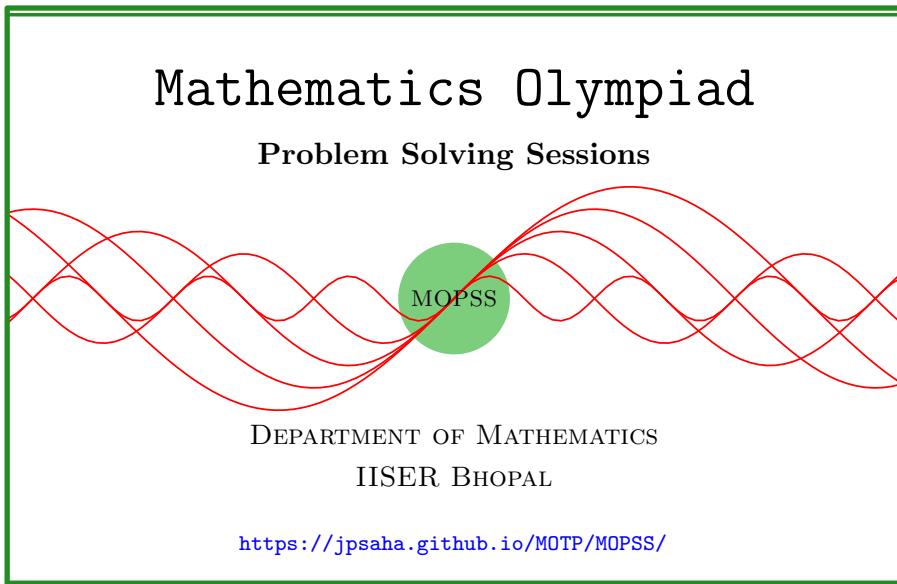


Infinite descent

MOPSS



Suggested readings

- Evan Chen's advice On reading solutions, available at <https://blog.evanchen.cc/2017/03/06/on-reading-solutions/>.
- Evan Chen's Advice for writing proofs/Remarks on English, available at <https://web.evanchen.cc/handouts/english/english.pdf>.
- Notes on proofs by Evan Chen from OTIS Excerpts [Che25, Chapter 1].
- Tips for writing up solutions by Edward Barbeau, available at <https://www.math.utoronto.ca/barbeau/writingup.pdf>.
- Evan Chen discusses why math olympiads are a valuable experience for high schoolers in the post on Lessons from math olympiads, available at <https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/>.

List of problems and examples

1.1	Exercise (Moscow Mathematical Olympiad First Round 1949 Grades 7–8 P3)	2
1.2	Exercise (Kürschák Competition 1983 P1, AoPS)	2
1.3	Exercise (BStat-BMath 2012 P5, AoPS)	3

§1 Infinite descent

Exercise 1.1 (Moscow Mathematical Olympiad First Round 1949 Grades 7–8 P3). [PK74, Problem 52.3] Show that the only solution of the equation

$$x^2 + y^2 + z^2 = 2xyz$$

for x, y, z in integers is $x = y = z = 0$.

Exercise 1.2 (Kürschák Competition 1983 P1, AoPS). Rational numbers x, y and z satisfy the equation

$$x^3 + 3y^3 + 9z^3 - 9xyz = 0.$$

Prove that $x = y = z = 0$.

Walkthrough —

(a) Show that if a, b, c are integers satisfying

$$a^3 + 3b^3 + 9c^3 = 9abc,$$

then 3 divides a , and $(b, c, a/3)$ also satisfies the above equation.

(b) If (x, y, z) is a non-trivial integer solution to the given equation with $|x| + |y| + |z|$ minimum, show that x is nonzero, and that $y, z, x/3$ is also a solution to the given equation.

Solution 1. Note that if x, y, z are rational numbers satisfying the given equation, then dx, dy, dz also satisfy the equation for any positive integer d . Hence, it suffices to prove that there are no integer solutions to the given equation other than the trivial solution $x = y = z = 0$.

Claim —

If (a, b, c) are integers satisfying

$$x^3 + 3y^3 + 9z^3 = 9xyz,$$

then 3 divides a , and $(b, c, a/3)$ also satisfies the above equation.

Proof of the Claim. Note that 3 divides a^3 . Since 3 is a prime, it follows that 3 divides a . Using

$$a^3 + 3b^3 + 9c^3 = 9abc,$$

we obtain

$$b^3 + 3c^3 + 9\left(\frac{a}{3}\right)^3 = 9bc\left(\frac{a}{3}\right).$$

This completes the proof of the claim. □

Let (x, y, z) be a non-trivial integer solution to the given equation with $|x| + |y| + |z|$ minimum. Note that x is nonzero, otherwise, y, z satisfy $y^3 + 3z^3 = 0$, which is impossible since y, z are integers. By the above claim, it follows that $y, z, x/3$ is also a solution to the given equation. Using that x is nonzero, we obtain

$$|y| + |z| + \left| \frac{x}{3} \right| < |x| + |y| + |z|,$$

which contradicts the minimality of $|x| + |y| + |z|$. This shows that there are no non-trivial integer solutions to the given equation. ■

Remark. The method used in the above solution is known as *infinite descent*. The idea is to show that if there is a non-trivial solution to the given equation, then there is a **smaller** non-trivial solution. This leads to an infinite sequence of smaller and smaller non-trivial solutions, which is impossible for positive integers.

Exercise 1.3 (BStat-BMath 2012 P5, AoPS). Let m be a natural number with digits consisting entirely of 6's and 0's. Prove that m is not the square of a natural number.

Walkthrough —

- (a) Note that if any such number is a perfect square, then its last digit cannot be 6, that is, it is not congruent to 6 modulo 10, because no square is congruent to any of 6, 66 modulo 100.
- (b) It follows that if any such number is perfect square, then it is divisible by 100.
- (c) Apply induction (on what?). A crucial step would be frame an inductive statement appropriately.

References

[Che25] EVAN CHEN. *The OTIS Excerpts*. Available at <https://web.evanchen.cc/excerpts.html>. 2025, pp. vi+289 (cited p. 1)

[PK74] G. PÓLYA and J. KILPATRICK. *The Stanford Mathematics Problem Book: With Hints and Solutions*. Dover books on mathematics. Teachers College Press, 1974. ISBN: 9780486469249. URL: <https://books.google.de/books?id=Q8Gn51gS6RoC> (cited p. 2)