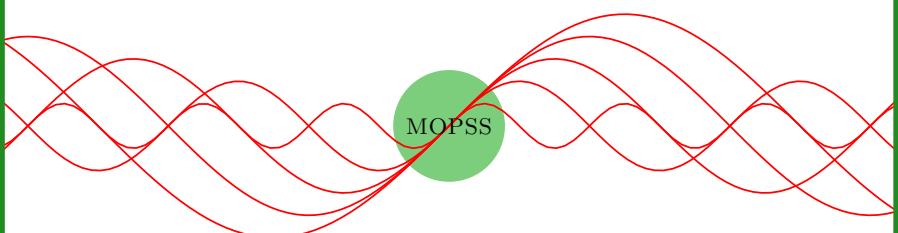


MOPSS

29 November 2025

Mathematics Olympiad Problem Solving Sessions



MOPSS

DEPARTMENT OF MATHEMATICS
IISER BHOPAL

<https://jpsaha.github.io/MOTP/MOPSS/>

Suggested readings

- Evan Chen's advice [On reading solutions](https://blog.evanchen.cc/2017/03/06/on-reading-solutions/), available at <https://blog.evanchen.cc/2017/03/06/on-reading-solutions/>.
- Evan Chen's [Advice for writing proofs/Remarks on English](https://web.evanchen.cc/handouts/english/english.pdf), available at <https://web.evanchen.cc/handouts/english/english.pdf>.
- Notes on proofs by Evan Chen from OTIS Excerpts [Che25, Chapter 1].
- Tips for writing up solutions by Edward Barbeau, available at <https://www.math.utoronto.ca/barbeau/writingup.pdf>.
- Evan Chen discusses why math olympiads are a valuable experience for high schoolers in the post on [Lessons from math olympiads](https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/), available at <https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/>.

List of problems and examples

1.1	Exercise (All-Russian Mathematical Olympiad 2007 Grade 10 Day 1 P2, AoPS, by A. Khrabrov)	2
1.2	Exercise (Canadian Mathematical Olympiad 2021 P2, AoPS)	3
1.3	Exercise (Canadian Mathematical Olympiad 2019 P2, AoPS)	4
1.4	Exercise (All-Russian Mathematical Olympiad 2007 Grade 11 Day 2 P6, AoPS, by N. Agakhanov, I. Bogdanov)	4
1.5	Exercise (All-Russian Mathematical Olympiad 2007 Grade 9 Day 1 P1, AoPS, by S. Berlov)	5
1.6	Exercise (All-Russian Mathematical Olympiad 2013 Grade 9 Day 1 P1, AoPS, by I. Bogdanov)	6
1.7	Exercise (All-Russian Mathematical Olympiad 2007 Grade 8 Day 1 P1, AoPS, by O. Podlipsky)	7

§1

Exercise 1.1 (All-Russian Mathematical Olympiad 2007 Grade 10 Day 1 P2, AoPS, by A. Khrabrov). Consider a polynomial $P(x) = a_0x^n + a_1x^{n-1} + \dots + a_{n-1}x + a_n$. Let m denote the minimum of the integers

$$a_0, a_0 + a_1, \dots, a_0 + a_1 + \dots + a_n.$$

Prove that $P(x) \geq mx^n$ for all $x \geq 1$.

Walkthrough —

(a)

Solution 1. Note that

$$\begin{aligned} P(x) &= a_0x^n + a_1x^{n-1} + \dots + a_{n-1}x + a_n \\ &= a_0(x^n - x^{n-1}) + (a_0 + a_1)(x^{n-1} - x^{n-2}) \\ &\quad + \dots + (a_0 + a_1 + \dots + a_{n-1})(x - 1) + (a_0 + a_1 + \dots + a_n) \end{aligned}$$

holds, which implies that

$$\begin{aligned} P(x) - mx^n &= a_0(x^n - x^{n-1}) + (a_0 + a_1)(x^{n-1} - x^{n-2}) \\ &\quad + \dots + (a_0 + a_1 + \dots + a_{n-1})(x - 1) + (a_0 + a_1 + \dots + a_n) \\ &\quad - m(x^n - x^{n-1}) - m(x^{n-1} - x^{n-2}) - \dots - m(x - 1) - m \\ &= (a_0 - m)(x^n - x^{n-1}) + (a_0 + a_1 - m)(x^{n-1} - x^{n-2}) \\ &\quad + \dots + (a_0 + a_1 + \dots + a_{n-1} - m)(x - 1) + (a_0 + a_1 + \dots + a_n - m). \end{aligned}$$

It follows that for any $x \geq 1$,

$$P(x) \geq mx^n.$$

■

Exercise 1.2 (Canadian Mathematical Olympiad 2021 P2, AoPS). Let $n \geq 2$ be some fixed positive integer and suppose that a_1, a_2, \dots, a_n are positive real numbers satisfying

$$a_1 + a_2 + \dots + a_n = 2^n - 1.$$

Find the minimum possible value of

$$\frac{a_1}{1} + \frac{a_2}{1+a_1} + \frac{a_3}{1+a_1+a_2} + \dots + \frac{a_n}{1+a_1+a_2+\dots+a_{n-1}}.$$

Walkthrough —

(a)

Solution 2. Note that

$$\begin{aligned} & \frac{a_1}{1} + \frac{a_2}{1+a_1} + \frac{a_3}{1+a_1+a_2} + \dots + \frac{a_n}{1+a_1+a_2+\dots+a_{n-1}} \\ &= \frac{1+a_1}{1} + \frac{1+a_1+a_2}{1+a_1} + \frac{1+a_1+a_2+a_3}{1+a_1+a_2} \\ & \quad + \dots + \frac{1+a_1+a_2+\dots+a_n}{1+a_1+a_2+\dots+a_{n-1}} - n \\ &\geq n \sqrt[n]{1+a_1+a_2+\dots+a_n} - n \\ &= n \sqrt[n]{2^n} - n \\ &= n. \end{aligned}$$

This shows that the minimum possible value of the given expression is at least n .

Also note that if $a_i = 2^{i-1}$ for all $1 \leq i \leq n$, then $a_1 + a_2 + \dots + a_n = 2^n - 1$ holds, and

$$\begin{aligned} & \frac{a_1}{1} + \frac{a_2}{1+a_1} + \frac{a_3}{1+a_1+a_2} + \dots + \frac{a_n}{1+a_1+a_2+\dots+a_{n-1}} \\ &= \frac{1+a_1}{1} + \frac{1+a_1+a_2}{1+a_1} + \frac{1+a_1+a_2+a_3}{1+a_1+a_2} \\ & \quad + \dots + \frac{1+a_1+a_2+\dots+a_n}{1+a_1+a_2+\dots+a_{n-1}} - n \\ &= 2n - n \\ &= n. \end{aligned}$$

This proves that the minimum possible value of the given expression is equal to n . ■

Exercise 1.3 (Canadian Mathematical Olympiad 2019 P2, AoPS). Let a and b be positive integers such that $a + b^3$ is divisible by $a^2 + 3ab + 3b^2 - 1$. Prove that $a^2 + 3ab + 3b^2 - 1$ is divisible by the cube of an integer greater than 1.

Walkthrough —

(a)

Solution 3. Note that

$$\begin{aligned}(a+b)^3 &= a(a^2 + 3ab + 3b^2) + b^3 \\ &= a(a^2 + 3ab + 3b^2 - 1) + a + b^3\end{aligned}$$

holds. Since $a + b^3$ is divisible by $a^2 + 3ab + 3b^2 - 1$, it follows that $(a+b)^3$ is also divisible by $a^2 + 3ab + 3b^2 - 1$. Assume for the sake of contradiction that $a^2 + 3ab + 3b^2 - 1$ is not divisible by the cube of an integer greater than 1. It follows that $a^2 + 3ab + 3b^2 - 1$ divides $(a+b)^2$. This implies that

$$a^2 + 2ab + b^2 \geq a^2 + 3ab + 3b^2 - 1,$$

which simplifies to

$$ab + 2b^2 \leq 1,$$

which is impossible since a and b are positive integers. This proves that $a^2 + 3ab + 3b^2 - 1$ is divisible by the cube of an integer greater than 1. ■

Exercise 1.4 (All-Russian Mathematical Olympiad 2007 Grade 11 Day 2 P6, AoPS, by N. Agakhanov, I. Bogdanov). Do there exist nonzero reals a, b, c such that, for any $n > 3$, there exists a polynomial $P_n(x) = x^n + \dots + ax^2 + bx + c$, which has exactly n (not necessarily distinct) integral roots?

Walkthrough —

(a)

Solution 4. Assume that there exist nonzero reals a, b, c satisfying the given condition. Let $n > 3$ be a positive integer, and let $P_n(x) = x^n + \dots + ax^2 + bx + c$ be a polynomial with exactly n integral roots, which we denote by r_1, r_2, \dots, r_n , counted with multiplicities. Since c is nonzero, none of the roots r_1, r_2, \dots, r_n is equal to zero. It follows that

$$\frac{1}{r_1}, \frac{1}{r_2}, \dots, \frac{1}{r_n}$$

are the roots of the polynomial

$$Q_n(x) = x^n P\left(\frac{1}{x}\right) = cx^n + bx^{n-1} + ax^{n-2} + \dots + x + 1.$$

By Vieta's formulas, we obtain

$$\frac{1}{r_1} + \cdots + \frac{1}{r_n} = -\frac{b}{c}, \quad \sum_{1 \leq i < j \leq n} \frac{1}{r_i r_j} = \frac{a}{c}.$$

This implies that

$$\left(\frac{1}{r_1} + \cdots + \frac{1}{r_n} \right)^2 - 2 \sum_{1 \leq i < j \leq n} \frac{1}{r_i r_j} = \frac{b^2 - 2ac}{c^2},$$

and hence

$$\frac{1}{r_1^2} + \cdots + \frac{1}{r_n^2} = \frac{b^2 - 2ac}{c^2}.$$

Also note that

$$r_1 r_2 \cdots r_n = (-1)^n c.$$

It follows that

$$b^2 - 2ac \geq \frac{r_1^2 r_2^2 \cdots r_n^2}{r_1^2} + \cdots + \frac{r_1^2 r_2^2 \cdots r_n^2}{r_n^2} \geq n.$$

This shows that $n \leq b^2 - 2ac$ for any integer $n > 3$, which is a contradiction.

Therefore, there do not exist nonzero reals a, b, c satisfying the given condition. ■

Exercise 1.5 (All-Russian Mathematical Olympiad 2007 Grade 9 Day 1 P1, AoPS, by S. Berlov). Let $f(x), g(x)$ be monic quadratic polynomials with real coefficients such that the equations $f(g(x)) = 0$ and $g(f(x)) = 0$ have no real roots. Prove that at least one of the equations $f(f(x)) = 0$ and $g(g(x)) = 0$ has no real roots.

Walkthrough —

(a)

Solution 5. If one of the polynomials $f(x), g(x)$ has no real roots, then the conclusion follows immediately. Thus, we may assume that both $f(x)$ and $g(x)$ have real roots. Denote the roots of $f(x)$ by α_1, α_2 , and the roots of $g(x)$ by β_1, β_2 . We need to show that none of α_1, α_2 lies in $f(\mathbb{R})$, or none of β_1, β_2 lies in $g(\mathbb{R})$.

Claim — If $\alpha_2 \leq \beta_2$, then none of α_1, α_2 lies in $f(\mathbb{R})$.

Proof of the Claim. Let us assume that $\alpha_1 \leq \beta_2$. If some of α_1, α_2 lies in $f(\mathbb{R})$, then noting that f is a monic quadratic polynomial, it follows from the intermediate value theorem that β_2 lies in $f(\mathbb{R})$, which shows that the equation $g(f(x)) = 0$ has a real root, a contradiction. This proves the claim. □

If $\alpha_2 \leq \beta_2$, then by the Claim, the equation $f(f(x)) = 0$ has no real roots. Similarly, if $\beta_2 \leq \alpha_2$, then the equation $g(g(x)) = 0$ has no real roots. This completes the proof. \blacksquare

Exercise 1.6 (All-Russian Mathematical Olympiad 2013 Grade 9 Day 1 P1, AoPS, by I. Bogdanov). Given three distinct real numbers a , b , and c , show that at least two of the three following equations

$$\begin{aligned}(x - a)(x - b) &= x - c, \\ (x - b)(x - c) &= x - a, \\ (x - c)(x - a) &= x - b\end{aligned}$$

have real solutions.

Walkthrough —

(a)

Solution 6. Without loss of generality, let us consider the case that the equations

$$(x - a)(x - b) = x - c, (x - b)(x - c) = x - a$$

do not any real root. It follows that their discriminants are negative, that is,

$$(a + b + 1)^2 - 4(ab + c), (b + c + 1)^2 - 4(bc + a)$$

are negative. Note that

$$\begin{aligned}(a + b + 1)^2 - 4(ab + c) &= (a - b)^2 + 1 + 2(a + b - 2c) \\ &= (b - a + 1)^2 + 4(a - c), \\ (b + c + 1)^2 - 4(bc + a) &= (b - c)^2 + 1 + 2(b + c - 2a) \\ &= (b - c + 1)^2 + 4(c - a).\end{aligned}$$

Since a and c are distinct real numbers, one of $a - c$ and $c - a$ is positive. Thus, the discriminant of one of the equations

$$(x - a)(x - b) = x - c, (x - b)(x - c) = x - a$$

is non-negative, which is a contradiction. Therefore, at least two of the three equations have real solutions. \blacksquare

Solution 7. Let $f(x)$, $g(x)$, and $h(x)$ denote the polynomials defined by

$$\begin{aligned}f(x) &= (x - a)(x - b) - (x - c), \\ g(x) &= (x - b)(x - c) - (x - a),\end{aligned}$$

$$h(x) = (x - c)(x - a) - (x - b).$$

Note that

$$\begin{aligned} f(x) + g(x) &= (x - b)(2x - a - c) - (2x - a - c) \\ &= (2x - a - c)(x - b - 1). \end{aligned}$$

This implies that $f(x) + g(x)$ admits a real root. Hence, at least one of $f(x)$ and $g(x)$ is non-positive at some real number. If one of them admits a real root, then we are done. Otherwise, at least one of them is negative at some real number. Also note that if k is a real number satisfying $k \geq |a| + |b| + |c| + 2$, then

$$\begin{aligned} f(k + |a| + |b|) &= (k + |a| + |b| + a)(k + |a| + |b| + b) - (k + |a| + |b| + c) \\ &\geq k^2 - k - |a| - |b| - |c| \\ &\geq k - |a| - |b| - |c| \\ &> 0 \end{aligned}$$

holds, and similarly,

$$g(k + |a| + |b|) > 0$$

holds too. By the intermediate value theorem, at least one of $f(x)$ and $g(x)$ admits a real root. Interchanging the roles of f , g , and h , it follows that at least one of any two of the polynomials f , g , and h admits a real root. Therefore, at least two of the three equations have real solutions for x . \blacksquare

Exercise 1.7 (All-Russian Mathematical Olympiad 2007 Grade 8 Day 1 P1, AoPS, by O. Podlipsky). Given real numbers a , b , c , prove that at least one of three equations

$$\begin{aligned} x^2 + (a - b)x + (b - c) &= 0, \\ x^2 + (b - c)x + (c - a) &= 0, \\ x^2 + (c - a)x + (a - b) &= 0 \end{aligned}$$

has a real root.

Walkthrough —

(a)

Solution 8. Note that the sum of the discriminants of the quadratic polynomials

$$x^2 + (a - b)x + (b - c), x^2 + (b - c)x + (c - a), x^2 + (c - a)x + (a - b)$$

are equal to

$$\begin{aligned}(a-b)^2 - 4(b-c) + (b-c)^2 - 4(c-a) + (c-a)^2 - 4(a-b) \\= (a-b)^2 + (b-c)^2 + (c-a)^2,\end{aligned}$$

which is non-negative, and hence, at least one of the discriminants is non-negative. This implies that at least one of the three equations has a real root. \blacksquare

Solution 9. Consider the three quadratic polynomials defined by

$$\begin{aligned}f(x) &= x^2 + (a-b)x + (b-c), \\g(x) &= x^2 + (b-c)x + (c-a), \\h(x) &= x^2 + (c-a)x + (a-b).\end{aligned}$$

Note that

$$f(0) + g(0) + h(0) = 0,$$

which implies that at least one of $f(0)$, $g(0)$, $h(0)$ is non-positive. Without loss of generality, assume that $f(0) \leq 0$. If $f(0)$ is zero, then $x = 0$ is a root of $f(x)$. If $f(0) < 0$, then noting that

$$\begin{aligned}f(2|a-b| + 2|b-c| + 1) \\= \frac{1}{2}(2|a-b| + 2|b-c| + 1)^2 + (a-b)(2|a-b| + 2|b-c| + 1) \\+ \frac{1}{2}(2|a-b| + 2|b-c| + 1)^2 + (b-c) \\= \frac{1}{2}(2|a-b| + 2|b-c| + 1)(2|a-b| + 2|b-c| + 1 - 2(a-b)) \\+ \frac{1}{2}(2|a-b| + 2|b-c| + 1)^2 + (b-c) \\ \geq 1\end{aligned}$$

holds, it follows from the intermediate value theorem that $f(x)$ has a real root. \blacksquare

References

[Che25] EVAN CHEN. *The OTIS Excerpts*. Available at <https://web.evanchen.cc/excerpts.html>. 2025, pp. vi+289 (cited p. 1)