8. Note that

(-11)* —19-11+92=4, (-8)*-19-8+92=4

holds. This proves that the integers satisfying the given condition are precisely
—11,-8. |

Example 1.5 (India RMO 2001 P2). Find all primes p, ¢ such that p*+7pg+¢>
is a perfect square.

Solution 2. Let p,q be primes such that
p? +Tpg +¢* =m® (1)

holds for some positive integer m. Note that m is congruent to one of ¢, —¢q
modulo p. Write m = kp £ g for some integer k. Substituting m = kp £ ¢ in
Eq. (1) yields
p(k? = 1) = (7 F 2k)q. (2)
Let us consider the case that p > ¢. This gives m? > 9¢%, and hence we
obtain k > 1. This implies that k? — 1 is positive, and hence, so is 7 & 2k.
Using p > q, we get
K2 —1< 772k,

which yields (k & 1)? < 9. Noting that k is positive, it follows that k 4= 1 is
equal to one of 0,1,2, and hence k is equal to one of 2,3. Substituting k = 2
in Eq. (2) yields 3p = (7 F 4)q. Since p > ¢, we obtain 3p = 11¢, which shows
that p = 11, ¢ = 3. Substituting £ = 3 in Eq. (2) yields 8p = (7 F 6)q, which
implies that 8p = ¢ or 8 = 13¢, which is impossible. It follows that any pair
of primes (p, ¢) such that p? + 7pq + ¢2 is a perfect square and p > ¢ holds, is
equal to (11,3). Note that

1124+7-11-34+32=121+231+9 = 361 = 192

holds. We conclude that (p,q) = (11, 3) is the only solution when p > q.
Since p? + Tpq + ¢? is symmetric in p, g, it follows that (p,q) = (3,11) is the
only solution when p < gq.
Also note that if p = ¢, then p? + Tpq + ¢®> = (3p)? is a perfect square. So
the solutions are are precisely (3,11), (11, 3), and the tuples of the form (r,r),
where r runs over the set of primes. |

4 The content posted here and at this blog by Evan Chen are quite useful.
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Example 1.6 (India Pre-RMO 2012 P5). Let S, = n? +20n+ 12, n a positive
integer. What is the sum of all possible values of n for which S,, is a perfect
square?

Solution 3. Let n be a positive integer such that
n® +20n + 12 = m?

holds for some positive integer m. Completing squares, we obtain
(n +10)? —m? = 88,

which yields
(n+10+m)(n+ 10 — m) = 88.

Note that at least one of the integers n + 10 +m,n 4+ 10 — m is even, and they
are of the same parity. This shows that (n 4+ 10 + m,n 4+ 10 — m) is equal to
one of

(44,2),(22,4).

It follows that (n 4 10,m) is equal to one of
(23,21), (13,9),

and consequently, (n,m) is equal to one of
(13,21), (3,9).

Note that
132 42013 + 12 = 169 + 260 + 12 = 441 = 212,

and
32420-3+12=9+60+12=281=9°

hold. We conclude that the sum of all possible values of n for which 5, is a
perfect square is equal to 13 + 3 = 16. |

§1.2 Completing squares

Example 1.7. Find all solutions of 22 4+ 3y = 4 in integers. Use it to find all
solutions of m? + mn + n? = 1 in integers.

Walkthrough — Observe that

4(m® + mn 4+ n®) = (2m + n)® + 3n°.

Some style files, prepared by Evan Chen, have been adapted here. 5
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Example 1.8 (India BStat-BMath 2013 P7). Let N be a positive integer such
that N(N — 101) is the square of a positive integer. Find all possible values of
N. (Note that 101 is a prime number).

Solution 4. Let N be a positive integer such that for some positive integer k,
N(N —101) = k?
holds. This gives
(2N —101)? = 4k? + 101,

which yields
(2N — 101 — 2k)(2N — 101 + 2k) = 101°.

Using N(N —101) = k2, N > 1 and k > 1, it follows that N > 101, which
shows that
2N — 101 +2k = N — 101 + N + 2k > 101.

Since 101 is a prime, we obtain that (2N — 101 — 2k, 2N — 101 + 2k) is equal
to 1,1012, which yields

141012 +2-101 1022

=512 = 2601.
I T 5 60

N

Note that
2601(2601 — 101) = 51% x 50,

which is a perfect square. This proves that N = 2601 is a only solution. W

§1.3 Arrange in Order
Example 1.9 (India RMO 1996 P2). Find all triples (a, b, ¢) of positive integers

such that . . .
a b c

Solution 5. Let a,b,c be positive integers, satisfying the above equation.

Since (1+2) (1+5) (1+3)

is symmetric with respect to a, b, ¢, it suffices to consider the case a > b > c.

Note that
1 1 1 1\*
3=1(1+— 1+ - 1+-) <1+ -
a b c c

holds. If ¢ > 3 holds, then we would obtain 3 < (1 4+ %)3 implying 81 < 64,
which is impossible. This shows that ¢ =1 or ¢ = 2.

6 The content posted here and at this blog by Evan Chen are quite useful.
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Let us consider the case that ¢ = 2. Then

(1+2) 1)

holds, which shows that 2 < (1+ 3)2. This gives b < 3. Note that b=1,c =2
is not possible. This yields (a,b,c) = (3,2, 2).
Now, let us consider the case that ¢ = 1. It follows that

(ro2) (1) -3

which implies % < (14 %)27 and hence, we get b < 5. It follows that b # 1 and
b # 2. Consequently, we obtain that (a, b, ¢) is equal to one of (8,3,1),(5,4,1).
Note that the triples

(3,2,2),(8,3,1),(5,4,1)

also satisfy the given equation. It follows that these are precisely all the
solutions of the given equation in the positive integers under the hypothesis
that a > b > c.

Since (14 2)(1+ §)(1 4 1) is symmetric in a,b, ¢, the required solutions
are obtained by permuting the coordinates of these three solutions, that, the
required solutions are precisely

(3,2,2),(2,3,2),(2,2,3),

Example 1.10 (India RMO 2010 P4). Find three distinct positive integers
with the least possible sum such that the sum of the reciprocals of any two
integers among them is an integral multiple of the reciprocal of the third
integer.

Solution 6. Let a,b, ¢ be distinct positive integers with the least possible sum

such that 111
p q r
J— — —_— T — = — = - 3
a+b+c a b ¢ (3)

holds, where p, q,r are positive integers. Since a, b, ¢ are positive, it follows
that p, q,r are greater than 1. By reordering a, b, ¢ if necessary, we may and
do assume that a < b < ¢, or equivalently, p < ¢ < 7 holds. Note that

3 1 1 1
> p

Some style files, prepared by Evan Chen, have been adapted here. 7
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which gives p = 2. This yields

1
c

which implies that ¢ < 2p = 4, and using p < ¢, we obtain ¢ = 3. Now Eq. (3)
gives
1 1 1 P q
o(Z4242) =41
(a + b + c) a * b’

and hence, we obtain % = %, which yields r = 2¢g = 6. This shows that a:b: ¢
is equal to 2 : 3 : 6. Noting that 2,3,6 have no common divisor larger than 1,
it follows that a 4+ b+ ¢ is a multiple of 2+ 3 + 6 = 11. Note that

r 1 1 ]

57376 h
which is an integral multiple of the reciprocal of any of 2,3,6. This proves
that 2,3, 6 are three distinct positive integers with the least possible sum such
that the sum of the reciprocals of any two integers among them is an integral
multiple of the reciprocal of the third integer. Moreover, this proof also shows
that these are unique up to reordering. |

§1.4 Using bounds

Example 1.11 (Canada CMO 1983 P1). Find all positive integers w, x,y and
z which satisfy w! = z! + y! 4 z!.

Solution 7. Let w,z,y, z be positive integers satisfying the given equation.
Since z! 4+ y! + 2! is symmetric in x,y, z, it suffices to consider the case that
r <y < z. Note that y — x < 1, otherwise, if y > x + 2, then we would have

| | |
w! yl 2l
oo Mgt
which is impossible since
w! y! 2!
! 2! x!

are even.
Let us consider the case that y = z. Then z < x 4 2 holds, otherwise,

w2l are multiples of 3. If z = z, then

z! ) 2!

would not hold, since

8 The content posted here and at this blog by Evan Chen are quite useful.
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which yields that xt =y =z =2 and w =3. If z =z + 1, then w > (x + 1)!
holds, which implies w > x + 2, and this yields

|
(x+1)(x+2)§%:2+x+1,

which gives (z + 1)? < 2, which holds for no positive integer z. If z = 2 + 2,
then similarly, we obtain

w!
@D+ +8) < D =24 @+ 1 +2)

which implies that
(z+1)(z+2)* <2,

which holds for no positive integer x.
Now let us consider the case that y = x + 1. We obtain w > z 4 1, and this

gives
c+2+ [ ¢
z+1<t<z
w!
z!

:Ht

z+1<t<w

IT t+ I s-1] II ¢

z+1<t<z z+1<s<w z+1<t<z

which yields

T+2 H s—1 H ¢

z4+1<s<w rx+1<t<z

>(z+1-1) [ ¢

r4+1<t<z

>y [ ¢

rz+1<t<z

> (x+1) H t

z+1<t<z
> (z+1)%
which is impossible.

This proves that
r=y=z=2,w=23

is the only solution to the given equation over the positive integers. |

Some style files, prepared by Evan Chen, have been adapted here. 9
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Remark. After obtaining the above solution, one may easily arrive at the
following argument, which is much shorter.

Let z,y, z,w be positive integers satisfying w! = z! + y! + z!. Note that
w > max{z,y, 2z} + 1 holds, which gives

w X max{z,y, z} <w!=z!+y! + 2! <3 x max{z,y,z}!

implying w < 3. It follows that x = y = z = 2, w = 3 is the only solution of the

given equation.

Example 1.12 (India RMO 2005 P6). Determine all triples (a, b, ¢) of positive
integers such that a < b < ¢ and

a+b+c+ab+ bec+ ca=abc+ 1.

Solution 8. Let a,b, ¢ be integers satisfying the given conditions. Note that
the above equation can be rewritten as

(I+a)(1+b)(14c) =2(abc+1). (4)
Note that if the inequalities
2% >a+1,25b>b+1,25c>c+1

hold, then
(I+a)(1+b)(1+c) <2abe < 2(abec+1)

holds, which is impossible. Also note that if @ > 4, then

T I R
25 —1 5 5 B

holds, which implies that
1 1 1
25a>a+1,235b>b+1,25¢>c+ 1.
This proves that a < 3. From Eq. (4), it follows that a # 1, and hence, a is

equal to one of 2, 3.
Also note that Eq. (4) does not hold if the inequalities

V2a-b>V1+ab+1),vV2a-¢>vV1+a(c+1)

hold. Observe that if
b 7 ifa=2,
“ |5 ifa=3,

10 The content posted here and at this blog by Evan Chen are quite useful.
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holds, then we obtain

V3 .
Vi+ta ~ <7 fa=2
_ vita )
V2a—+vl+a 7 ;<5 ifa=3

This shows that b < 6 if a = 2, and b < 4 if a = 3. Note that Eq. (4) is
equivalent to

&

(2ab— (14+a)(14+b)c=(1+a)(1+b)—2,
which gives
c(b—3)=3b+1ifa=2,
eb—2)=2b+1if a =3.

It follows that if @ = 2, then b # 2 and b # 3, and if a = 3, then b # 4. This
shows that (a,b,c) is equal to one of

(27 4’ 13)’ (2’ 57 8)’ (3? 3? 7)'
Note that these triples satisfy Eq. (4). Consequently, the above triples are
precisely all the solutions. |
Remark. Note that Eq. (4) suggests to substitute
r=14a,y=14+bz=1+c¢,

which yields
zyz =2+ 200 — 1)y — 1)(z — 1),

which can be rewritten as
zyz + 2(x +y + 2) = 2(vy + yz + 27).
The above reduces to
2(a:+y+2)+xy(§ —2) +yz (%—2) + zx (%—2) =0,

which shows that < 5. Can one use the above to determine all the solutions?

Example 1.13 (India RMO 2012f P5). Determine all positive integers a, b, ¢
such that %—l—%—i—%zl,agbgcandaisaprime.
Solution 9. Let a,b, ¢ be integers satisfying the given conditions. Since
1 2 3 6
a

l=—4+-4+-=-XZ
a+b+c_

Some style files, prepared by Evan Chen, have been adapted here. 11
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holds, we obtain a < 6. Since a is a prime, it is equal to one of 2,3,5. Note
that

2_2.3_5
b b ¢~ b
holds, which implies that
241
b a~ b’
which yields that
2 5
R

It follows that 5 < b<10ifa=2,4<b<T7ifa=3,and b <6if a =5. Note
that if (a,d) is equal to

(2,9),(3,5),(3,7),(5,5), (5,6),

then no integer ¢ satisfies the given equation. This shows that (a, b, ¢) is equal
to one of

(2,5,30),(2,6,18),(2,7,14),(2,8,12),(2,10,10), (3,4, 18), (3,6, 9).

Noting that the above triples satisfy the given equation, we conclude that the
required solutions are precisely the ones above. |

Example 1.14 (India RMO 2012¢ P6). Find all positive integers such that
32" 4+ 3n2 + 7 is a perfect square.

Solution 10. Let n,m be positive integers such that
32" £ 3n% + 7 =m?

holds. This implies
3n% 4+ 7= (m—3")(m + 3").

Note that any two positive integers a, b satisfy ab > a —b. Since m — 3™, m + 3"
are positive, it follows that

32 4+7>2.3"

Applying the binomial theorem, we obtain
-1
3n>1+4 (T>2+ (Z)? > 1+2n+22% — 14202,

which yields
2(1+2n?%) < 3n% 47,

which is equivalent to n? < 5. This shows that n is equal to 1 or 2. Note that
32" +3n? + 7 is equal to 19 (resp. 100) for n = 1 (resp. n = 2). So the required
solution is n = 2. [ ]

12 The content posted here and at this blog by Evan Chen are quite useful.
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Example 1.15 (India RMO 2015b P6). Find the number of integers m that
satisfy both the following properties:

1. 1 <m <5000,

2. [y/m] = [v/m + 125).

Solution 11. If m is positive integer satisfying [\/m] = [v/m + 125], then for
k = [v/m], we have k < \/m < /m + 125 < k + 1, which yields k? < m <
m + 125 < (k + 1)2, and this implies that

2k +1=(k+1)? —k* >m+ 126 — m = 126,

or equivalently, k& > 63 holds. This shows that for any positive integer m
satisfying [v/m] = [v/m + 125], we have k? < m < (k + 1)? — 126 for some
integer k > 63.

Conversely, if m is an integer satisfying k2 < m < (k + 1)? — 126 for some
positive integer k > 63, then we obtain k% < m < m + 125 < (k + 1)?, which
gives k < /m < v/m +125 < k + 1, and consequently, [/m] = [v/m + 125]
holds.

So the number of integers satisfying the given conditions is equal to the
number of positive integers m satisfying m < 5000 and k% < m < (k+1)% 126
for some positive integer k& > 63. Note that any such integer k satisfies
k% < m < 5000 < 712, which gives k& < 70. Moreover, if ¢ is an integer
satisfying 63 < £ < 70 and an integer m satisfies £2 < m < (£ +1)? — 126, then
using

(£+1)% =126 < 71% — 126 = 4900 + 140 + 1 — 126 < 5000,

it follows that m < 5000. This proves that the integers satisfying the given
conditions are precisely the integers m satisfying k2 < m < (k +1)? — 126 for
some integer 63 < k < 70. Hence, the required number is equal to

70
> ((k+1)>—126 - k> +1)
k=63

70
=) (2k—124)

k=63
=24+4+6+ - +16
=T72.
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§1.5 Warm up

Example 1.16 (India RMO 1999 P6). Find all solutions in integers m, n of

the equation
4dmn

(m—n)?=—1"" .
m+n—1

Solution 12. Let m,n be integers satisfying m+n # 1 and the above equation.
Note that the above equation is equivalent to

2

which holds if and only if
1
i(mfn)(mfnfl) =n.

Writing m — n = k, it follows that (m,n) is equal to

(k 4 %k(k _y, %k(k - 1)) - (;kz(k +1), %k(k - 1)) .

Also note that for any integer k, the pair

<;k(k +1), %k(k - 1)>

is a solution to the given equation if k2 # 1. This shows that the solution is

{(;k(m 1),%k(k— 1)> ke Z\{il}}.

Example 1.17 (India RMO 2007 P2). Let a,b, ¢ be three natural numbers
such that a < b < ¢ and ged(c — a,¢c — b) = 1. Suppose there exists an integer
d such that a +d, b+ d, c + d form the sides of a right-angled triangle. Prove
that there exist integers £, m such that ¢ + d = £2 + m?.

Solution 13. Since a < b < ¢, and the integers a + d,b + d, c + d form the
sides of a right-angled triangle, it follows that

(c+d)®=(a+d)” + (b+d)> (5)
Writing the above as a quadratic equation d, we obtain

d+2a+b—c)d+a*+bv* -2 =0,

14 The content posted here and at this blog by Evan Chen are quite useful.
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which implies that

d=(c—a—b) £/ (a+b—c)2— (a2 +b2 —c2).

Since a+b+d—c= (a+d)+ (b+d) — (c+ d) is positive, we obtain

d=(c—a—b)+/(a+b—c)?— (a2 +b—c2?)
:(cfafb)+\/202+2ab72b0720a
=(c—a—b)++v2(c—a)c—0b).

Since d is an integer, it follows that 2(c — a)(c — b) is a perfect square. Note
that the integers ¢ — a,c — b are positive and relatively prime. So there are
positive integers m,n such that ¢ — a,c — b are equal to 2m?, n? in some order.
This yields

c+d=(c—a)+(c—b)+2(c—a)(c—b)
=2m? +n? 4 2mn

=m?+ (m+n)?,

which proves the result. |

Remark. After obtaining Eq. (5), one may also argue as follows. Note that
Eq. (5) implies that a divisor of any two of a+d, b+ d, ¢+ d, divides all of them,
and hence also divides the differences ¢ —a, ¢ — b, which are coprime. This shows
that a + d, b+ d, ¢ + d are pairwise coprime integers, and (a + d, b+ d,c+ d) is
a primitive Pythagorean triple. It follows (how?) that c + d is equal to ¢* 4 m?
for some integers ¢, m.

It is not a good idea to apply the classification of primitive Pythagorean
triples to conclude that ¢+ d is the sum of two squares, since the above solution
of Example 1.17 is no different from (one proof of) the classification of primitive
Pythagorean triples, which is provided below.

A careful reading of the above solution of Example 1.17 leads to the following
proof of the primitive Pythagorean triples as follows.
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\

Lemma 1 (Classification of primitive Pythagorean triples)

Let 1 <z <y < z be integers satisfying

$2+y2 :ZQ.

Then the following statements are equivalent.
(i) Some two of z,y, z are relatively prime.
(ii) Any two of z,y, z are relatively prime.
(iii) The integers z — x, z — y are relatively prime.

If any of the above conditions holds, then there are relatively prime
positive integers a > b such that x,y are equal to a2 — b2, 2ab in some
order, and z is equal to a? + b2.

. J

For a geometric proof of the above, we refer to [ST15, §1.1].

Proof. Note that

ot =(—y)z+y), y¥=(—2)(z+a)

holds. So any common prime divisor of z — z, z — y is also a common divisor
of ,y. Using 2 + y? = 22, it follows that any common divisor of x,y is also a
common divisor of z — x, z —y. The equivalence of the three statements follows.
Assume that one of the given conditions holds. Note that
(@t+y—2)?=@+y—2)7>—("+y* 2%
=222 4 2zy — 22(z +y)
=2(z—z)(z—y)
holds. Since z — x, z — y are relatively prime, and 2(z — z)(z — y) is a perfect
square, it follows that there are positive integers m,n such that z —xz,z — y
are equal to 2m?,n? in some order. Note that
z=(z-z)+(z—y) +(x+y—=2)
=2m? +n? + 2mn
=m?+ (m+n)?,
and this implies that

z—2m? = (m+n)* — n?,
z—n?=2m(m +n).

Putting
a=m+n,b=m,

16 The content posted here and at this blog by Evan Chen are quite useful.
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it follows that x,y are equal to a? — b?,2ab in some order, and z is equal
to a? + b%. Since x,y are relatively prime, we get that the integers a,b are
relatively prime. O

Example 1.18 (India RMO 2008 P2). Prove that there exist two infinite
sequences {an }n>1 and {b,},>1 of positive integers such that the following
conditions hold simultaneously:

(i) O<ar <as<ag<---,
(ii

) ap < b, < a2 foralln>1,
(iii) a, — 1 divides b,, — 1 for all n > 1,
)

(iv) a2 — 1 divides b2 — 1 for all n > 1.

Solution 14. We claim that it suffices to prove that for any positive integer
N, there exist integers a,b > N such that a < b < a?, and @ — 1 divides b — 1,
a? — 1 divides b?> — 1. Indeed, if this statement is true, then there exist positive
integers ay, by such that a; < by < a2, and a; — 1 divides b; — 1, a? — 1 divides
b? — 1. Moreover, if for some positive integer n > 1, there are positive integers
a1,09,...,0n,b1,b2,...,b, such that a1 < az < -+ < apn,b; < by < --+ < by,
and a; — 1 divides by, — 1 and ai — 1 divides bi — 1 for any 1 < k < n, then
by the above statement, there exist integers a,b such that a,b > a, + by,
a<b<a? and a — 1 divides b — 1, a® — 1 divides b*> — 1, then one can define
Gpnt1 = a,byy1 = b. Applying induction, we obtain two infinite sequences
{an}n>1 and {b, }n>1 as desired. Now it remains to prove that for any positive
integer N, there exist integers a,b > N such that a < b < a2, and a — 1 divides
b—1, a® — 1 divides b% — 1.

Note that if a,b are two integers such that ¢ — 1 divides b — 1, then b =
1+ (a — 1)k for some integer k, and hence

¥ —1=0b-1)0b+1)
=k(a—1)((a—1k+2)
=k(a—1)((a+ 1)k — (2k — 2))
=k*(a* —1) = 2k(k —1)(a —1)

holds, which shows that b? — 1 is divisible by a? — 1 if a + 1 divides 2k, which
holds if a is odd and k = “TH In fact, for any positive integer N, setting

a+1ia2+1

a=2N+1, b=1+(a—1)— .

=2N? 42N +1,

the inequality a < b < a? follows, and a — 1 = 2N divides b — 1 = 2N(N + 1),
a? —1=4N(N +1) divides b> — 1 = 4N(N + 1)(N? + N + 1). This completes
the proof. |
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Remark. The above argument (that is, only after having the above argument,
it) shows that any strictly increasing sequence {an}»>1 of odd positive integers
with a1 > 3, and the {b, }n>1, defined by

a2 +1

bn = 5 for any integer n > 1,

have the required properties.

Example 1.19 (India RMO 2008 P5). Three nonzero real numbers a, b, ¢ are
said to be in harmonic progression if % + % = %. Find all three term harmonic
progressions a, b, ¢ of strictly increasing positive integers in which ¢ = 20 and b
divides c.

Solution 15. Let b, c be positive integers such that 20 < b < ¢ holds, and b
divides ¢ and

1 n 12
20 ¢ b
holds. For some positive integer k > 1, we have ¢ = bk, which yields
1,12
20 bk b’
and this gives
bk =202k — 1).

Since k, 2k — 1 are relatively prime and b is an integer, it follows that k divides
20, and hence, k is equal to one of 2,4,5,10 or 20. This shows that (a, b, ¢) is
equal to one of

(20, 30, 60), (20, 35, 140), (20, 36, 180), (20, 38, 380), (20, 39, 780).

Note that any of the above triples satisfy the required conditions. This proves
that the above ones are all the three term harmonic progressions satisfying the
required conditions. |

Example 1.20 (India RMO 2010 P6). For each integer n > 1, define

n
ap = | —=
oLl
where [z] denotes the largest integer not exceeding xz, for any real number z.
Find the number of all n in the set {1,2,3,...,2010} for which a,, > an41.
Solution 16. Let n be a positive integer such that a,, > a,41 holds. Note

that [v/n], [v/n + 1] are not equal, otherwise, we would obtain
n+1 n+1 n

Verd Wil - WAl

18 The content posted here and at this blog by Evan Chen are quite useful.
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implying a, 11 > a,. Let k denote the largest integer satisfying k2 < n. In
other words, k denotes the integer [\/n]. Since [\/n], [v/n + 1] are not equal,
we obtain [v/n + 1] > k, which gives [v/n+ 1] > k 4+ 1. This shows that
n+1> (k+1)2 Since k is the largest integer satisfying k? < n, we obtain
n+ 1= (k+1)2. We conclude that if a,, > a,, 11 holds, then n + 1 is a perfect
square. Also note that the converse of this statement holds, that is, if n + 1 is
a perfect square, then a,, > a,1 holds. Indeed, if n + 1 = m? holds for some
positive integer m, then it follows that

n n+1 m2—1 m

— = —7:1,

Vol Warl m-1 m

which yields

[ n ]>[ n+1 }>1>0

vall = Live+1)] =~

This proves that for a positive integer n, the inequality a, > a,+1 holds if and
only if n + 1 is a perfect square. Noting that

452 — 1 = 2025 — 1 > 2010, 44% = 2025 + 1 — 90 < 2010

holds, we conclude that the positive integers n in the set {1,2,...,2010}
satisfying a,, > a,41 are precisely

22 - 1,32 —1,...,44%2 — 1.

So there are 43 values of n satisfying the given condition. |

Example 1.21 (India RMO 2012e P3). Find all natural numbers z,y, z such
that
(2% —1)(2Y — 1) = 2% +1.

Solution 17. Let x,y, z be natural numbers satisfying the above equation.
Note that the above equation can be rewritten as

27T = 97 4 9V 4 977,
Let us first consider the case that x < y. Note that 2* > x holds and we have
2 =142V77 4927 (6)
Let us consider the case that x = y. Then we obtain
M =924 9%
which gives y = 2,2% — x = 1, which yields

2 =x+1=y+1=3,
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which is impossible. This shows that z < y.
Let us consider the case that z < y. Using Eq. (6), we obtain 2* = z,
y—x =1 and y = 2, which gives

r=1y=2,2=0.

It follows that any solution of the given equation in the natural numbers
satisfying x < y is equal to (1,2,0). Since the given equation is symmetric in
x,y, it follows that any given solution of this equation is equal to one of

(1,2,0),(2,1,0).

Note that the above triples satisfy the given equation. Hence, the above triples
are precisely all the solutions of the given equation in the natural numbers. W

Example 1.22 (India RMO 2013a P3). Find all primes p and ¢ such that p
divides ¢ — 4 and ¢ divides p® — 1.

Solution 18. Let p, ¢ be primes such that p divides ¢ — 4 and ¢ divides p? — 1.
If p is equal to 2, then using that p divides ¢ — 4, it follows that ¢ = 2, which
is impossible since ¢ divides p? — 1. This shows that p is odd.

Since p divides ¢ — 4, it follows that p divides g — 2, or p divides g + 2.
Using the hypothesis that ¢ divides p? — 1, we obtain ¢ divides at least one
of p—1,p+ 1, and hence, ¢ < p+ 1 holds. If p divides ¢ — 2, then using
q—2 < p—1, we obtain that ¢ — 2 = 0, that is, ¢ = 2. If p divides ¢ + 2,
then using 0 < ¢ + 2 < p + 3, we obtain ¢ + 2 = p, and using that ¢ divides
p?—1=(q+2)?>—1=¢>+4q+3, we get ¢ = 3, and hence, p = 5. This proves
that (p,q) is equal to (5,3), or that p is odd, and ¢ = 2.

Note that if (p, q) is equal to (5, 3), then the required divisibility conditions
hold. Moreover, these conditions are also satisfied if p is an odd prime and
q=2.

It follows that the required pairs of primes (p, ¢) are precisely the elements of

{(5,3)} U{(r,2) |r is an odd prime}.
|

Example 1.23 (India RMO 2013e P2). Find all triples (p, ¢, ) of primes such
that pg = r + 1 and 2(p? + ¢*) =% + 1.

Solution 19. Let p, g, be primes satisfying the above conditions. Since 2
divides r2 + 1, it follows that r is odd. This shows that pq is even, and hence
at least one of p, g is even.

Let us consider the case that p = 2. We obtain ¢ = . This yields

2
12
2<22+(T;—2) >:7”2+1,

20 The content posted here and at this blog by Evan Chen are quite useful.
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which implies
r?—2r—15=0,
which shows that » = 5, and hence, (p, g, r) is equal to (2,3,5). Since the given
equations are symmetric in p, ¢, it follows that if ¢ = 2, then (p, ¢, r) is equal to
(3,2,5). Note that the triples (2,3,5) and (3,2,5) satisfy the given equations.
We conclude that (2,3,5),(3,2,5) are precisely all the triples of primes
satisfying the given conditions. |

Example 1.24 (India RMO 2013a P4). Find the number of 10-tuples (a1, as, . . ., ag, a10)
of integers such that |a;| <1 and

2 2 2 2
al + a3+ a3z +---+ajy — aiaz — azaz — asas — - -+ — agQ1p — A1001 = 2.

Solution 20. Let (ay,...,a10) be a tuple of integers satisfying |a;| < 1, and
the above equation. Note that the above equation can be rewritten as

(a1 — a2)® + (ag — az)® + - + (a9 — a10)? + (a10 — a1)? = 4.
Since the sum of the integers
ap —az,a2 —as,...,a10 — a1

is zero, it is not possible that only one of them is equal to +2 and the others
are zero. Consequently, exactly two of them are equal to 1, and exactly two of
them are equal to —1, and the remaining ones are equal to zero. Note that a;
is equal to —1,0 or 1.

Let A denote the set of solutions satisfying the given conditions, and B
denote the set of 11-tuples of integers, whose first coordinate is at most 1 in
absolute value, the remaining 10 coordinates add up to 0, and exactly two of
these 10 coordinates are equal to 1, and exactly two of these 10 coordinates
are equal to —1. Consider the map from A — B, given by

(al,...,alo) — (al,al —a2,a2 —as,...,a1o0 —a1).

Note that this map is a bijection. So the number of 10-tuples satisfying the

given conditions is equal to
10\ /8
(2)(2) =m0

Example 1.25 (India RMO 2013b P1). Prove that there do not exist natural
numbers x and y with x > 1 such that

7 —1

=5+ 1.
r—1 yo

Some style files, prepared by Evan Chen, have been adapted here. 21


https://artofproblemsolving.com/community/c6h573986p3379012
https://artofproblemsolving.com/community/c6h566733p3319149
https://github.com/vEnhance/dotfiles/blob/main/texmf/tex/latex/evan/evan.sty
https://web.evanchen.cc/otis.html

14 May 2025 https://jpsaha.github.io/MOTP/

Solution 21. Let x,y be natural numbers with x # 1 and satisfying the above
equation. Note that the given equation can be rewritten as

T_
y5=1;_1x=x(132—|—x+1)(x3+1).

Observe that the integer z is coprime to 2 + = + 1, and z is also coprime to
2% + 1. Since
Pl —(z - +r+1)=2

holds and the integer 2 +x+1 is odd, it follows that the integers 22 +z+1, 23 +1
are coprime. Since the positive integers z,2? + x 4+ 1,22 4+ 1 are pairwise
coprime, and their product is the fifth power of an integer, it follows that the
integers x,z2 + = + 1,23 + 1 are also fifth powers of positive integers. Using
1= (23 +1) — («3), we obtain that 1 can be expressed as the difference of the
fifth powers of two distinct positive integers. However, this is impossible since
the fifth powers of two distinct positive integers differ by at least 31. Indeed, if
i > j > 1 are positive integers, then
P =% = (= )G +i% + %7 +if° + )

> it 4+ i35 022 + i3+ 44

>t 4234224241

=31

holds. This completes the proof. |

I Remark. It is worth comparing the above problem, and the following one.

Example 1.26 (IMOSL 2006 N5). Find all integer solutions of the equation

7 —1

5
fr— —1.
z—1 y

The following is due to the AoPS user TomciO.
Solution 22. Let us establish the following claim.

Claim — Let p, g be primes such that ¢ divides the integer

7 =1

rx—1

for some integer  # 1. Then ¢ = 1 mod p or p = ¢ holds.

Proof of the Claim. If x =1 mod g, then
P —1

r—1

=2P P4 2P 2 4. 4 1=pmodgq

22 The content posted here and at this blog by Evan Chen are quite useful.
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holds, which shows that p = q.

If x # 1 mod ¢, then let k& denote the smallest positive integer such that
2% =1 mod ¢ holds. Writing p = ak + b for some integers a,b with 0 < b < k,
and using the congruence P = 1 mod g combined with the minimality of k, it
follows that b = 0, and hence p is a multiple of the integer k. Since k is larger
than 1 and p is a prime, we obtain p = k. A similar argument also shows that
k divides ¢ — 1, and consequently, p divides ¢ — 1. O

Let z,y be integers with = # 1 and satisfying the given equation.
Let us first consider the case that x = 1 mod 7. We obtain

v —1=2+2"+ - +2+1=0mod 7,
which yields y = 1 mod 7. This shows that
'+ + 2 +y+1=5mod7,
and hence, the integer y* + 3> + % 4+ y + 1 admits a prime divisor ¢ satisfying
q # 1 mod 7 and q # 7. Note that ¢ divides (z” —1)/(z — 1), and applying the

Claim, we obtain a contradiction.
Let us now consider the case that  Z 1 mod 7. Note that

7 —1

(x—l)( —1>:x7—1—(a:—1)50m0d7
z—1

holds, and using x — 1 # 0 mod 7, we obtain

1’7—

1
=1mod?7,
r—1

which yields ® = 2 mod 7. This gives that

y = y?° mod 7
=25mod 7
=4 mod 7,

and hence y — 1 = 3mod 7. It follows that some prime divisor g of y — 1
satisfies ¢ # 1 mod 7 and ¢ # 7. Note that ¢ divides (27 — 1)/(x — 1), and
applying the Claim, we obtain a contradiction.

We conclude that there are no integer solutions to the given equation satis-
fying x # 1. |

Example 1.27 (India RMO 2013c¢ P2). Find all 4-tuples (a, b, ¢, d) of natural
numbers with a < b < ¢ and a! 4+ b + ¢! = 3%.
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Solution 23. Let a,b, ¢, d be natural numbers satisfying the given conditions.
Note that d > 1. If @ > 2, then 3% = a! + b! + ¢! would be even, which is
impossible. So a is equal to 1, which gives b! + ¢! = 3¢ — 1. This implies that
b <2 Ifb=1, then ¢! = 3% — 2, which shows ¢ < 2, and hence ¢ = 1,d = 1.
Suppose b is equal to 2. Then we obtain ¢! = 3¢ — 3, which gives d > 2. Since
9 does not divide 3¢ — 3, it follows that ¢ < 5. This implies that (c, d) is equal
to (3,2) or (4,3). This gives that (a,b, ¢, d) is equal to one of

(1,1,1,1),(1,2,3,2),(1,2,4, 3).

Note that the above tuples also satisfy the given conditions. This shows that
the tuples are precisely the 4-tuples of natural numbers satisfying the given
conditions. |

Example 1.28 (India RMO 2014c¢ P6). For any natural number, let S(n)
denote sum of digits of n. Find the number of 3 digit numbers for which

S(S(n)) = 2.

Solution 24. Let n be a 3-digit natural number such that S(S(n)) = 2. Note
that S(n) < 27. Using S(n) < 27 and S(S(n)) = 2, it follows that S(n) is
equal to one of 2,11, 20. Noting that S(n) is congruent to 2 mod 9, and using
n = S(n) mod 9, we obtain n = 2 mod 9. Conversely, note that if m is a 3-digit
number and m = 2 mod 9, then S(m) = 2 mod 9 holds, and using S(m) < 27,
it follows that S(m) is equal to one of 2,11,20. We conclude that the 3-digit
numbers n satisfying S(S(n)) = 2 are precisely the 3-digit numbers which are
congruent to 2 modulo 9, or equivalently, n is equal to one of

101,110, . ..,992.

Hence there are )
1+ §(992 —101) = 100

three-digit numbers n for which S(S(n)) = 2. ]

Example 1.29 (India RMO 2016a P3). For any natural number n, expressed
in base 10, let S(n) denote the sum of all digits of n. Find all natural numbers
n such that n = 25(n)?.

Solution 25. Let n be a natural number satisfying the given conditions. Using
n = S(n) mod 9, it follows that

n = 2n? mod 9,

which gives
2n? = n mod 3,

24 The content posted here and at this blog by Evan Chen are quite useful.
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which implies that n is congruent to one of 0,2 modulo 3. Consequently, n is
congruent to one of 0,3,6,2,5,8 modulo 9. Using n = 2n% mod 9, we obtain
that n is congruent to one of 0,5 modulo 9.

Note that if n has d digits, then

10471 < n =28(n)? < 2(9d)?

holds. Note that 105~ > 2(9-5)? holds, and if k is a positive integer such that
10%~1 > 2(9k)? holds, then we obtain

10% , 10x 2(9k)?
209(k +1))2 7 2(9(k +1))2
10
(1+1/k)2
10
>
> 5
> 1.

It follows that 10¥~! > 2(9%)? holds for any integer k > 5. We obtain that
d < 4, that is, n has at most four digits. This gives that S(n) < 36. Since
S(n) = nmod 9 and n is congruent to one of 0,5 modulo 9, it suffices to
consider the following cases.

Let us consider the case that S(n) is a multiple of 9. Then S(n) is equal
to one of 9, 18,27, 36, and n is equal to one of 162, 648, 1458,2592. Note that
none of the integers 1458, 2592 satisfies the given condition. This shows that n
is one of 162, 648.

Let us now consider the case that S(n) is equal to one of 5,14,23,32. Then
S(n) is equal to one of 50, 392, 1058, 2048. Note that none of 1058, 2048 satisfies
the given condition, which implies that n is equal to one of 50, 392.

It follows that n is equal to one of the integers

90,162, 392, 648.

Note that the above integers satisfy the given condition. Hence, the above are
precisely all the natural numbers satisfying n = S(n)?. |

Example 1.30 (India RMO 2016b P3). For any natural number n, expressed
in base 10, let S(n) denote the sum of all digits of n. Find all natural numbers
n such that n? = 85(n)3 + 6nS(n) + 1.

Solution 26. Let n be a natural number satisfying the given condition. Using
S(n) =n mod 9, we obtain

3 +6n% +1=0mod 9.

Some style files, prepared by Evan Chen, have been adapted here. 25


https://artofproblemsolving.com/community/c6h1318221p7091662
https://github.com/vEnhance/dotfiles/blob/main/texmf/tex/latex/evan/evan.sty
https://web.evanchen.cc/otis.html

14 May 2025 https://jpsaha.github.io/MOTP/

Note that

m? 4+ 6n*+1=(n+1)(Tn* —n+1)
(n+1)(n+1)(Tn+1) mod 9
7(n+1)(n+1)(n+4) mod 9

holds, which implies that 3 divides n + 1 or 9 divides n + 4.
Note that

8S(n)® +6nS(n) +1 —n® = (25(n))® + (—n)> + 13 — 3(25(n))(—n)

holds. This shows that
or

holds, and hence, we get
28(n) +1=n.

Suppose n has d digits. Note that

101 <n
=2S(n)+1
<2.9d+1

holds. Observe that 103~! > 18 -3 + 1 holds, and if k is a positive integer
satisfying 10*~1 > 18k + 1, then

10% 10(18k + 1)
18k +19 18k + 19
>1

holds. By induction, it follows that d < 2, that is, n has at most two digits. It
follows that S(n) < 18.

Note that n = 25(n) + 1 implies that n is odd. Moreover, 3 divides n + 1
or 9 divides n + 4. Combining these with the congruence S(n) = n mod 9, we
obtain that S(n) is equal to one of 5,11,17. Note that none of the integers
5,11 satisfies n = 25(n) 4+ 1. This shows that n = 17. Since n = 17 satisfies
25(n) +1 = n, it also satisfies the given condition. It follows that n = 17 is
the only natural number satisfying the given condition. |

Example 1.31 (India RMO 2023b P3). For any natural number n, expressed
in base 10, let s(n) denote the sum of all its digits. Find all natural numbers
m and n such that m < n and

(5(n))? =m and (s(m))? = n.

26 The content posted here and at this blog by Evan Chen are quite useful.
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Solution 27. Let m,n be natural numbers satisfying the given conditions.
Note that

2:

n m mod 9,m? = n mod 9,

which implies that m is congruent to one of 0,1 modulo 3, and so is n, and
consequently, it follows that

m = n mod 3.

Suppose m has d digits. Note that m > 10971 and s(m) < 9d holds.
Consequently, 109! > (9d)? would yield

n>m > 10" > (9d)? > s(m)? = n,

which is impossible. Observe that 10°~! > (9 - 5)? holds, and if k is a positive
integer satisfying 10*~! > (9k)2, then

10* 10(9k)?
Ok +1)2 ~ Ok + 1))
10
R
> 1

holds. By induction, it follows that d < 4, that is, m has at most 4 digits.
This gives
s(m) < 9d < 36,
and hence, it follows that
n = s(m)? < 36 = 1296.
This yields
s(n) < max{s(1296), s(1199), s(1099), s(999)} = max{18,20, 19,27} = 27,

which gives
m = s(n)? < 27% = 729.

We get
s(m) < max{s(729), s(719), s(709), s(699)} = max{18,17,16,24} = 24,

which shows that
n = s(m)? < 24% = 576.

This gives

s(n) < max{s(576), s(569), s(559), ..., s(519), s(509), s(499)} = 22,
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which yields
m = s(n)? < 22% = 484.

This shows that
s(m) < max{s(484), s(479), s(399)} = 21,

which gives

n = s(m)? < 21% = 441.
It follows that
s(n) < max{s(441), s(400), s(361), s(324), s(289)} = max{9,4,10,9,19} = 19,
and hence, we get

m = s(n)? <19% = 361.

This gives
s(m) < max{s(361), s(324), s(289)} = 19,

which yields
n <192,

and using the inequality m < n, the congruence m = n mod 3, and that m is a
perfect square, we obtain
m < 17°.

Note that
s(17%)% = 5(289)% = 19% = 361, 5(361)% = 100 # 17

holds, which implies that
m < 16%,

and hence, we obtain
s(m) < max{s(256), s(225), s(196), s(169), s(81), s(64), s(49)} = 16.

Consequently, we obtain
n < 162,

and using the inequality m < n, the congruence m = n mod 3, and that m is a
perfect square, we get
m < 142,

Observe that
5(142)% = 5(196)* = 16 = 256, 5(256) = 13* # 147

holds, which yields
m < 132

28 The content posted here and at this blog by Evan Chen are quite useful.
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Note that (m,n) = (13%,162) is a solution to the given equation. If 82 < m <
122, then

s(m) < max{s(64), s(81), s(100), s(121), s(144)} = 9,

which gives n < 81, and hence (m,n) is equal to (82,92), which is impossible.
It follows that m < 72. Observe that s(m)? = n,s(n)? = m fails to hold if m
is any of 12,22, 32, 42,52,62,72.

We conclude that (m,n) = (132,16%) is the only solution to the given

equations. u
Remark. The above solution to Example 1.31 makes an effort to defer comput-
ing the (decimal expansions of the) perfect squares. It turns out that without
deferring it, we may arrive at the solution in fewer steps.

After obtaining n < 36 = 1296, one may compute the sum of the digits of
the perfect squares lying between 112 and 362, as recorded in the table below.

k k* s(k?)
36 1296 18
35 1225 10
34 1156 13
33 1089 18
32 1024 7

31 961 16
30 900 9

29 841 13
28 784 19
27 729 18
26 676 19
25 625 13
24 576 18
23 529 16
22 484 16
21 441 9

20 400 4

19 361 10
18 324 9

17 289 19
16 256 13
15 225 9

14 196 16
13 169 16
12 144 9

11 121 4
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This yields

which gives

We get

s(n) < 19,
m = s(n)? <19° = 361.

s(m) < 19,

which shows that

n=s(m)® <19° = 361.

Since m = n mod 3, we obtain

Note that

m < 172 = 289.

5(17%)% = 5(289)° = 19° = 361, 5(361)° =100 # 17°

holds, which implies that

m < 162,

and hence, we obtain

s(m) < max{s(256), s(225), s(196), s(169), s(81), s(64), s(49)} = 16.

Consequently, we obtain

and this gives

Observe that

5(15%)% = 5(225)° =81, s(81)> =81 # 15°,

5(14%)% = 5(196)° = 16° = 256, (256)° = 13° # 14°
holds, which yields

m < 13%.

Note that (m,n) = (13%,162) is a solution to the given equation. If 8% < m <

122, then

s(m) < max{s(64), s(81), s(100), s(121), s(144)} = 9,

which gives n < 81, and hence (m,n) is equal to (82,9?), which is impossible.
It follows that m < 72. Observe that s(m)? = n,s(n)? = m fails to hold if m is
any of 12,22, 3%, 4% 52 62, 72.

We conclude that (m,n) = (132 16%) is the only solution to the given

equations.

Example 1.32 (India RMO 2014e P2). The roots of the equation

30

22— 3az? +bx +18¢ =0
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form a non-constant arithmetic progression and the roots of the equation
2 +brl+r—c=0

form a non-constant geometric progression. Given that a, b, ¢ are real numbers,
find all positive integral values a and b.

Solution 28. Let a,b,c are real numbers such that the given conditions
hold. Let d # 0 denote the common difference of the non-constant arithmetic
progression formed by the roots of 2% — 3az? + bx + 18¢ = 0, and let r denote
the common ratio of the non-constant geometric progression formed by the
roots of 23+ bx? +x —c® = 0. Note that the terms of the arithmetic progression
are a — d,a,a + d, and the terms of the geometric progression are £, c,cr. It
follows that

ala —d) +ala+d) + (a®> —d*) =b, a(a® —d?) = —18kc,
which gives
d* =3a*> —b, a(a®—d*) = —18c,
and
c A,
—4+ct+er=—-b—+c +cr=1.
r r
Eliminating d, we obtain
a(4a® — b) = —18¢,
and eliminating r, we obtain
be = —1.

Eliminating ¢ yields
ab(b — 2a*) = 18. (7)
Assume that a, b are positive integers. Since a, b are positive, it follows that

b — 2a? is also positive. Note that b, b — 2a? are of the same parity. Since 2
divides 18 and 4 does not divide 18, we obtain a = 2, and hence

b(b—8) = 9.

Since b is positive, it gives b = 9.

Note that for (a,b) = (2,9), and for ¢ = fé, the roots of the polynomial
2% —3ax? +bxr+18¢c are 2F /3, 2,24 /3, which form a non-constant arithmetic
progression, and the roots of the polynomial 23 + ba? + x — ¢® are ¢/r, ¢, cr
with 7 = 40 4+ /402 — 1, which form a non-constant geometric progression.

This proves that the required solution for (a,b) is precisely (2,9). [ |

Example 1.33 (India RMO 2015d P3). Find all integers a,b, ¢ such that
a?=bc+1 and b? = ca + 1.
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Solution 29. Let a, b, ¢ be integers satisfying the given equations.

Let us first consider the case that a = b. Note that a(a — ¢) = 1 holds,
which shows that (a,a — ¢) is equal to one of (1,1),(—1,—1), which implies
that (a,b, c) is equal to one of (1,1,0), (-1, —1,0).

Now, let us consider the case that a # b. Taking the difference of the given
equations, we obtain (a—b)(a+b+c) = 0, which gives a+b = —c. Substituting
c=—a—bin a? = bc+ 1 yields a? + ab + b? = 1, which is equivalent to

(2a + b)? + 3b* = 4.
This shows that (2a + b,b) is equal to one of
(1,1),(1,—1),(=1,1), (=1, ~1),(2,0), (—2,0).
This implies that (a, b, ¢) is equal to one of
(0,1,-1),(1,-1,0),(~1,1,0), (0, ~1,1), (1,0, 1), (~1,0,1).
Combining the above cases, it follows that (a,b, ¢) is equal to one of
(1,1,0), (-1,-1,0), (0,1, 1), (1, —1,0), (=1, 1,0), (0, —1,1), (1,0, 1), (1,0, 1).

Note that any of the above triples satisfies the given equations. Hence, the
solutions of the given equations over the integers are precisely the above eight
triples. |

Example 1.34 (India RMO 2015b P3). Find all integers a,b, ¢ such that
a®? =bc+4 and b* = ca + 4.

Solution 30. Let a, b, c be integers satisfying the given equations.
Let us first consider the case that a = b. Note that a(a — ¢) = 4 holds, which
shows that (a,a — ¢) is equal to one of the elements of

{(d,d —4/d)|d is a divisor of 4},
and hence (a, b, ¢) is equal to one of
(1,1,-3), (=1, -1,3),(2,2,0), (=2, —2,0), (4,4,3), (—4, —4, —3).
Now, let us consider the case that a # b. Note that
a® — b =a(bc+4) —b(ca+4) = 4(a —b)

holds, which yields
a’ +ab+0b* = 4.

It follows that at least one of a,b is even, and hence, both of them are even.

Observe that
b\’ b\’
e Z) —4
(a+2) +3<2>
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holds, which shows that (a + b/2,b/2) is equal to one of
(2,0),(=2,0), (1,1), (1, =1), (=1, 1), (=1, 1),

and hence (a, b) is equal to one of
(2,0),(—2,0),(0,2),(2,-2),(-2,2),(0,—2).

This implies that (a, b, ¢) is equal to one of

(2,0,-2),(-2,0,2),(0,2,-2),(2,-2,0),(-2,2,0), (0,—2,2).
Considering the above cases, it follows that (a, b, c) is equal to one of
(1,1,-3),(-1,-1,3),(2,2,0), (-2, -2,0), (4,4,3), (-4, —4,-3),

(2,0,-2),(-2,0,2),(0,2,-2),(2,-2,0),(-2,2,0), (0, -2,2).

Note that any of the above pairs satisfy the given equations. This proves that
the above tuples are precisely all the solutions of the given equation over the
integers. |

Example 1.35 (India RMO 2015¢ P4). Find all three digit natural numbers of
the form (abc)1g such that (abc)1g, (bea)io, (cab)io are in geometric progression.
(Here (abc)qp is representation in base 10).

Solution 31. Let (abc)ip be a three digit natural number such that (abc)ig,
(bca)10, (cab)ip are in geometric progression, that is,

(1006 + 10¢ + a)* = (100a + 10b + ¢)(100c + 10a + b)
holds, which is equivalent to

100006 + 100¢? + a? 4 2000b¢ + 200ab + 20ca
= 10000ca + 1000(a® + be) 4 100(c? + 2ab) + 10(b* + ca) + be.

This implies
10000(b* — ca) — 1000(a? — be) — 10(b* — ca) + (a® — be) = 0,
which reduces to
(10(b* — ca) — (a* — b)) (1000 — 1) = 0.

This gives
(10a — b)c = 106 — a*. (8)
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Note that 10a — b is nonzero, otherwise, 10 would divide b, implying b = 0, and
thus, a = 0, which is impossible. It follows that

_ 1002 — a?
T 10a—0b
~10b(b — 10a) + 100ab — a?
o 10a — b
100ab — a?
= —1 _—
06+ 10a — b
1006 — a
= —10b _
0b+a 10a — b
100(b — 10a) + 1000a — a
=-1
0b+a 00—
999¢2
=—-10b—-1 .
0 00a + 100 =%

Let d denote the greatest common divisor of a,b. Note that 10a — b divides
99942, which shows that 102 — & divides 999d (%)2. Since a/d, b/d are relatively

d—d
prime, it follows that 10§ — g divides 999d. Using Eq. (8), it follows that

b > 1. Note that if @ = b holds, then using Eq. (8), we obtain a = b = ¢, and
hence, (abc)io, (bea)1p, (cab)ig are equal, and form a geometric progression. It
remains to consider the case that a # b, which we assume from now on. Since
1 < b <9 and d divides b, it follows that d < 4.

Let us consider the case that d = 4. Then a/d,b/d belong to {1,2}. Using
a # b, it follows that (%, g) is equal to (1,2) or (2,1), which implies that
104 — g does not divide 999d, which is impossible. We obtain d # 4.

Let us consider the case that d = 3. Note that 1 < a/d <3,1<b/d <3
hold, and hence 7 =10—3 < 102 — % < 30—1 =29 < 37. Since 10% — & divides
999d = 37 x 81, it is equal to one of 9,27, which shows that § — 5 =0 mod 3.
This yields a = b, which is impossible. We get that d # 3.

Let us consider the case that d = 2. Note that 1 < a/d < 4,1 <b/d < 4 hold,
which yields 6 < 10a/d—b/d < 39. Since 10a/d—b/d divides 999d = 2 x 27 x 37,
it is equal to one of 27,37, and it follows that (a/d,b/d) is equal to one of
(3,3),(4,3). Using a # b, we get that (a,b) is equal to (8,6). Then Eq. (8)
yields ¢ = 4.

Let us consider the case that d = 1. Note that 10a — b divides 999 = 27 x 37.
Observing that 10a — b < 90, we obtain 10a — b is equal to one of 1, 3,9, 27, 37,
and hence (a,b) is equal to one of (1,9),(1,7),(1,1),(3,3),(4,3). Note that
(a,b) is equal to none of (1,9), (1,7), otherwise, we would get ¢ > 10. Using
a # b, it follows that (a,b) is equal to (4,3). Then Eq. (8) yields ¢ = 2.

The above argument shows that (abc)ig is equal to one of the following eleven
integers

b
d

111,222, 333, 444, 555, 666, 777, 888, 999, 432, 864.
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Note that

432 x 243 = 144 x 729
=122 x 272
= 3242,

864 x 486 = 4 x 432 x 243
=4 x 3242
= 6482

holds. This proves that the above eleven integers satisfy the required condition,
and hence, these are precisely all the required three digit natural numbers. W

Example 1.36 (India RMO 2016f P1). Find distinct positive integers ny <
ng < --- < ny with the least possible sum, such that their product n; x ng x
-+ X ny is divisible by 2016.

Solution 32. Note that
2016 =32 x 63 =2%-32.7

holds.
Let n1 < my < .-+ < n7 be distinct positive integers satisfying the given
conditions. Note that n; > ¢ holds for all 1 <1 <7, which gives

n+mng+--+ny>214+24+3+4+5+6+7.

Note that the product of the distinct integers 1,2,3,4, 6,7, 8 is equal to 2°-32-7.
This implies that

ni+ne+---+ny<34+14+24+34+4+54+64T. (9)
Note that ng > 4 implies that
n+ne+--4+n7>214+2+34+54+6+74+8=4+14+2+34+44+5+647,
which is impossible. This gives that ngy < 4, and consequently,
np=1ns=2n3=3n4 =4

holds.
If
nitngtodng=1+2+4+3+44+5+6+7

holds, then n; is equal to ¢ for any 1 <+¢ < 7, and this is impossible since 7! is
not divisible by the divisor 2° of 2016. This proves that

ni+ngt+ng>14+2434+44+54+6+7,
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which implies that n; > ¢ for some 1 < i < 7, and hence n; > i for some 7 > 5.
This shows that

n+ne+--4+ny>214+24+34+44+6+74+8=3+14+24+3+44+5+64+T7.
Using Eq. (9), we obtain

n=1,ny=2,n3=3,n4 =4,n5 =6,n6 =7,n7 = 8.

§1.6 Using congruences
Example 1.37 (Jonquieres 1878). Prove that the equation
y? =%+ 23

has no solutions in integers.

Solution 33. Let z,y be integers satisfying the given equation. If z is
even, then y is odd, and hence y? = 1mod 8, which is impossible since
2% +23 = 7 mod 8. It follows that x is odd, and consequently, y is even. Write
y = 2k for some integer k. Note that

4k 44 =23 433
holds, which yields
(x+3)(z? — 324+ 9) = 4(k* +1).

Since z is odd, it follows that 22 — 3z + 9 is odd, and hence 4 divides = + 3, or
equivalently, we have x = 1 mod 4. This shows that

22 — 3z +9 =3 mod 4.

It follows that 2 — 32 + 9 admits a prime factor p satisfying p = 3 mod 4. This
implies that p divides k2 4 1, and hence the order of k modulo p is 4. Applying
division algorithm, and using k”~! = 1 mod 4, we obtain that 4 divides p — 1,
which is impossible. This proves that the given equation has no solution over
the integers. |

Remark. We refer to this notes by Keith Conrad on Mordell’s equation, which
are equations of the form y? = 2% + k, where k is an integer.

Example 1.38 (India RMO 1995 P4). Show that the quadratic equation
22 + 7z — 14(¢® + 1) = 0, where ¢ is an integer, has no integer root.

36 The content posted here and at this blog by Evan Chen are quite useful.
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Solution 34. It suffices to show that the discriminant of the polynomial
2% + Tz — 14(g? + 1) is not a perfect square, that is, the integer 49 + 56(q¢% + 1)
is not perfect square.

Let us assume that 49 + 56(¢? + 1) is perfect square. Note that it is divisible
by 7. So it is divisible by 49. Hence, g%+ 1 is divisible by 7, which is impossible
since 7 = 3 mod 4. Alternatively, note that

?+1=1,2,53mod 7

if ¢ =0,41,42,+3 mod 7, and thus ¢> + 1 is not divisible by 7. This shows
that the discriminant of 22 + 7z — 14(¢? + 1) is not a perfect square. So this
polynomial has no integer root. |

Example 1.39 (India RMO 2009 P2). Show that there is no integer a such
that a? — 3a — 19 is divisible by 289.

Solution 35. If a® — 3a — 19 is divisible by 289 for some integer a, then
4(a® — 3a —19) = (2a)* — 124 — 76 = (2a — 3)* — 85

would be divisible by 289 = 172, and hence 2a — 3 would be a multiple of 17,
and consequently, 172 would divide 85, which is impossible. This proves the
result. |

Example 1.40 (Mathematical Ashes 2011 P2). Find all pairs (m,n) of non-
negative integers for which

m? 423" =m(2"T —1).

Walkthrough —

a) Let m,n be nonnegative integers satisfying the given equation. Consider-
L b tive int isfying the gi tion. Consid
ing the roots of 2 — z(2" ™! — 1) + 2. 3", it follows that

3* 9.3t =927t _1

holds, for some nonnegative integers k, ¢ satisfying k + ¢ = n.

(b) Show that if n > 6, then min{k, £} > 2 holds. Note that
3F < ontt < gt /3
holds, implying k < 2(n + 1)/3. Also note that
2.3 < 2"t < 2.3%/3
holds, implying ¢ < 2n/3. Using k + £ = n, it follows that

n—2 n—2

k l
>3,>3

Some style files, prepared by Evan Chen, have been adapted here. 37
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(c) Let us consider the case” that n > 6. Note that m := min{k, ¢} > 2
holds.

(i) Note that 9 divides 2"™! — 1, and show that 6 divides n -+ 1. Writing
n + 1 =65 yields

2" 1 = (¢ —1) (@Y 447 +1) = (2T - 1) (2 +1)((4¢7 —1)*+3-4).

(ii) Noting that (4_j —1)? +3- 47 is divisible by 3, but not by 9, and that
the integers 2/ — 1,27 + 1 are coprime, conclude that 3™~ divides
one of 27 — 1,27 + 1.
(iii) Prove that
me1 _ o Rt
3 <224+1<3 =37

implying
n+1
—1< .
mTI=T%
(iv) Conclude that
n=2 cem-o1<™Fl

3
holds.

(v) This yields n < 11, contradicting n > 6 and 6 divides n + 1.

(d) It remains to consider the case n < 5.

Tt also suffices to assume that n > 5 holds to obtain m > 2.
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