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Suggested readings

• Evan Chen’s advice On reading solutions, available at https://blog.

evanchen.cc/2017/03/06/on-reading-solutions/.

• Evan Chen’s Advice for writing proofs/Remarks on English, available at
https://web.evanchen.cc/handouts/english/english.pdf.

• Notes on proofs by Evan Chen from OTIS Excerpts [Che25, Chapter 1].

• Tips for writing up solutions by Edward Barbeau, available at https:
//www.math.utoronto.ca/barbeau/writingup.pdf.

• Evan Chen discusses why math olympiads are a valuable experience for
high schoolers in the post on Lessons from math olympiads, available at
https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/.
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Exercise 1.1 (All-Russian Mathematical Olympiad 2018 Grade 11 Day 1 P2,
AoPS, by F. Petrov). Let n ≥ 2 and x1, x2, . . . , xn be positive real numbers.
Prove that
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Walkthrough —

(a) Use the Cauchy–Schwarz inequality to obtain a lower bound for each
term.

(b) Use the AM–GM inequality to complete the proof.

Solution 1. Note that

(1 + a2)(1 + b2) ≥ (1 + ab)2

holds for any real numbers a, b by the Cauchy–Schwarz inequality. This implies
that
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where the last inequality follows from the AM–GM inequality. This completes
the proof. ■

Exercise 1.2 (All-Russian Mathematical Olympiad 2013 Grade 9 Day 1 P1,
AoPS). Given three distinct real numbers a, b, and c, show that at least two
of the three following equations

(x− a)(x− b) = x− c,
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(x− b)(x− c) = x− a,

(x− c)(x− a) = x− b

have real solutions.

Walkthrough —

(a)

Solution 2. Without loss of generality, let us consider the case that the
equations

(x− a)(x− b) = x− c, (x− b)(x− c) = x− a

do not any real root. It follows that their discriminants are negative, that is,

(a+ b+ 1)2 − 4(ab+ c), (b+ c+ 1)2 − 4(bc+ a)

are negative. Note that

(a+ b+ 1)2 − 4(ab+ c) = (a− b)2 + 1 + 2(a+ b− 2c)

= (b− a+ 1)2 + 4(a− c),

(b+ c+ 1)2 − 4(bc+ a) = (b− c)2 + 1 + 2(b+ c− 2a)

= (b− c+ 1)2 + 4(c− a).

Since a and c are distinct real numbers, one of a− c and c−a is positive. Thus,
the discriminant of one of the equations

(x− a)(x− b) = x− c, (x− b)(x− c) = x− a

is non-negative, which is a contradiction. Therefore, at least two of the three
equations have real solutions. ■

Solution 3. Let f(x), g(x), and h(x) denote the polynomials defined by

f(x) = (x− a)(x− b)− (x− c),

g(x) = (x− b)(x− c)− (x− a),

h(x) = (x− c)(x− a)− (x− b).

Note that

f(x) + g(x) = (x− b)(2x− a− c)− (2x− a− c)

= (2x− a− c)(x− b− 1).

This implies that f(x) + g(x) admits a real root. Hence, at least one of f(x)
and g(x) is non-positive at some real number. If one of them admits a real
root, then we are done. Otherwise, at least one of them is negative at some real
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number. Also note that if k is a real number satisfying k ≥ |a|+ |b|+ |c|+ 2,
then

f(k + |a|+ |b|) = (k + |a|+ |b|+ a)(k + |a|+ |b|+ b)− (k + |a|+ |b|+ c)

≥ k2 − k − |a| − |b| − |c|
≥ k − |a| − |b| − |c|
> 0

holds, and similarly,
g(k + |a|+ |b|) > 0

hold too. By the intermediate value theorem, at least one of f(x) and g(x)
admits a real root. Interchanging the roles of f , g, and h, it follows that at least
one of any two of the polynomials f , g, and h admits a real root. Therefore, at
least two of the three equations have real solutions for x. ■

Exercise 1.3 (All-Russian Mathematical Olympiad 1999 Grade 9 Day 1 P1,
AoPS, by S. Volchenkov). The decimal digits of a natural number A form an
increasing sequence (from left to right). Find the sum of the digits of 9A.

Walkthrough —

(a)

Solution 4.
■

Exercise 1.4 (All-Russian Mathematical Olympiad 2007 Grade 8 Day 1 P1,
AoPS, by O. Podlipsky). Given reals numbers a, b, c, prove that at least one
of three equations

x2 + (a− b)x+ (b− c) = 0,

x2 + (b− c)x+ (c− a) = 0,

x2 + (c− a)x+ (a− b) = 0

has a real root.

Walkthrough —

(a)

Solution 5. Note that the sum of the discriminants of the quadratic polyno-
mials

x2 + (a− b)x+ (b− c), x2 + (b− c)x+ (c− a), x2 + (c− a)x+ (a− b)

4 The content posted here and at this blog by Evan Chen are quite useful.
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are equal to

(a− b)2 − 4(b− c) + (b− c)2 − 4(c− a) + (c− a)2 − 4(a− b)

= (a− b)2 + (b− c)2 + (c− a)2,

which is non-negative, and hence, at least one of the discriminants is non-
negative. This implies that at least one of the three equations has a real
root. ■

Solution 6. Consider the three quadratic polynomials defined by

f(x) = x2 + (a− b)x+ (b− c),

g(x) = x2 + (b− c)x+ (c− a),

h(x) = x2 + (c− a)x+ (a− b).

Note that
f(0) + g(0) + h(0) = 0,

which implies that at least one of f(0), g(0), h(0) is non-positive. Without loss
of generality, assume that f(0) ≤ 0. If f(0) is zero, then x = 0 is a root of
f(x). If f(0) < 0, then noting that

f(2|a− b|+ 2|b− c|+ 1)

=
1

2
(2|a− b|+ 2|b− c|+ 1)2 + (a− b)(2|a− b|+ 2|b− c|+ 1)

+
1

2
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=
1

2
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+
1

2
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≥ 1

holds, it follows by the intermediate value theorem that f(x) has a real root. ■
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