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§1 Congruences

§1.1 Warm up

Example 1.1. Among any four consecutive positive integers, one of them is
coprime to the remaining three.

Proof. Note that among any four consecutive positive integers, at least one
of the odd integers is not divisible by 3, and hence, either it is equal to 1, in
which case it is coprime to the remaining ones, or it is greater than one, and
its smallest prime factor is at least 5, and hence, it is coprime to the remaining
ones.

Some style files, prepared by Evan Chen, have been adapted here. 3
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Example 1.2 (Tournament of Towns, Fall 2019, Junior, O Level, P4 by
Boris Frenkin). There are given 1000 integers a1, . . . , a1000. Their squares
a21, . . . , a

2
1000 are written along the circumference of a circle. It so happened

that the sum of any 41 consecutive numbers on this circle is a multiple of 412.
Is it necessarily true that every integer a1, . . . , a1000 is a multiple of 41?

Solution 1. For any integer m, let m denote the integer lying between 1 and
1000, which is congruent to m modulo 1000. Note that

a2i ≡ a2j mod 412

holds for any integers i, j lying between 1 and 1000, and satisfying i ≡ j mod 41.
It follows that

a21 ≡ a2
41k+1

mod 412

for any integer k. Since the integers 41, 1000 are relatively prime, it follows
that the integers

41, 41 · 2, 41 · 3, . . . , 41 · 1000

are pairwise distinct modulo 1000, that is, these integers are congruence to
1, 2, . . . , 1000 modulo 1000 in some order. This shows that a21 is congruent to
a2i for any integer 1 ≤ i ≤ 1000. It follows that

41a21 = a21 + a22 + · · ·+ a241

is divisible by 412, and hence, 41 divides a1. For any integer 1 ≤ i ≤ 1000, 412

divides a21 − a2i , and using that 41 divides a1, we obtain 41 divides ai.
This proves that it is necessary that every integer a1, . . . , a1000 is a multiple

of 41. ■

Example 1.3. [FGI96, Problem 83, p. 72] Prove that if a prime number is
divided by 30, the remainder is prime or 1.

Solution 2. Let p be a prime number. If p is less than 5, then we are done.
Henceforth, let us assume that p ≥ 5. It follows that p is of the form 6k± 1 for
some positive integer k. If k ≡ 1 (mod 5), then p is equivalent to one of 5, 7
modulo 30. If k ≡ 2 (mod 5), then p is equivalent to one of 1, 3 modulo 30. If
k ≡ 3 (mod 5), then p is equivalent to 2 modulo 30. If k ≡ 4 (mod 5), then p
is equivalent to one of 3, 5 modulo 30. This completes the proof. ■

Example 1.4 (Australian MO 1982, India RMO 2004 P6). Let (p1, p2, p3, . . . , pn, . . . )
be a sequence of primes, defined by p1 = 2 and for n ≥ 1, pn+1 is the largest
prime factor of p1p2 · · · pn + 1. Prove that pn ̸= 5 for any n.

Solution 3. Note that p1p2 . . . pn + 1 is odd for any n ≥ 1, and hence pn is
odd for any n ≥ 2. Since p1 = 2 and p2 = 3, it follows that for any n ≥ 2, the

4 The content posted here and at this blog by Evan Chen are quite useful.
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integer p1p2 . . . pn +1 is not divisible by any one of 2 and 3. So the least prime
divisor of p1p2 . . . pn + 1 is at least 5 for any n ≥ 2. If possible, suppose 5 is
the largest prime divisor of p1p2 . . . pn + 1 for some integer n ≥ 2. This yields

p1p2 . . . pn + 1 = 5k

for some k ≥ 1. This implies that 4 divides p1p2 · · · pn, which is impossible
since p1 = 2, and pr is odd for any integer r ≥ 2. This shows that pn+1 is not
equal to 5 for any integer n ≥ 2. Consequently, it follows that pn ̸= 5 for any
integer n ≥ 1. ■

Example 1.5 (Moscow MO 1973 Day 1 Grade 8 P4). Prove that the equation

1

x
+

1

y
=

1

p
,

where x, y are positive integers, has exactly 3 solutions if p is a prime and the
number of solutions is greater than three if p > 1 is not a prime. We consider
solutions (a, b) and (b, a) for a ̸= b distinct.

Example 1.6 (cf. Moscow MO 1973 Day 1 Grade 8 P4 ??). For any positive
integer n, show that the number of ordered pairs (x, y) of positive integers for
which

1

x
+

1

y
=

1

n

is equal to the number of positive divisors of n2.

Solution 4. For positive integers x, y, note that

1

x
+

1

y
=

1

n

holds if and only if
(x− n)(y − n) = n2

holds. Observe that if x, y are positive integers satisfying the given equation,
then x > n and y > n holds. This shows that the solutions of the given
equation over the positive integers are in one-to-one correspondence with pairs
of positive integers (a, b) such that ab = n2, through the map

(a+ n, b+ n) ↔ (a, b).

This completes the proof. ■

Example 1.7 (India INMO 1991 P10, cf. Moscow MO 1973 Day 1 Grade 8 P4
??). For any positive integer n, let S(n) denote the number of ordered pairs
(x, y) of positive integers for which

1

x
+

1

y
=

1

n

Some style files, prepared by Evan Chen, have been adapted here. 5
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(for instance, S(2) = 3). Determine the set of positive integers n for which
S(n) = 5.

Solution 5. For positive integers x, y, note that

1

x
+

1

y
=

1

n

holds if and only if

(x− n)(y − n) = n2

holds. Observe that if x, y are positive integers satisfying the given equation,
then x > n and y > n holds. This shows that the solutions of the given
equation over the positive integers are in one-to-one correspondence with pairs
of positive integers (a, b) such that ab = n2, through the map

(a+ n, b+ n) ↔ (a, b).

Hence, the set of positive integers n satisfying S(n) = 5 is equal to the set of
positive integers n such that n2 has precisely 5 positive divisors. Note that any
such integer n is larger than 1. Writing n as a product of powers of distinct
primes, it follows that n2 has precisely 5 positive divisors if and only if n is
the square a prime. Indeed, if p1, . . . , pr are distinct primes, and a1, . . . , ar are
positive integers, then the integer (pa1

1 . . . par
r )2 has precisely 5 positive divisors

if and only if

(2a1 + 1)(2a2 + 1) . . . (2ar + 1) = 5

holds, which is equivalent to r = 1, a1 = 2. This proves that the positive
integers satisfying S(n) = 5 are precisely the squares of the primes. ■

Example 1.8 (India RMO 1992 P2, cf. Moscow MO 1973 Day 1 Grade 8 P4
??). If 1

a + 1
b = 1

c , where a, b, c are positive integers with no common factor,
prove that (a+ b) is the square of an integer.

Solution 6. Let a, b, c be positive integers satisfying the given equation.
Assume that a, b have no common prime factors. Note that (a− c)(b− c) =
c2 holds. Also note that any common prime divisor of a − c, b − c divides
(a− c)(b− c) = c2, and hence it divides the integers a, b, which is impossible.
This shows that the integers a − c, b − c are relatively prime, and satisfy
(a− c)(b− c) = c2. Note also that a > c holds. Hence, there exist relatively
prime positive integers x, y such that c = xy, a− c = x2 and b− c = y2 holds.
This gives

a = c+ x2 = xy + x2, b = c+ y2 = xy + y2.

This implies that a+ b is a perfect square. ■

6 The content posted here and at this blog by Evan Chen are quite useful.
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Example 1.9 (UK BMO 2005 Round 2 P1, cf. Moscow MO 1973 Day 1 Grade
8 P4 ??). The integer N is positive. There are exactly 2005 ordered pairs
(x, y) of positive integers satisfying

1

x
+

1

y
=

1

N
.

Show that N is a perfect square.

Walkthrough —

(a) Note that it suffices to show that if N2 has precisely 2005 positive divisors
for some positive integer N , then N is a perfect square.

(b) Note that 2005 = 5 · 401, and all prime factors of 2005 are congruent to 1
modulo 4.

Example 1.10 (All-Russian MO 1989 Day 2 Grade 8 P5). Show that number
4545 + 5454 is composite.

Example 1.11 (India RMO 1991 P7, cf. All-Russian MO 1989 Day 2 Grade 8
P5 ??, India BStat 2006 P3). [Eng98, p. 121] Show that n4 + 4n is prime if
and only if n = 1.

Solution 7. Let n be a positive integer such that n4 + 4n is a prime. Note
that n is odd, and

n4 + 4n = (n2 + 2n)2 − 2n+1n2

= (n2 + 2n)2 − (2(n+1)/2n)2

= (n2 + 2n − 2(n+1)/2n)(n2 + 2n + 2(n+1)/2n)

holds. Since n4 +4n, n2 +2n +2(n+1)/2n are positive, it follows that n2 +2n −
2(n+1)/2n is positive. This gives n2 + 2n − 2(n+1)/2n = 1. Note that

n2 + 2n − 2(n+1)/2n ≥ 2 · 2n/2n− 2(n+1)/2n = (
√
2− 1)2(n+1)/2n

holds. If n ≥ 2, then the above yields

n2 + 2n − 2(n+1)/2n ≥ (
√
2− 1)2(n+1)/2n > 1,

which implies that n4 + 4n is not a prime. This proves that n = 1. Moreover,
if n = 1, then n4 + 4n is a prime. This completes the proof. ■

Example 1.12 (India INMO 1991 P1). Find the number of positive integers
n for which

1. n ≤ 1991 and

Some style files, prepared by Evan Chen, have been adapted here. 7
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2. 6 is a factor of (n2 + 3n+ 2).

Solution 8. Note that if n is a positive integer, then 6 divides (n+1)(n+2) if
and only if 3 divides (n+ 1)(n+ 2), which is equivalent to n ≡ ±1 mod 3. So,
the positive integers satisfying the given conditions are precisely the positive
integers at most 1991, which are not divisible by 3. Noting that 1991 = 3·663+2,
it follows that the requires number is equal to

664 + 664 = 1328.

■

Example 1.13 (India RMO 1991 P3). A four-digit number has the following
properties:

1. it is a perfect square,

2. its first two digits are equal to each other,

3. its last two digits are equal to each other.

Find all such four-digit numbers.

Solution 9. Let n be a positive integer satisfying the given conditions. Denote
the first two digits of n by a, and the last two digits of n by b. Since n is a
perfect square, it follows that n is congruent to one of 0, 1 modulo 4, which
shows that 10b+ b = 11b is congruent to one of 0, 1 modulo 4, or equivalently,
b is congruent to one of 0, 3 modulo 4. Similarly, using that a perfect square is
congruent to one of 0, 1,−1 modulo 5, it follows that b is congruent to one of
−1, 0, 1 modulo 5. This implies that b is equal to one of 0, 4.
If b = 0, then n is the square of a multiple of 10, and hence, its first two

digits would not be equal. It follows that b = 4, and consequently, we obtain

n = 1000a+ 100a+ 10b+ b = 1100a+ 11b = 1100a+ 44.

This shows that 11 divides the perfect square n. So, 112 divides n, and hence,
11 divides 100a+ 4, which yields

a ≡ 7 mod 11.

Since 1 ≤ a ≤ 9, we obtain a = 7, and this gives n = 7744. Note that
7744 = 882, it follows that 7744 is the only four-digit number satisfying the
given conditions. ■

Example 1.14 (All-Russian MO 1992–1993 Final Stage Grade 09 P1, India
RMO 2011b P2). Let n be a positive integer such that 2n+ 1 and 3n+ 1 are
both perfect squares. Show that 5n+ 3 is a composite number.

8 The content posted here and at this blog by Evan Chen are quite useful.
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Solution 10. Let a, b be positive integers such that

2n+ 1 = a2, 3n+ 1 = b2

holds. Note that

5n+ 3 = 4(2n+ 1)− (3n+ 1) = 4a2 − b2 = (2a− b)(2a+ b). (1)

Since 2a+ b ≥ 2, it follows that 2a− b is positive, and hence, it suffices to show
that 2a− b ̸= 1. Using 2n+ 1 is a perfect square, it follows that n ≥ 3. Note
that

2a− b = 2
√
2n+ 1−

√
3n+ 1

=
4(2n+ 1)− (3n+ 1)

2
√
2n+ 1 +

√
3n+ 1

=
5n

2
√
2n+ 1 +

√
3n+ 1

≥ 5n

2
√
3n+

√
4n

=
5

2 + 2
√
3

√
n

> 1,

where the last inequality is obtained using n ≥ 3. This shows that 2a− b > 1.
From ??, it follows that 5n+ 3 is a composite number. ■

Example 1.15 (India RMO 1994 P5). Let A be a set of 16 positive integers
with the property that the product of any two distinct numbers of A will not
exceed 1994. Show that there are two numbers a and b in A which are not
relatively prime.

Solution 11. Note that if n ≥ 1, and a1, . . . , an are distinct and pairwise
coprime positive integers such that ai ≥ 2 for all i, then one of them admits a
prime factor which is at least as large as the n-th prime. Indeed, for each i, if
we fix a prime divisor pi of ai, then using that a1, . . . , an are pairwise coprime,
it follows that p1, . . . , pn are distinct primes, and hence the largest among them
is at least as large as the n-th prime. Consequently, if n ≥ 2, and a1, . . . , an
are distinct and pairwise coprime positive integers, then at least (n − 1) of
them are greater than 1, and hence one of them is divisible by a prime at least
as large as the (n− 1)-st prime.

If possible, let us assume that the elements of A are pairwise coprime. Hence,
A contains an element x which is divisible by a prime at least as large as the
15th prime. Similarly, A \ {x} has an element y which is divisible by a prime
at least as large as the 14th prime. Since the 14th and 15th primes are 43, 47
respectively, it follows that x ≥ 47, y ≥ 43, and consequently,

xy ≥ 47 · 43 = 2021 > 1994,
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which contradicts the hypothesis. This proves that there are two numbers a
and b in A which are not relatively prime. ■

Example 1.16 (India RMO 1994 P3). Find all 6-digit natural numbers
a1a2a3a4a5a6 formed by using the digits 1, 2, 3, 4, 5, 6, once each such that the
number a1a2 . . . ak is divisible by k, for 1 ≤ k ≤ 6.

Solution 12. Since a1a2, a1a2a3a4, a1a2a3a4a5a6 are divisible by 2, it follows
that a2, a4, a6 are even, and hence they are equal to 2, 4, 6 in some order. Using
that a1a2a3a4a5 is divisible by 5, we get that a5 = 5. So a1, a3 are equal to
1, 3 in some order. Using that a1a2a3 is a multiple of 3, we obtain

a1 + a2 + a3 ≡ 0 mod 3,

which yields
a2 ≡ 2 mod 3,

and hence, a2 = 2 holds. Note that 1234, 3214 are not divisible by 4. This
shows that a4 = 6, and hence a6 = 4. It follows that a1a2a3a4a5a6 is equal to
321654, or 123654. Note that the integers 321654, 123654 satisfy the required
conditions too. This proves that 321654, 123654 are precisely all the 6-digit
numbers satisfying the given condition. ■

Example 1.17 (Tournament of Towns, India RMO 1995 P3). [Tao06, Problem
2.1] Prove that among any 18 consecutive three digit numbers there is at least
one number which is divisible by the sum of its digits.

Solution 13. Note that among 18 consecutive three digit numbers, there is
an integer divisible by 18. Denote it by n = 100a+ 10b+ c with a, b, c lying
between 0 and 9. It follows that 9 divides n, and hence 9 divides a+ b+ c. This
shows that a+ b+ c is equal to one of 9, 18, 27. Note that a+ b+ c = 27 holds
only if n = 999. Since 18 divides n, it follows that a+ b+ c ≠ 27, and hence,
a+ b+ c is equal to one of 9, 18. This proves that a+ b+ c divides n. ■

Example 1.18 (China TST 1995 Day 1 P1). Find the smallest prime number p
that cannot be represented in the form |3a−2b|, where a and b are non-negative
integers.

Solution 14. Note that any prime smaller than 41 can be expressed as the
absolute value of the difference of a nonnegative power of 3 and a nonnegative
power of 2, as shown below.

2 = 3− 1,

3 = 4− 1,

5 = 9− 4,

10 The content posted here and at this blog by Evan Chen are quite useful.
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7 = 8− 1,

11 = 27− 16,

13 = 16− 3,

17 = 81− 64,

19 = 27− 8,

23 = 32− 9,

29 = 32− 3,

31 = 32− 1,

37 = 64− 27.

Let us prove the following claim.

Claim — The prime number 41 cannot be expressed as the absolute
value of the difference of a nonnegative power of 3 and a nonnegative
power of 2.

Proof of the Claim. On the contrary, let us assume that

41 = |3a − 2b|

holds for some nonnegative integers a, b.
First, let us consider the case that 41 = 2b − 3a. Note that b ≥ 3 holds,

and reducing the above modulo 8, it follows that 3a ≡ −1 (mod 8), which is
impossible.
Now, let us consider the case that 41 = 3a − 2b. Reducing modulo 3, it

follows that 2b ≡ 1 (mod 3), which shows that b is even. Note that b is nonzero.
Next, reducing modulo 4, we obtain 3a ≡ 1 (mod 4), which implies that a is
even. Writing a = 2x, b = 2y for some positive integers x, y, we obtain

41 = 32x − 22y = (3x − 2y)(3x + 2y)

with 1 ≤ 3x − 2y < 3x + 2y, which yields

3x − 2y = 1, 3x + 2y = 41,

which is impossible.
Considering the above cases, the claim follows.

This proves that 41 is smallest prime that cannot be expressed in the given
form. ■

Example 1.19 (India RMO 1995 P2). Call a positive integer n good if there
are n integers, positive or negative, and not necessarily distinct, such that their
sum and products are both equal to n. Show that the integers of the form
4k + 1 and 4ℓ are good.
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Solution 15. Note that 1 is good. Let k be a positive integer. Put

a1 = · · · = ak = 1, b1 = · · · = bk = −1.

Noting that

4k + 1 = (4k + 1) + 2(a1 + · · ·+ ak) + 2(b1 + · · ·+ bk),

4k + 1 = (4k + 1)

(
k∏

i=1

aibi

)2

,

it follows that 4k+1 is good. Also note that for a positive integer ℓ, 4ℓ is equal
to the sum, and also equal to the product, of 2, 2, ℓ and 4ℓ− 2− 2− ℓ many
1’s, and hence, 4ℓ is good. ■

Example 1.20 (India RMO 1996 P4). Suppose N is an n-digit positive integer
such that

1. all the n-digits are distinct, and

2. the sum of any three consecutive digits is divisible by 5.

Prove that n is at most 6. Further, show that starting with any digit one can
find a six-digit number with these properties.

Solution 16. If n ≥ 7, then note that the first digit of N is congruent to its
fourth digit modulo 5, and its fourth digit is congruent to its seventh digit
modulo 5, and hence, its first, fourth and seventh digits are congruent to each
other modulo 5, which is impossible since the digits of n are distinct and no
three integers among 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are congruent modulo 5. This shows
that n is at most 6.

Let 0 ≤ a ≤ 4 be an integer. Considering the 3-digit numbers

140, 230, 320, 410,

it follows that there are integers 0 ≤ b, c ≤ 4 such that a, b, c are distinct, and
their sum is divisible by 5. Taking

a1 = a, a2 = b, a3 = c, a4 = a1 + 5, a5 = a2 + 5, a6 = a3 + 5,

it follows that the 6-digit integer

105a1 + 104a2 + 103a3 + 102a4 + 10a5 + a6

has the required properties. ■

Example 1.21 (India RMO 1997 P2). For each positive integer n, define
an = 20+n2, and dn = gcd(an, an+1). Find the set of all values that are taken
by dn and show by examples that each of these values are attained.

12 The content posted here and at this blog by Evan Chen are quite useful.
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Solution 17. Let n be a positive integer. Since dn divides the integers
20 + n2, 20 + (n+ 1)2, it follows that dn divides

20 + (n+ 1)2 − (20 + n2) = 2n+ 1,

and dn also divides

20 + (n+ 1)2 + 20 + n2 = 41 + 2n2 + 2n.

This shows that dn divides

2(41 + 2n2 + 2n)− (2n+ 1)2 = 81.

So, dn is equal to one of 1, 3, 9, 27, 81.
Note that

d1 = gcd(a1, a2)

= gcd(21, 24)

= 3,

d2 = gcd(a2, a3)

= gcd(24, 29)

= 1

holds.
If dn = 9, then 9 divides 2n+ 1, showing that n ≡ 4 mod 9. Note that

d4 = gcd(a4, a5) = gcd(36, 45) = 9

holds. If dn = 27, then 27 divides 2n+ 1, implying that n ≡ 13 mod 27. Note
that

d13 = gcd(a13, a14) = gcd(189, 216) = gcd(189, 216− 189) = gcd(189, 27) = 27

holds. Also note that if dn = 81, then 81 divides 2n + 1, which shows that
n ≡ 40 mod 81. Observe that

d40 = gcd(a40, a41)

= gcd(20 + 402, 20 + 412)

= gcd(1620, 2 · 40 + 1)

= 81

holds.
This proves that the set of values taken by dn are precisely

1, 3, 9, 27, 81.

■
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Example 1.22 (India RMO 1998 P5). Find the minimum possible least
common multiple (lcm) of twenty (not necessarily distinct) natural numbers
whose sum is 801.

Solution 18. Let L denote the minimum possible least common multiple of
twenty (not necessarily distinct) natural numbers, whose sum is 801. Note that
one of these natural numbers is larger than 40 (otherwise their sum would be
no larger than 40× 20 = 800), and so L is at least 41. Since 801 can be written
as

3 + 42 + 42 + · · ·+ 42︸ ︷︷ ︸
19 times

= 801,

we get L ≤ 42. Let us prove the claim below.

Claim — The integer L is not equal to 41.

Proof of the Claim. On the contrary, assume that there exist twenty natural
number numbers x1, . . . , x20 satisfying

x1 + · · ·+ x20 = 801, lcm(x1, . . . , x20) = 41.

Since 41 is a prime, it follows that 41 divides xi for some 1 ≤ i ≤ 20. Since 41
is the least common multiple of x1, . . . , x20, we obtain xi = 41. Note that the
sum x1 + · · ·+ x20 is less than 20 · 41. This shows that not all of x1 + · · ·+ x20

is divisible by 41. Reordering the integers x1 + · · · + x20 (if necessary), let
1 ≤ k < 20 denote the integer such that none of x1, x2, . . . , xk is divisible by
41, and xk+1, xk+2, . . . , x20 are equal to 41. We obtain that

41 = lcm(x1, . . . , x41) = lcm(lcm(x1, . . . , xk), 41).

Since none of x1, . . . , xk is divisible by 41, it follows that lcm(x1, . . . , xk) = 1,
and hence,

x1 = x2 = · · · = xk = 1.

This yields

k + 41(20− k) = 801,

which implies that k ≡ 22 mod 41, which is impossible since 1 ≤ k ≤ 19. This
proves the Claim.

We obtain that L = 42. ■

Example 1.23 (India RMO 1998 P2). Let n be a positive integer and
p1, p2, . . . , pn be n prime numbers all larger than 5 such that 6 divides p21 +
p22 + · · ·+ p2n. Prove that 6 divides n.

14 The content posted here and at this blog by Evan Chen are quite useful.
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Solution 19. Note that any prime number larger than 5 is of the form 6k ± 1.
This yields

p21 + p22 + · · ·+ p2n ≡ (±1)2 + (±1)2 + · · ·+ (±1)2 mod 6 ≡ n mod 6.

Since 6 divides p21 + p22 + · · ·+ p2n, it follows that 6 divides n. ■

Example 1.24 (India RMO 1999 P2). Find the number of positive integers
which divide 10999 but not 10998.

Solution 20. Since every divisor of 10998 divides 10999, the required number
is equal to the difference of the number of divisors of 10999 and 10998, which is
equal to (999 + 1)(999 + 1)− (998 + 1)(998 + 1) = 1999. ■

Example 1.25 (Bay Area MO 1999 P1). Prove that among any 12 consecutive
positive integers, there is at least one which is smaller than the sum of its
proper divisors. (The proper divisors of a positive integer n are all positive
integers other than 1 and n which divide n. For example, the proper divisors
of 14 are 2 and 7.)

Solution 21. Among any twelve consecutive integers, there is a multiple of 12.
For any positive integer n, note that

3n, 4n, 6n

are proper divisors of 12n, and

12n < 3n+ 4n+ 6n

holds. This completes the proof. ■

Example 1.26 (Bay Area MO 2000 P1). Prove that any integer greater than
or equal to 7 can be written as a sum of two relatively prime integers, both
greater than 1.

Solution 22. Note that any odd integer can be expressed as the sum of two
relatively prime integers. Indeed, for any integer n, the integer 2n+ 1 is the
sum of the relatively prime integers n, n+ 1.

For any integer k, note that

4k = (2k − 1) + (2k + 1)

holds, and the integers 2k − 1, 2k + 1 are relatively prime since any of their
common divisors is odd and divides (2k + 1)− (2k − 1) = 2.

For any integer ℓ, note that

4ℓ+ 2 = (2ℓ− 1) + (2ℓ+ 3)

holds, and the integers 2ℓ − 1, 2ℓ + 3 are relatively prime since any of their
common divisors is odd and divides (2ℓ+ 3)− (2ℓ− 1) = 4. ■
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Example 1.27 (India RMO 2000 P6).

1. Consider two positive integers a and b which are such that aabb is divisible
by 2000. What is the least possible value of the product ab?

2. Consider two positive integers a and b which are such that abba is divisible
by 2000. What is the least possible value of the product ab?

Solution 23. Let a, b denote positive integers such that aabb is divisible by
2000 and the product ab is minimum. Note that 2, 5 divide ab, which shows
that 10 divides ab, and hence ab ≥ 10. Using that 2000 divides 101011, we
obtain ab = 10.

Now let a, b denote positive integers such that abba is divisible by 2000 and
the product ab is minimum. Note that 2, 5 divide ab, and hence 10 divides ab.
Moreover, ab ≤ 20 since 2000 divides 4554. If ab = 10, then (a, b) is equal to
one of

(1, 10), (2, 5), (5, 2), (10, 1),

and in each of this cases, 2000 does not divide abba. This shows that ab ̸= 10,
and ab ≤ 20, and ab is a multiple of 10. Observing that 2000 divides 4554, we
conclude that ab = 20. ■

Example 1.28 (India RMO 2001 P7). Prove that the product of the first 1000
positive even integers differs from the product of the first 1000 odd integers by
a multiple of 2001.

Solution 24. Note that

2 · 4 · 6 · ·̇1998 · 2000
− 1 · 3 · 5 · · · · · 1997 · 1999

= (2001− 1)(2001− 3) · · · (2001− 1997)(2001− 1999)

− (2001− 2)(2001− 4) · · · (2001− 1998)(2001− 2000)

holds, which yields

2 · 4 · 6 · · · 1998 · 2000− 1 · 3 · 5 · · · 1997 · 1999
≡ 1 · 3 · 5 · · · 1997 · 1999− 2 · 4 · 6 · · · 1998 · 2000 mod 2001.

It follows that

2(2 · 4 · 6 · · · 1998 · 2000− 1 · 3 · 5 · · · 1997 · 1999) ≡ 0 mod 2001,

which implies that

2000(2 · 4 · 6 · · · 1998 · 2000− 1 · 3 · 5 · · · 1997 · 1999) ≡ 0 mod 2001.

16 The content posted here and at this blog by Evan Chen are quite useful.
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This shows that

2 · 4 · 6 · · · 1998 · 2000− 1 · 3 · 5 · · · 1997 · 1999 ≡ 0 mod 2001,

completing the proof. ■

Example 1.29 (India RMO 2002 P3, India RMO 2012d P2, India RMO 2012a
P2, India RMO 2012b P2, India RMO 2012c P2).

1. Let a, b, c be positive integers such that a divides b2, b divides c2 and c
divides a2. Prove that abc divides (a+ b+ c)7.

2. Let a, b, c be positive integers such that a|b3, b|c3 and c|a3. Prove that
abc divides (a+ b+ c)13.

3. Let a, b, c be positive integers such that a|b4, b|c4 and c|a4. Prove that
abc divides (a+ b+ c)21.

4. Let a, b, c be positive integers such that a|b5, b|c5 and c|a5. Prove that
abc divides (a+ b+ c)31.

Solution 25. In the following, k denotes one of the integers 2, 3, 4, 5. Assume
that a | bk, b | ck, c | ak. Note that if one of a, b, c is equal to 1, then all of them
are equal to 1, and then there is nothing to prove. Henceforth, let us assume
that a, b, c are larger than 1. The given conditions imply that the set of prime
divisors of a, b, c are equal.

Let p be a common prime divisor of a, b, c. Let pα, pβ , pγ denote the highest
powers of p dividing a, b, c respectively. The given divisibility conditions imply
that

α ≤ kβ, β ≤ kγ, γ ≤ kα.

This yields
α+ β + γ ≤ α+ k2α+ 2α = (k2 + k + 1)α,

and similarly, α + β + γ ≤ (k2 + k + 1)β, α + β + γ ≤ (k2 + k + 1)γ, which
shows that

α+ β + γ ≤ (k2 + k + 1)min{α, β, γ}.

Note that pmin{α,β,γ} divides a+ b+ c. By the above inequality, pα+β+γ divides
(a+ b+ c)(k2+k+1). So abc divides (a+ b+ c)7. Also note that pα+β+γ is the
highest power of p dividing abc. This shows that for each common prime divisor
p of a, b, c, the highest power of p that divides abc also divides (a+ b+ c)k

2+k+1.

It follows that abc divides (a+ b+ c)k
2+k+1. ■

Solution 26. It suffices to show that abc divides aαbβcγ for any nonnegative
integers α, β, γ such that α+ β + γ = k2 + k + 1. Note that

abc | ack+1 | ak
2+k+1, abc | ak+1b | bk

2+k+1, abc | bk+1c | ck
2+k+1,
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which shows that abc divides ak
2+k+1, bk

2+k+1, ck
2+k+1. Moreover, abc divides

aαbβcγ when α, β, γ are all positive. It remains to consider the case when
exactly one of α, β, γ is zero, which we assume from now on. If α = 0, then

abc | bk+1c | bβcγ if β ≥ k + 1,

abc | ck
2+1b | bβcγ if β ≤ k

holds. If β = 0, then

abc | ck+1a | cγaα if γ ≥ k + 1,

abc | ak
2+1c | cγaα if γ ≤ k

holds. If γ = 0, then

abc | ak+1b | aαbβ if α ≥ k + 1,

abc | bk
2+1a | aαbβ if α ≤ k

holds. This shows that abc divides (a+ b+ c)k
2+k+1. ■

Example 1.30 (India RMO 2003 P2). If n is an integer greater than 7, prove
that

(
n
7

)
−
[
n
7

]
is divisible by 7. [Here

(
n
7

)
denotes the number of ways of

choosing 7 objects from among n objects; also for any real number x, [x]
denotes the greatest integer not exceeding x.]

Solution 27. If x1, x2, . . . , xk are real numbers with k ≥ 2 and 1 ≤ ℓ ≠ k is
an integer, then we denote by x1 . . . x̂ℓ . . . xk the product

x1 . . . xℓ−1xℓ+1 . . . xk.

Let n be an integer greater than 7. Let q, r be integers with 0 ≤ r ≤ 6 and
q ≥ 1 such that n is equal to 7q+r. We need to show that

(
7q+r
7

)
−q is divisible

by 7, which is equivalent to

6!

((
7q + r

7

)
− q

)
≡ 0 mod 7 (2)

since 6! is coprime to 7. Note that 6!
(
7q+r
7

)
is equal to

(7q + r)(7q + r − 1)(7q + r − 2)(7q + r − 3)(7q + r − 4)(7q + r − 5)(7q + r − 6)

7
.

It follows that

6!

(
7q + r

7

)
≡ q · r(r − 1) · · · (̂r − r) · · · (r − 6) mod 7 ≡ q · 6! mod 7.

This shows that ?? holds, which proves the result. ■
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Example 1.31 (India RMO 2005 P2). If x, y are integers and 17 divides both
the expressions x2 − 2xy+ y2 − 5x+7y and x2 − 3xy+2y2 + x− y, then prove
that 17 divides xy − 12x+ 15y.

Solution 28. Let x, y be integers such that 17 divides both the expressions
x2 − 2xy + y2 − 5x+ 7y and x2 − 3xy + 2y2 + x− y. Note that

x2 − 3xy + 2y2 + x− y = (x− y)(x− 2y + 1),

which is divisible by 17. It follows that

x ≡ y mod 17, or x ≡ 2y − 1 mod 17

holds.
Let us consider the case that x ≡ y mod 17. It follows that

x2 − 2xy + y2 − 5x+ 7y ≡ (x− y)2 − 5x+ 7y ≡ 2y mod 17.

Since 17 divides x2 − 2xy + y2 − 5x+ 7y, we get 2y ≡ 0 mod 17, which yields
x ≡ y ≡ 0 mod 17, and hence 17 divides xy − 12x+ 15y.

Let us consider the case that x ≡ 2y− 1 mod 17. Using x2 − 2xy+ y2 − 5x+
7y ≡ 0 mod 17, we obtain

(2y − 1)2 − 2(2y − 1)y + y2 − 5(2y − 1) + 7y ≡ 0 mod 17,

which yields y2−5y+6 ≡ 0 mod 7. This implies that (y−2)(y−3) ≡ 0 mod 17.
This shows that either x ≡ 3 mod 17, y ≡ 2 mod 17 holds, or x ≡ 5 mod 17, y ≡
3 mod 17 holds. If x ≡ 3 mod 17, y ≡ 2 mod 17 holds, then

xy − 12x+ 15y ≡ 6− 36 + 30 ≡ 0 mod 17

holds. If x ≡ 5 mod 17, y ≡ 3 mod 17 holds, then we obtain

xy − 12x+ 15y ≡ 15− 60 + 45 ≡ 0 mod 17.

This proves that 17 divides xy − 12x+ 15y. ■

Example 1.32 (India RMO 2006 P2). Find the least possible value of a+ b,
where a, b are positive integers such that 11 divides a + 13b and 13 divides
a+ 11b.

Solution 29. Let a, b be positive integers such that 11 divides a+ 13b and
13 divides a+ 11b. It follows that 11 divides 6a+ 78b = 6a+ b+ 77b, and 13
divides 6a+ 66b = 6a+ b+ 65b. This shows that 6a+ b is divisible by 11 and
13. Since the integers 11, 13 are relatively prime, we obtain that 11 · 13 = 143
divides 6a+ b.
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If b ≥ 4, then we obtain

6a+ 6b = 6a+ b+ 5b ≥ 143 + 20 = 163,

which implies that
a+ b ≥ 28.

If b = 1, then 6a + b = 143 admits no solutions in the integers, and hence
6a+ b ≥ 3 ·143 holds, which implies that a+ b ≥ (6a+ b)/6 > 28. If b = 2, then
6a+ b = 143 admits no solutions in the integers, and hence 6a+ b ≥ 2 · 143
holds, which shows that a+ b ≥ (6a+ b)/6 > 28. If b = 3, then 6a+ b = 143
admits no solutions in the integers, and hence 6a+ b ≥ 3 · 143 holds, which
implies that a+ b ≥ (6a+ b)/6 > 28. Considering these cases, it follows that
a+ b ≥ 28.
Note that a = 23, b = 5 satisfy the given conditions. This shows that least

possible value of a + b accross all positive integers a, b satisfying the given
divisibility conditions is 28. ■

Solution 30. Let a, b be positive integers such that 11 divides a + 13b, 13
divides a+ 11b. It follows that a+ 2b is equal to 11m, and a− 2b is equal to
13n for some integers m,n with m ≥ 1. This gives

a =
11m+ 13n

2
, b =

11m− 13n

4
, a+ b =

33m+ 13n

4
.

Since b is an integer, we obtain 3m ≡ n mod 4. If (m,n) is equal to (3, 1), then
note that

A :=
11m+ 13n

2
, B :=

11m− 13n

4

are positive integers satisfying

A+B = 23 + 5 = 28,

and 11 divides A + 2B and 13 divides A − 2B, or equivalently, 11 divides
A + 13B and 13 divides A + 11B. This shows that a + b ≤ 28. Since m is
positive, we get

33 + 13n

4
≤ 33m+ 13n

4
= a+ b ≤ 28,

11− 13n

4
≤ 11m− 13n

4
= b < a+ b ≤ 28,

which gives −7 ≤ n ≤ 6. Note that if n is nonnegative, then we obtain

33m

4
≤ a+ b ≤ 28,

which gives m ≤ 3, and when n is negative, we have

33m+ 13n

4
≤ 28,
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which gives
33m ≤ 112− 13n ≤ 112 + 13 · 7 = 203,

implying m ≤ 6. Moreover, we have

m ≥ 13

11
|n| > |n|.

Noting that m + n ≡ 0 mod 4 holds, it follows that the pair (m,n) is equal
to one of (3, 1), (6,−2), (5,−1). If (m,n) is equal to (6,−2), (5,−1), then
b = 11m−13n

4 is larger than 28. Consequently, (m,n) is equal to (3, 1). This
shows that the least value of a+ b is 28. ■

Example 1.33 (India BMath 2007 P1). Let n be a positive integer. If n has
odd number of divisors (other than 1 and n), then show that n is a perfect
square.

Example 1.34 (India RMO 2009 P3). Show that 32008 +42009 can be written
as product of two positive integers each of which is larger than 2009182.

Solution 31. Note that 32008 + 42009 is equal to 4x4 + y4 where x = 4502, y =
3502. Also note that

32008 + 42009 = (2x2 + y2 − 2xy)(2x2 + y2 + 2xy)

holds. Since x ̸= y, it follows that the integers 2x2+y2+2xy, 2x2+y2−2xy are
strictly larger than x2. So it suffices to show x2 ≥ 2009182, which is equivalent
to x ≥ 200991, which follows since

x = 4502 = 21004 > 211·91 = 204891 > 200991

holds. ■

Example 1.35 (India RMO 2011a P3). A natural number n is chosen strictly
between two consecutive perfect squares. The smaller of these two squares is
obtained by subtracting k from n and the larger by adding ℓ to n. Prove that
n− kℓ is a perfect square.

Solution 32. Let m be a positive integer such that

m2 = n− k, (m+ 1)2 = n+ ℓ

holds. This yields

n− kℓ = n− (n−m2)((m+ 1)2 − n)

= n+ n2 − n(m2 + (m+ 1)2) +m2(m+ 1)2

= n2 − n(2m2 + 2m) + (m2 +m)2

= (n−m2 −m)2,

which is a perfect square. ■
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Example 1.36 (India Pre-RMO 2012). Let P (n) = (n+1)(n+3)(n+5)(n+7).
What is the largest integer that is a divisor of P (n) for all positive even integers
n?

Solution 33. Note that

P (2) = 3 · 5 · 7 · 9,
P (10) = 11 · 13 · 15 · 17,
P (16) = 17 · 19 · 21 · 23

holds. Also note that for any integer n, at least one of n + 1, n + 3, n + 5
is divisible by 3. It follows that the largest integer that divides P (n) for all
positive even integers n is equal to 3. ■

Example 1.37 (India RMO 2012f P2). Let n be a positive integer such that
13 divides n2 + 3n+ 51. Show that 169 divides 21n2 + 89n+ 44.

Solution 34. Note that the polynomialX2+3X+51 is congruent toX2+3X−1
modulo 13, which vanishes at 5 mod 13, and its discriminant is congruent to
0 modulo 13. This shows that the polynomial X2 + 3X + 51 is congruent to
(X − 5)2 modulo 13. So n is congruent to 5 mod 13.

Note that the discriminant of 21X2 + 89X + 44 satisfies

892 − 4 · 21 · 44 ≡ (−2)2 − 4 · (−5) · 5 ≡ 4 · 26 mod 13,

and hence this polynomial is congruent to 21(X − k)2 modulo 13 for some
integer k. Observing that

21 · 52 + 89 · 5 + 44 ≡ (−5) · (−1)− 2 · 5 + 5 ≡ 0 mod 13,

it follows that k is congruent to 5 mod 13. This implies that 21X2 + 89X + 44
is congruent to 21(X − 5)2 modulo 13. Since n is congruent to 5 mod 13, it
follows that 169 divides 21n2 + 89n+ 44. ■

Example 1.38 (India RMO 2012e P6). A computer program generated 175
positive integers at random, none of which had a prime divisor greater than 10.
Prove that there are three numbers among them whose product is the cube of
an integer.

Solution 35. Denote these integers by

2a13b15c17d1 , 2a23b25c27d2 , · · · , 2a1753b1755c1757d175 .

By pigeonhole principle, there exists a subset A of {1, 2, . . . , 175} of size 59 such
that the integers ai, for i in A, are congruent to each other modulo 3. By the
same principle, it follows that there exists a subset B of A of size 20 such that
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the integers bi, for i in B, are congruent to each other modulo 3. Applying the
same principle, we obtain a subset of C of B of size 7 such that the integers ci,
for i in C, are congruent to each other modulo 3. Using the principle principle
once again, we get a subset D of C of size 3 such that the integers di, for i
in D, are congruent to each other modulo 3. Since D ⊆ C ⊆ B ⊆ A holds, it
follows that the product of the three integers

2ai3bi5ci7di , i ∈ D

is a perfect cube. ■

Example 1.39 (India RMO 2013d P2). Determine the smallest prime that
does not divide any five-digit number whose digits are in a strictly increasing
order.

Solution 36. Note that 2 divides 12346, 3 and 5 divide 12345, and 7 divides
12348. Hence, the smallest prime satisfying the required condition is at least
as large as 11.
Let (abcde)10 be a five-digit number in base 10 with 1 ≤ a < b < c < d <

e ≤ 9. Note that

a− b+ c− d+ e = (a− b) + (c− d) + e ≤ e ≤ 9

holds, and

a− b+ c− d+ e = a+ (c− b) + (e− d) ≥ a ≥ 1

holds. This shows that 11 does not divide a− b+ c− d+ e, or equivalently 11
does not divide the integer (abcde)10. Since 11 does not divide any five-digit
number whose digits are in a strictly increasing order, it follows that the
smallest prime satisfying the required condition is at most 11.

We conclude that 11 is the smallest prime satisfying the required condition.
■

Example 1.40 (India RMO 2013e P5). Let a1, b1, c1 be natural numbers. We
define

a2 = gcd(b1, c1), b2 = gcd(c1, a1), c2 = gcd(a1, b1)

and

a3 = lcm(b2, c2), b3 = lcm(c2, a2), c3 = lcm(a2, b2).

Show that gcd(b3, c3) = a2.

Solution 37. It suffices to show that the highest power of p dividing gcd(b3, c3)
and a2 are equal for any prime p. Fix a prime number p. Let px, py, pz denote
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the highest powers of p dividing a1, b1, c1 respectively. So the highest exponents
of p dividing a2, b2, c2 are

min{y, z},min{z, x},min{x, y}

respectively. Thus the highest exponents of p dividing b3, c3 are

max{min{x, y},min{y, z}},max{min{y, z},min{z, x}}

respectively. So it remains to show that

min{max{min{x, y},min{y, z}},max{min{y, z},min{z, x}}} = min{y, z}
(3)

holds. Note that min{x, y},min{y, z} are less than or equal to y, which gives

max{min{x, y},min{y, z}} ≤ y.

Similarly, it follows that

max{min{y, z},min{z, x}} ≤ z.

This gives that

min{max{min{x, y},min{y, z}},max{min{y, z},min{z, x}}} ≤ min{y, z}.

Note also that

max{min{x, y},min{y, z}} ≥ min{y, z},
max{min{y, z},min{z, x}} ≥ min{y, z}

holds, which yields

min{max{min{x, y},min{y, z}},max{min{y, z},min{z, x}}} ≥ min{y, z}.

This proves that ?? holds. ■

Example 1.41 (India RMO 2014c P3). Prove that for any natural number
n < 2310, n(2310− n) is not divisible by 2310.

Solution 38. Suppose n < 2310 is a positive integer such that n(2310− n) is
equal to 2310k for some positive integer k. It follows that there are positive
integers a, b such that a divides n, b divides 2310−n and ab = 2310. Note that
b also divides n. This shows that n is divisible by the least common multiple
of the integers a and b, that is, by ab/ gcd(a, b). Note that

2310 = 2 · 3 · 5 · 7 · 11

holds, and hence 2310 is a square-free integer. Since ab is equal to 2310, it
follows that gcd(a, b) = 1. This shows that ab divides n, that is, 2310 divides
n, which is impossible. This completes the proof. ■
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Example 1.42 (India RMO 2014b P3). Find all pairs of (x, y) of positive
integers such that 2x+ 7y divides 7x+ 2y.

Solution 39. Let (x, y) be a pair of positive integers such that 2x+7y divides
7x+2y. Let d denote the positive integer such that 7x+2y is equal to (2x+7y)d.
This gives

7(x− dy) = 2(dx− y).

Since the integers 2, 7 are relatively prime, it follows that 2 divides x− dy and
7 divides dx− y. This shows that

x− dy

2
=

dx− y

2
= k

holds for some integer k. This shows that

x− dy = 2k, dx− y = 7k,

which gives

(d2 − 1)x = (7d− 2)k, (d2 − 1)y = (7− 2d)k.

Since y is positive, we obtain d ≤ 3. Note that if d = 1, then k = 0 and hence
x = y. If d = 2, then (x, y) is equal to (4k, k), and if d = 3, then (x, y) is equal
to ( 198 k, 1

8k), in which case k is a multiple of 8. So (x, y) is an element of the
set

∞⋃
r=1

{(r, r), (4r, r), (19r, r)}.

Also note that for any element (a, b) of this set, the integer 2a + 7b divides
7a+ 2b. This proves that the required pairs form the above set. ■

Example 1.43 (India RMO 2014b P4). For any positive integer n > 1, let
P (n) denote the largest prime not exceeding n. Let N(n) denote the next prime
larger than P (n). (For example P (10) = 7 and N(10) = 11, while P (11) = 11
and N(11) = 13.) If n+ 1 is a prime number, prove that the value of the sum

1

P (2)N(2)
+

1

P (3)N(3)
+

1

P (4)N(4)
+ · · ·+ 1

P (n)N(n)
=

n− 1

2n+ 2
.

Solution 40. Let pn denote the n-th prime for n ≥ 1. Note that for any
integer m with pn ≤ m ≤ pn+1 − 1, the integer P (m)N(m) is equal to pnpn+1.
This gives

pn+1−1∑
m=pn

1

P (m)N(m)
=

pn+1 − pn
pnpn+1

=
1

pn
− 1

pn+1
.
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Let k denote the positive integer such that n+ 1 is equal to pk. Note that

1

P (2)N(2)
+

1

P (3)N(3)
+

1

P (4)N(4)
+ · · ·+ 1

P (n)N(n)

=

p2−1∑
m=p1

1

P (m)N(m)
+

p3−1∑
m=p2

1

P (m)N(m)
+ · · ·+

pk−1∑
m=pk−1

1

P (m)N(m)

=

(
1

p1
− 1

p2

)
+

(
1

p2
− 1

p3

)
+ · · ·+

(
1

pk−1
− 1

pk

)
=

1

p1
− 1

pk

=
1

2
− 1

n+ 1

=
n− 1

2n+ 2
.

■

Example 1.44 (India RMO 2014d P3). Determine all pairs m > n of positive
integers such that

1 = gcd(n+ 1,m+ 1) = gcd(n+ 2,m+ 2) = · · · = gcd(m, 2m− n).

Solution 41. Let m > n be positive integers satisfying the given condition. It
follows that

1 = gcd(n+ 1,m− n) = gcd(n+ 2,m− n) = · · · = gcd(m,m− n).

Note that the positive integer m−n is relatively prime to the m−n consecutive
integers

n+ 1, n+ 2, . . . ,m.

This implies that m− n = 1.
Note that if m− n = 1 holds for two positive integers, then

1 = gcd(n+ 1,m− n) = gcd(n+ 2,m− n) = · · · = gcd(m,m− n)

holds, and which yields

1 = gcd(n+ 1,m+ 1) = gcd(n+ 2,m+ 2) = · · · = gcd(m, 2m− n).

This proves that the pairs (m,n) satisfying the given condition are precisely
of the pairs of the form (n+ 1, n) as n ranges over the positive integers. ■

Example 1.45 (India RMO 2016d P3). The present ages in years of two
brothers A and B, and their father C are three distinct positive integers a, b,
and c respectively. Suppose b−1

a−1 and b+1
a+1 are two consecutive integers, and c−1

b−1

and c+1
b+1 are two consecutive integers. If a+ b+ c ≤ 150 determine a, b and c.
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Solution 42. Note that

b− 1

a− 1
− b+ 1

a+ 1
=

(a+ 1)(b− 1)− (a− 1)(b+ 1)

a2 − 1
=

2(b− a)

a2 − 1

holds, and

c− 1

b− 1
− c+ 1

b+ 1
=

(b+ 1)(c− 1)− (b− 1)(c+ 1)

b2 − 1
=

2(c− b)

b2 − 1

holds. Note that if a > b, then

2(a− b)

a2 − 1
= 1

holds, which yields
2− 2b = (a− 1)2,

which gives a = 2, and b = 0, which is impossible since b ≥ 1. This shows that
a ≤ b. It follows that

2(b− a)

a2 − 1
= 1,

2(c− b)

b2 − 1
= 1

hold. This yields

2(b− a) = a2 − 1,

2(c− b) = b2 − 1,

which implies

2b = a2 + 2a− 1,

2c = b2 + 2b− 1.

Note that a, b are odd, and

2(b+ 1) = (a+ 1)2,

2(c+ 1) = (b+ 1)2

holds. This shows that

a+ b+ c+ 3 = a+ 1 +
(a+ 1)2

2
+

(a+ 1)4

8
.

Using the bound a+ b+ c ≤ 150, we obtain

a+ 1 +
(a+ 1)2

2
+

(a+ 1)4

8
≤ 153,

which shows that a ≤ 4. Since a is odd, it follows that a = 3. It follows that

b = 7, c = 31.
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Note that the triple (a, b, c) = (3, 7, 31) satisfies a+ b+ c ≤ 150, and b−1
a−1 = 3

and b+1
a+1 = 2 are two consecutive integers, and c−1

b−1 = 5 and c+1
b+1 = 4 are two

consecutive integers.
This proves that

a = 3, b = 7, c = 31.

■

Example 1.46 (India RMO 2016c P3). Let a, b, c, d, e, f be positive integers
such that

a

b
<

c

d
<

e

f
.

Suppose af − be = −1. Show that d ≥ b+ f .

Solution 43. The given conditions yield

ad < bc, cf < de.

This gives
adf ≤ bcf − f ≤ bde− b− f,

which implies
d(be− af) ≥ b+ f.

It follows that d ≥ b+ f . ■

Example 1.47 (India RMO 2016g P3). a, b, c, d are integers such that ad+ bc
divides each of a, b, c and d. Prove that ad+ bc = ±1.

Remark. What happens when a, b, c, d are equal to zero?

Solution 44. Note that there exist integers p, q, r, s such that

a = p(ad+ bc),

b = q(ad+ bc),

c = r(ad+ bc),

d = s(ad+ bc)

holds. This yields
ad+ bc = (ps+ qr)(ad+ bc)2.

If ad + bc = 0, then all of the integers a, b, c, d are equal to zero, which is
impossible. This shows that ad+ bc is nonzero, and hence, we obtain

(ps+ qr)(ad+ bc) = 1,

which implies
ad+ bc = ±1.

■
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Example 1.48 (India RMO 2016g P6). Positive integers a, b, c satisfy 1
a + 1

b +
1
c < 1. Prove that 1

a + 1
b +

1
c ≤ 41

42 . Also prove that equality in fact holds in
the second inequality.

Solution 45. Let a, b, c be positive integers satisfying

1

a
+

1

b
+

1

c
< 1. (4)

Since 1
a + 1

b + 1
c is symmetric with respect to a, b, c, by reordering them (if

necessary), we may (and do) assume that a ≤ b ≤ c. Using ??, it follows that
a ≥ 2.
Let us consider the case that a = 3. Using ?? it follows that one of b, c is

greater than 3, and hence

1

3
+

1

3
+

1

4
=

2

3
+

1

4

=
9

12

=
3

4

<
41

42

holds.
Now, let us consider the case that a = 2. Using ??, it follows that the

integers b, c are greater than or equal to 3. If b = 3, then using ??, it follows
that c > 6, which shows that

1

a
+

1

b
+

1

c
=

1

2
+

1

3
+

1

c

≤ 5

6
+

1

7

=
41

42

holds. If b = 4, then using ??, it follows that c > 4, which shows that

1

a
+

1

b
+

1

c
=

1

2
+

1

4
+

1

c

≤ 3

4
+

1

5

=
19

20

≤ 41

42

holds. If b ≥ 5 holds, then using ??, it follows that

1

a
+

1

b
+

1

c
≤ 1

2
+

2

b
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≤ 1

2
+

2

5

=
9

10

≤ 41

42

holds. This proves the inequality

1

a
+

1

b
+

1

c
≤ 41

42
.

Observing that
1

2
+

1

3
+

1

7
=

41

42

holds, it follows that equality holds in the above inequality for some choice of
a, b, c. ■

Example 1.49 (India RMO 2016e P2). Consider a sequence (ak)k≥1 of natural
numbers defined as follows: a1 = a and a2 = b with a, b > 1 and gcd(a, b) = 1
and for all k > 0, ak+2 = ak+1 + ak. Prove that for all natural numbers n and
k, gcd(an, an+k) <

ak

2 .

Remark. Note that for the above inequality, it is necessary that a1 ≥ 3. In
fact, if a1 = 2, then the above inequality is not strict for k = 1.

Solution 46. Consider the sequence {fn}n≥1 satisfying the recurrence relation

fn+2 = fn+1 + fn, for any n ≥ 1,

and f1 = 0, f2 = 1. Note that

an = afn−1 + bfn, for any n ≥ 2.

Claim — For any integers n ≥ 2, k ≥ 1,

fn+k−1 = fn−1fk + fnfk+1

holds.

Proof of the Claim. It suffices to consider the case k ≥ 2. Note that(
0 1
1 1

)n

=

(
fn fn+1

fn+1 fn+2

)
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holds for n = 1, and if it holds for n = m for some integer m ≥ 1, then it holds
for n = m+ 1 since(

0 1
1 1

)m+1

=

(
0 1
1 1

)(
fm fm+1

fm+1 fm+2

)
=

(
fm+1 fm+2

fm+1 + fm fm+2 + fm+1

)
=

(
fm+1 fm+2

fm+2 fm+3

)
holds. This shows that the above holds for any positive integer n. Consequently,
for any integers n, k ≥ 2, it follows that(

fn−1 fn
fn fn+1

)(
fk fk+1

fk+1 fk+2

)
=

(
0 1
1 1

)n−1+k

=

(
fn+k−1 fn+k

fn+k fn+k+1

)
,

which yields

fn+k−1 = fn−1fk + fnfk+1.

Let n, k be positive integers. Using the above Claim, we obtain

an+k = afn+k−1 + bfn+k

= a(fn−1fk + fnfk+1) + b(fn−1fk+1 + fnfk+2)

= a(fn−1fk + fnfk+1) + b(fn−1fk+1 + fnfk + fnfk+1)

= (afn−1 + bfn)fk + (afn + bfn−1 + bfn)fk+1

= anfk + (afn + bfn+1)fk+1

= anfk + an+1fk+1.

This yields

gcd(an, an+k) = gcd(an, anfk + an+1fk+1)

= gcd(an, an+1fk+1).

Note that

gcd(an, an+1) = 1

holds for n = 1, and if it holds for n = m for some positive integer m, then

gcd(am+1, am+2) = gcd(am+1, am+1 + am)

= gcd(am+1, am)

= 1,
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which shows that the integers an, an+1 are relatively prime for any positive
integer n. If a1 ≥ 3, then it follows that

gcd(an, an+1) = 1 <
a1
2
,

that is, for k = 1, the inequality

gcd(an, an+k) <
ak
2

holds. Moreover, if k ≥ 2, then using the above, we obtain

gcd(an, an+k) = gcd(an, fk+1)

≤ fk+1

= fk−1 + fk

<
afk−1 + bfk

2

=
ak
2
.

This completes the proof. ■

Example 1.50 (India RMO 2017a P2). Show that the equation

a3 + (a+ 1)3 + · · ·+ (a+ 6)3 = b4 + (b+ 1)4

has no solutions in integers a, b.

Solution 47. Note that the fourth powers of the integers 0, 1, 2, 3, 4, 5, 6 are
congruent to 0, 1, 2, 4, 4, 2, 1 modulo 7 respectively. The shows that the sum of
the fourth powers of two consecutive integers is congruent to one of

0 + 1, 1 + 2, 2 + 4, 4 + 2, 2 + 1, 1 + 0

modulo 7. Hence, the sum of the fourth powers of two consecutive integers
is not divisible by 7. Also note the cubes of seven consecutive integers is
congruent to

03 + 13 + 23 + 33 + 43 + 53 + 63

modulo 7, which is congruent to

13 + 23 + 33 + (−3)3 + (−2) + (−1)3 = 0

modulo 7. This shows that the sum of the cubes of seven consecutive integers
is not equal to the sum of the fourth powers of two consecutive integers. This
completes the proof. ■

32 The content posted here and at this blog by Evan Chen are quite useful.

https://jpsaha.github.io/MOTP/
https://artofproblemsolving.com/community/c6h1525174p9137091
https://web.evanchen.cc/
https://blog.evanchen.cc/
https://www.youtube.com/c/vEnhance


1 Congruences Typos may be reported to jpsaha@iiserb.ac.in.

Example 1.51 (India RMO 2017b P2). For any positive integer n, let d(n)
denote the number of positive divisors of n; and let φ(n) denote the number
of elements from the set {1, 2, . . . , n} that are coprime to n. (For example,
d(12) = 6 and φ(12) = 4.) Find the smallest positive integer n such that
d(φ(n)) = 2017.

Solution 48. Let n be the least among the positive integers (if any) satisfying
d(φ(n)) = 2017. Observe that φ(n) is not equal to 1. Let φ(n) = pα1

1 . . . pαr
r

denote the factorization of φ(n) into the product of the powers of distinct
primes. We obtain

(α1 + 1) . . . (αr + 1) = 2017.

Noting that 2017 is a prime, it follows that r = 1, and α1 = 2016, that is, φ(n)
is the 2016-th power of a prime. Since φ(n) is larger than 1, it follows that it is
an even number, and hence, φ(n) is equal to 22016. Note that if an odd prime q
divides n, then q2 does not divide n, and q− 1 is a power of 2. It follows that n
is equal to 2kp1 . . . pm where k,m are nonnegative integers, and p1 < · · · < pm
are distinct odd primes, and pi − 1 is a power of 2 for any 1 ≤ i ≤ m.

Claim — If p is an odd prime such that p− 1 is a power of 2, then p is
equal to 22

i

+ 1 for some integer i ≥ 0.

Proof of the Claim. It suffices to consider the case p ≥ 5. Write p = 2a + 1.
Note that a ≥ 2. If a is odd, then p is divisible by 3, and p > 3, which is a
contradiction to the primality of p. This shows that a is even. If a is not a
power of 2, then writing a = 2bc for some positive integers b, c, with c an odd

integer, it follows that p is divisible by 22
b

+ 1, which shows that c is equal to
1. This completes the proof.

Note that the above Claim shows that for any 1 ≤ i ≤ m, pi is equal to
22

ai
+ 1 for some nonnegative integer ai.

Claim — For no integer 1 ≤ i ≤ m, the prime pi is equal to 22
5

+ 1.

Proof of the Claim. Note that 641 = 5 · 27 + 1 is a prime. This gives 5 · 27 ≡
−1 mod 641, which yields 54 · 228 ≡ 1 mod 641. Using 641 = 24 + 54, it follows
that 232 + 1 is divisible by 641. Since 232 + 1 is larger than 5 · 27 + 1 = 641,
the Claim follows.

Let us first consider the case that k = 0. Since φ(n) = 22016 < 22
11

holds, it
follows that

pm ≤ 22
10

+ 1.

The first Claim shows that {p1, . . . , pm} is a subset of{
22

i

+ 1 | 0 ≤ i ≤ 10
}
.
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This shows that

22016 = φ(p1 . . . pm)

≤
∏

0≤i≤10,i̸=5

22
i

(using the second Claim)

= 21+2+4+8+16+64+128+256+512+1024

= 22015,

which is impossible.
Let us consider the case that k ≥ 1. If m ≥ 1, then note that

n > 2k(p1 − 1)(p2 − 1) . . . (pm − 1)

and

φ(n) = φ(2k(p1 − 1)(p2 − 1) . . . (pm − 1))

hold, which contradicts the minimality of n. This shows that m = 0, that is, n
is a power of 2, and hence, n = 22017.
Noting that

d(φ(22017)) = d(22016) = 2017

holds, it follows that the smallest positive integer n satisfying d(φ(n)) = 2017
is 22017. ■

Example 1.52 (India RMO 2018a P5). Find all natural numbers n such that
1 + [

√
2n] divides 2n. (For any real number x, [x] denotes the largest integer

not exceeding x.)

Solution 49. Let n be a positive integer such that 1+ [
√
2n] divides 2n. Write

2n = m2 + k

where m is a positive integer, and k is an integer satisfying 0 ≤ k ≤ 2m. Note
that

1 + [
√
2n] = m+ 1

holds. Since 1 + [
√
2n] divides 2n, it follows that

2n

1 + [
√
2n]

=
m2 + k

m+ 1

=
(m+ 1)2 − 2(m+ 1) + k + 1

m+ 1

= m− 1 +
k + 1

m+ 1
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is an integer, which shows that m + 1 divides k + 1. Using 0 ≤ k ≤ 2m, we
obtain k = m, which yields

n =
m(m+ 1)

2
.

Conversely, if n is equal to
m(m+ 1)

2

for some positive integer m, then 1 + [
√
2n] divides 2n.

This proves that the positive integers satisfying the given condition are
precisely the integers of the form

m(m+ 1)

2

for some positive integer m. ■

Example 1.53 (India RMO 2018a P3). For a rational number r, its period is
the length of the smallest repeating block in its decimal expansion, for example,
the number r = 0.123123123 . . . has period 3. If S denotes the set of all
rational numbers of the form r = 0.abcdefgh having period 8, find the sum of
all elements in S.

Solution 50. The sum of all rational numbers of the form 0.abcdefgh is equal
to ∑

0≤i1,i2,...,i8≤9

(
i1
10

+
i2
102

+ · · ·+ i8
108

)
1

1− 1
108

.

Note that the rational numbers of the form 0.abcdefgh which have period less
than 8, are of period 1 or 2 or 4, and hence, they are of the form 0.abcd. The
sum of such rational numbers is equal to∑

0≤i1,i2,i3,i4≤9

(
i1
10

+
i2
102

+ · · ·+ i4
104

)
1

1− 1
104

.

It follows that the sum of the rational numbers of the given form having period
8 is equal to ∑

0≤i1,i2,...,i8≤9

(
i1
10

+
i2
102

+ · · ·+ i8
108

)
1

1− 1
108

−
∑

0≤i1,i2,i3,i4≤9

(
i1
10

+
i2
102

+ · · ·+ i4
104

)
1

1− 1
104

= 107

(
9∑

i=0

i

)(
1

10
+

1

102
+ · · ·+ 1

108

)
1

1− 1
108
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− 103

(
9∑

i=0

i

)(
1

10
+

1

102
+ · · ·+ 1

104

)
1

1− 1
104

=
107

9

(
9∑

i=0

i

)
− 103

9

(
9∑

i=0

i

)
= 5× 107 − 5× 103

= (50000− 5)× 103

= 49995000.

■

Solution 51. Note that the rational numbers of the form 0.abcdefgh, not
having period 8, have period 1 or 2 or 4, and hence, are of the form 0.abcd.
This shows that there are precisely 108 − 104 rational numbers of the form
0.abcdefgh, having period 8.

Observe that
0.abcdefgh 7→ 0.abcdefgh,

where x = 9 − x for any x ∈ {a, b, c, d, e, f, g, h}, defines a map of order two
from S to S, and this map has no fixed points. This shows that each element
of S can be paired with its image under this map, and it produces 1

2 |S| many
pairs. Note that the sum of the elements of any such pair is equal to

0.999999 = 1.

Consequently, the sum of the elements of S is equal to

1

2
|S| = 108 − 104

2
= 49995000.

■

Example 1.54 (India RMO 2019b P1). For each n ∈ N let dn denote the gcd
of n and (2019− n). Find value of d1 + d2 + · · ·+ d2018 + d2019.

Solution 52. Note that for a positive integer n, the greatest common divisor
of n and 2019− n divides n+ (2019− n) = 2019 = 3 · 673. Observe that 3, 673
are primes. This shows that for an integer n satisfying 1 ≤ n < 2019, the
greatest common divisor of n and 2019− n is equal to

1 if n is relatively prime to 3 and to 673,

3 if 3 divides n,

673 if 673 divides n.

This yields

d1 + d2 + · · ·+ d2018 + d2019
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=
∑

1≤n<2019,
gcd(n,2019)=1

1 +
∑

1≤n<2019,
3|n

3 +
∑

1≤n<2019,
673|n

673 + 2019

= 2019− 2019

3
− 2019

673
+

2019

3 · 673
+ 3 · 672 + 673 · 2 + 3 · 673

= 2 · 672 + 3 · 672 + 5 · 673
= 5 · 1345
= 6725.

■

Example 1.55 (India RMO 2023a P2). Given a prime number p such that 2p
is equal to the sum of the squares of some four consecutive positive integers.
Prove that p− 7 is divisible by 36.

Solution 53. Let p be a prime satisfying the given condition. Write

2p = x2 + (x+ 1)2 + (x+ 2)2 + (x+ 3)2

where x is a positive integer. Note that

x2 + (x+ 1)2 + (x+ 2)2 + (x+ 3)2 = 4x2 + 12x+ 14

≡ 4x(x+ 1) + 6 mod 8

≡ 6 mod 8

holds. It follows that 2p is congruent to 6 modulo 8, which shows that p is
congruent to 3 modulo 4.

Note that if x ≡ ±1 mod 3, then

x2 + (x+ 1)2 + (x+ 2)2 + (x+ 3)2 = 4x2 + 12x+ 14

≡ x2 + 2 mod 3

≡ 0 mod 3

holds, which shows that 3 divides 2p, and hence p = 3. However, 6 cannot be
expressed as the sum of four consecutive positive integers since 32 > 6. This
shows that x is divisible by 3. It follows that

x2 + (x+ 1)2 + (x+ 2)2 + (x+ 3)2 = 4x2 + 12x+ 14

≡ 14 mod 9.

So, 2p− 14 is a multiple of 9, and hence, it is an even multiple of 9, implying
that p− 7 is a multiple of 9. Since p ≡ 3 mod 4, we obtain p ≡ 7 mod 36. ■
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Example 1.56 (India RMO 2023b P1). Let N be the set of all positive integers
and

S =
{
(a, b, c, d) ∈ N4 : a2 + b2 + c2 = d2

}
.

Find the largest positive integer m such that m divides abcd for all (a, b, c, d) ∈
S.

Solution 54. Let m denote the largest positive integer such that it divides
abcd for all (a, b, c, d) in S. Note that 12 + 22 + 22 = 32 holds, which shows
that (1, 2, 2, 3) lies in S. This shows that m divides 12.

Let (a, b, c, d) be an element of S. Note that at least one of a, b, c, d is divisible
by 3 since

(±1)2 + (±1)2 + (±1)2 ̸≡ (±1)2 mod 3.

Also note that if all of a, b, c, d are odd, then we obtain

(±1)2 + (±1)2 + (±1)2 ≡ (±1)2 mod 4,

which is impossible. It follows that at least one of a, b, c, d is even.
If d is even, then at least one of a, b, c is even because the sum of squares of

three odd integers is congruent to 3 modulo 4. If d is odd, then at least one of
a, b, c is even. Note that 0 + (±1)2 + (±1)2 ̸≡ (±1)2 mod 4, which shows that
if d is odd, then at least two of a, b, c are even. This implies that at least two
of a, b, c, d are even. Hence, m is divisible by 2 · 2 · 3 = 12.

This proves that m = 12. ■

Example 1.57 (India RMO 2024a P1). Find all positive integers x, y such
that 202x+ 4x2 = y2.

Solution 55. Let x, y be positive integers satisfying 202x+ 4x2 = y2. Note
that y2 is even, and hence, so is y. This shows that 4 divides y2 − 4x2 = 202x.
It follows that x is even.
Note that

4y2 = (4x)2 + 2 · 101 · (4x)

holds, which gives

1012 = (4x+ 101− 2y)(4x+ 101 + 2y). (5)

Since x, y are positive integers, it follows that 4x+ 101− 2y < 4x+ 101 + 2y.
This shows that

4x+ 101− 2y = 1, 4x+ 101 + 2y = 1012, (6)

which yields

x = 1250, y = 2550.
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Also note that if x = 1250 and y = 2550, then ?? holds, which yields ??, which
implies 202x + 4x2 = y2. Hence, the solution to the given equation in the
positive integers is precisely

x = 1250, y = 2550.

■

Example 1.58 (India RMO 2024a P4). Let n > 1 be a positive integer. Call
a rearrangement a1, a2, . . . , an of 1, 2, . . . , n nice if for every k = 2, 3, . . . , n, we
have that a21 + a22 + · · ·+ a2k is not divisible by k. Determine which positive
integers n > 1 have a nice arrangement.

Solution 56. If n is an odd positive integer and is not divisible by 3, then the
sum of the squares of 1, 2, . . . , n, that is, the integer

n(n+ 1)(2n+ 1)

6

is a multiple of n. This shows that if n > 1 is an integer relatively prime to 6,
then 1, 2, . . . , n do not admit any nice rearrangement.

Claim — For any positive integer k, the following rearrangement of
1, 2, . . . , 6k (to be read accross the rows)

2 1 3 4 6 5
8 7 9 10 12 11
14 13 15 16 18 17
...

...
...

...
...

...
6k − 4 6k − 5 6k − 3 6k − 2 6k 6k − 1

is nice.

Proof of the Claim. Note that

22 + 12

2
=

(2 + 1)(2 · 2 + 1)

6
22 + 12 + 32

3
=

(3 + 1)(2 · 3 + 1)

6
22 + 12 + 32 + 42

4
=

(4 + 1)(2 · 4 + 1)

6
22 + 12 + 32 + 42 + 62

5
=

(5 + 1)(2 · 5 + 1)

6
+

62 − 52

5
22 + 12 + 32 + 42 + 62 + 52

6
=

(6 + 1)(2 · 6 + 1)

6
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are not integers. This proves the Claim for k = 1. Let k be a positive integer
such that the Claim holds. Consider the rearrangement (to be read accross the
rows)

2 1 3 4 6 5
8 7 9 10 12 11
14 13 15 16 18 17
...

...
...

...
...

...
6k − 4 6k − 5 6k − 3 6k − 2 6k 6k − 1
6k + 2 6k + 1 6k + 3 6k + 4 6k + 6 6k + 5

of 1, 2, . . . , 6k + 6. Note that∑6k
i=1 i

2 + (6k + 2)2

6k + 1
=

6k(12k + 1)

6
+

(6k + 2)2

6k + 1

is not an integer since the integers 6k+1, 6k+2 are relatively prime and 6k+1
is larger than 1. Observe that∑6k

i=1 i
2 + (6k + 2)2 + (6k + 1)2

6k + 2
=

(6k + 3)(12k + 5)

6

is not an integer since the integers 6k + 3, 12k + 5 are odd. Also note that∑6k
i=1 i

2 + (6k + 2)2 + (6k + 1)2 + (6k + 3)2

6k + 3
=

(6k + 4)(12k + 7)

6

since 3 does not divide any of 6k + 4, 12k + 7. Notice that∑6k
i=1 i

2 + (6k + 2)2 + (6k + 1)2 + (6k + 3)2 + (6k + 4)2

6k + 4
=

(6k + 5)(12k + 9)

6

is not an integer since 6k + 5, 12k + 9 are odd integers. Observe that∑6k
i=1 i

2 + (6k + 2)2 + (6k + 1)2 + (6k + 3)2 + (6k + 4)2 + (6k + 6)2

6k + 5

=
(6k + 6)(12k + 11)

6
+

(6k + 6)2 − (6k + 5)2

6k + 5

is not an integer since the integers 6k+5, 6k+6 are relatively prime and 6k+5
is larger than 1. Also note that∑6k

i=1 i
2 + (6k + 2)2 + (6k + 1)2 + (6k + 3)2 + (6k + 4)2 + (6k + 6)2 + (6k + 5)2

6k + 6

=
(6k + 7)(12k + 13)

6

is not an integer since the integers 6k + 7, 12k + 13 are relatively prime to 6.
By induction, the Claim holds for any positive integer k.
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By the above Claim, it follows that if n is a positive integer and n is not
relatively prime to 6, then the integers 1, 2, . . . , n admit a nice rearrangement.

This proves that the positive integers n > 1, admitting a nice rearrangement,
are precisely those which are not relatively prime to 6. ■

Example 1.59 (India RMO 2024b P1). Let n > 1 be a positive integer. Call
a rearrangement a1, a2, . . . , an of 1, 2, . . . , n nice if for every k = 2, 3, . . . , n, we
have that a1 + a2 + · · ·+ ak is not divisible by k.

1. If n > 1 is odd, prove that there is no nice arrangement of 1, 2, . . . , n.

2. If n is even, find a nice arrangement of 1, 2, . . . , n.

Solution 57. Note that if n > 1 is an odd positive integer, then for any
rearrangement a1, a2, . . . , an of 1, 2, . . . , n, the integer

a1 + · · ·+ an = 1 + 2 + · · ·+ n = n× n+ 1

2

is divisible by n. This proves the first part.
For any even positive integer n, a nice rearrangement of 1, 2, . . . , n is provided

by the Claim below.

Claim — For any even positive integer n,

2, 1, 4, 3, 6, 5, 8, 7, . . . , n, n− 1

is a nice rearrangement of 1, 2, . . . , n.

Proof of the Claim. Note that the Claim holds for n = 2. Let n be an even
positive integer satisfying the Claim. Consider the rearrangement

2, 1, 4, 3, 6, 5, 8, 7, . . . , n, n− 1, n+ 2, n+ 1

of 1, 2, . . . , n+ 2. Note that the sum of its first n+ 1 terms is equal to

(n+ 1)× n+ 2

2
+ 1,

which is not a multiple of n + 1. Also note that the sum of the integers
1, 2, . . . , n+ 2 is equal to

(n+ 2)× n+ 3

2
,

which is not a multiple of n+ 2. By the induction hypothesis, it follows that
the rearrangement

2, 1, 4, 3, 6, 5, 8, 7, . . . , n, n− 1, n+ 2, n+ 1

of 1, 2, . . . , n+ 2 is nice. This proves the Claim.
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■

Example 1.60 (India RMO 2024b P2). For a positive integer n, let R(n)
be the sum of the remainders when n is divided by 1, 2, . . . , n. For example,
R(4) = 0+0+1+0 = 1, R(7) = 0+1+1+3+2+1+0 = 8. Find all positive
integers such that R(n) = n− 1.

Walkthrough —

(a) Note that

R(1) = 0,

R(2) = 0,

R(3) = 0 + 1 + 0

= 1,

R(4) = 0 + 0 + 1 + 0

= 1,

R(5) = 0 + 1 + 2 + 1 + 0

= 4,

R(6) = 0 + 0 + 0 + 2 + 1 + 0

= 3,

R(7) = 0 + 1 + 1 + 3 + 2 + 1 + 0

= 8,

R(8) = 0 + 0 + 2 + 0 + 3 + 2 + 1 + 0

= 8,

R(9) = 0 + 1 + 0 + 1 + 4 + 3 + 2 + 1 + 0

= 12,

R(10) = 0 + 0 + 1 + 2 + 0 + 4 + 3 + 2 + 1 + 0

= 13

holds.

(b) Does the above help?

Solution 58. For positive integers n and k, denote by r(n, k) the remainder
obtained upon dividing n by k. Note that any integer k ≥ 4,

R(2k) ≥ r(2k, k − 1) + r(2k, k + 1) + r(2k, k + 2) + · · ·+ r(2k, 2k − 1)

= 2 + (k − 1) + (k − 2) + · · ·+ 1

= 2 +
k(k − 1)

2
≥ 2k
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holds. Also note that any integer k ≥ 3,

R(2k + 1) ≥ r(2k + 1, k) + r(2k + 1, k + 1)

+ r(2k + 1, k + 2) + · · ·+ r(2k + 1, 2k − 1) + r(2k + 1, 2k)

= 1 + k + (k − 1) + · · ·+ 2 + 1

= 1 +
k(k + 1)

2
≥ 2k + 1

holds. Note that

R(1) = 0,

R(2) = 0,

R(3) = 0 + 1 + 0

= 1,

R(4) = 0 + 0 + 1 + 0

= 1,

R(5) = 0 + 1 + 2 + 1 + 0

= 4,

R(6) = 0 + 0 + 0 + 2 + 1 + 0

= 3

holds. This proves that the positive integers n satisfying R(n) = n − 1 are
precisely 1, 5. ■

§1.2 More on congruences

Theorem 1 (Wilson)

For any prime p, the congruence

(p− 1)! ≡ −1 (mod p)

holds.

Example 1.61. Let n ≥ 5 be an integer. Show that n is composite if and only
if n divides (n− 1)!.

Solution 59. If n is a prime, then by Wilson’s theorem, it follows that n does
not divide (n− 1)!. This proves the “if part”.
To prove the “only if part”, note that if n is composite, then the highest

power of any of its prime divisors is at most n−1, and hence divides (n−1)!, and
since these powers are pairwise coprime, it follows that n divides (n− 1)!. ■
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Theorem 2 (Fermat’s little theorem)

If p is prime, and a is an integer not divisible by p, then

ap−1 ≡ 1 (mod p)

holds.

Example 1.62 (IMOSL 1984 P2). Prove that if m,n are positive integers,
then 4mn−m− n cannot be a perfect square.

Solution 60. Let m,n be positive integers such that 4mn−m− n = k2 holds
for some positive integer k2. This yields

(4m− 1)(4n− 1) = 4k2 + 1.

Since 4m− 1 is a positive integer and it is congruent to 3 modulo 4, it admits
a prime divisor p satisfying p ≡ 3 mod 4. Note that p divides 4k2 + 1, and p
does not divide 2k. Applying Fermat’s little theorem, it follows that

(−1)
p−1
2 ≡ ((2k)2)

p−1
2 ≡ 1 mod p,

which is impossible since p ≡ 3 mod 4. ■

Example 1.63 (India RMO 1990 P4). Find the remainder when 21990 is
divided by 1990.

Solution 61. Since 199 is a prime, by Fermat’s little theorem, we obtain

2198 ≡ 1 mod 199,

which yields
21990 ≡ 21980 · 210 mod 199 ≡ 29 mod 199.

Using 24 ≡ 1 mod 5, we get

21990 ≡ 4 mod 5 ≡ 29 mod 5.

Since 5, 199 are coprime, this shows that

21990 ≡ 29 mod 199 · 5.

Observe that
21990 − (29 + 199 · 5)

is divisible by 199 · 5, and also by 2. Since 2, 199 · 5 are coprime, it follows that

21990 ≡ 29 + 199 · 5 mod 2 · 199 · 5,

which implies that
21990 ≡ 1024 mod 1990.

So, one obtains 1024 as the remainder upon dividing 21990 by 1990. ■
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Example 1.64 (India RMO 1990 P6). N is a 50 digit number (in the decimal
scale). All digits except the 26th digit (from the left) are 1. If N is divisible
by 13, find the 26th digit.

Solution 62. Let a denote the 26-th digit of N . The given condition yields

N = 1 + 10 + 102 + · · ·+ 1049 + (a− 1)1050−26.

Assume that N is divisible by 13. This gives

1 + 10 + 102 + · · ·+ 1049 + (a− 1)1024 ≡ 0 mod 13.

Applying Fermat’s little theorem, we obtain 1012 ≡ 1 mod 13, and this shows
that

1024 ≡ 1 mod 13, 1050 − 1 ≡ 102 − 1 mod 13.

Note that

9(1 + 10 + 102 + · · ·+ 1049) + 9(a− 1)1024 ≡ 0 mod 13

holds, which shows that

1050 − 1 + 9(a− 1)1024 ≡ 0 mod 13,

and this implies that

102 − 1 + 9(a− 1) ≡ 0 mod 13.

Since the integers 9, 13 are relatively prime, we obtain

11 + a− 1 ≡ 0 mod 13.

It follows that a = 3. ■

Theorem 3 (Euler)

Let n be a positive integer, and φ(n) denote the number of integers
lying between 1 and n which are relatively prime to n. If a is an integer
relatively prime to n, then

aφ(n) ≡ 1 (mod n)

holds.

Example 1.65 (India RMO 1993 P5). Show that 1993 − 1399 is a positive
integer divisible by 162.
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Solution 63. Note that the congruences

1993 ≡ (1 + 18)93 mod 92

≡ 1 + 93 · 18 mod 92

≡ 1 + 12 · 18 mod 92

≡ 1 + 8 · 27 mod 92

≡ 1− 27 mod 92

≡ −26 mod 92

≡ 55 mod 92,

1399 ≡ (4 + 9)99 mod 92

≡ 499 + 99 · 498 · 9 mod 92

≡ 499 mod 92

hold. Also note that

481 ≡ 1 + 81 · 3 +
(
81

2

)
32 +

(
81

3

)
33 mod 92

≡ 1 mod 92

holds, which yields

499 ≡ 481 · 418 mod 81

≡ 418 mod 81

≡ (1 + 3)18 mod 81

≡ 1 + 18 · 3 + 18 · 17
2

32 +
18 · 17 · 16

6
33 mod 81

≡ 1 + 18 · 3 mod 81

≡ 55 mod 81.

It follows that 1993 − 499 is divisible by 81, and hence, 1993 − 1399 is divisible
by 81. Since 1993 − 1399 is an even number, and 2, 81 are coprime, we conclude
that 1993 − 1399 is divisible by 162. ■

Example 1.66 (India RMO 2015f P3). Let

N = 25 + 25
2

+ 25
3

+ · · ·+ 25
2015

,

written in the usual decimal form, find the last two digits of the number N .

Solution 64. Applying Euler’s theorem, we obtain 1

220 ≡ 2φ(25) ≡ 1 mod 25.
1Alternatively, one may observe that 210 = 1024 ≡ −1 mod 25, which yields 220 ≡ 2φ(25) ≡
1 mod 25.
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Note that for any integer n ≥ 1,

5n − 5 = 5(5n−1 − 1) = 5((1 + 4)n−1 − 1)

holds, and hence we obtain 5n ≡ 5 mod 20. This yields

N = 25

(
2015∑
i=1

25
i−5

)
= 25

(
2015∑
i=1

(220)
5i−5
20

)
,

and consequently, we obtain

N ≡ 25 · 2015 ≡ 7 · 15 ≡ 5 mod 25.

Also note that N ≡ 0 mod 4 holds. It follows that N − 80 is divisible by the
relatively prime integers 4, 25, which shows that 100 divides N − 80. Hence,
the last two digits of N are 8, 0. ■
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