
MOPSS

31 July 2025

MOPSS

Mathematics Olympiad
Problem Solving Sessions

Department of Mathematics

IISER Bhopal

https://jpsaha.github.io/MOTP/MOPSS/

Suggested readings

• Evan Chen’s advice On reading solutions, available at https://blog.

evanchen.cc/2017/03/06/on-reading-solutions/.

• Evan Chen’s Advice for writing proofs/Remarks on English, available at
https://web.evanchen.cc/handouts/english/english.pdf.

• Notes on proofs by Evan Chen from OTIS Excerpts [Che25, Chapter 1].

• Tips for writing up solutions by Edward Barbeau, available at https:
//www.math.utoronto.ca/barbeau/writingup.pdf.

• Evan Chen discusses why math olympiads are a valuable experience for
high schoolers in the post on Lessons from math olympiads, available at
https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/.

https://web.evanchen.cc/
https://blog.evanchen.cc/2017/03/06/on-reading-solutions/
https://blog.evanchen.cc/2017/03/06/on-reading-solutions/
https://web.evanchen.cc/
https://web.evanchen.cc/handouts/english/english.pdf
https://web.evanchen.cc/
https://web.evanchen.cc/excerpts.html
https://www.math.utoronto.ca/barbeau/home.html
https://www.math.utoronto.ca/barbeau/writingup.pdf
https://www.math.utoronto.ca/barbeau/writingup.pdf
https://www.youtube.com/c/vEnhance
https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/


List of problems and examples

1.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Example (Bay Area MO 1999 P1) . . . . . . . . . . . . . . . 3
1.4 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.6 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.7 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.8 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.9 Example (Infinitude of primes) . . . . . . . . . . . . . . . . . 4
1.10 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.11 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.12 Exercise (Tournament of Towns, Spring 2019, Junior, O Level,

P4 by Boris Frenkin) . . . . . . . . . . . . . . . . . . . . . . 6
1.13 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.14 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.15 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.16 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.17 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.18 Exercise (Tournament of Towns, Fall 2019, Junior, O Level,

P4 by Boris Frenkin) . . . . . . . . . . . . . . . . . . . . . . 7
1.19 Exercise (India RMO 2017a P2) . . . . . . . . . . . . . . . . 7
2.1 Example (China TST 1995 Day 1 P1) . . . . . . . . . . . . . 9
2.2 Example (India RMO 1998 P2) . . . . . . . . . . . . . . . . 11
2.3 Example (India RMO 2023a P2) . . . . . . . . . . . . . . . . 11
2.4 Example (India RMO 2023b P1) . . . . . . . . . . . . . . . . 12

§1 Part A

Exercise 1.1. Determine if the product of some four consecutive integers can
be equal to the product of a few consecutive primes.

Walkthrough — The product of any four consecutive positive integers is a
multiple of 4.

Exercise 1.2. Suppose we are given a positive integer, and any of its digits is
equal to 0 or 6. Show that the given integer is not a perfect square.

Walkthrough —

(a) Show that the last two digits of a square cannot be 06 or 66.

(b) Conclude that the last two digits are equal to 00.
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(c) Use this argument repeatedly.

Example 1.3 (Bay Area MO 1999 P1). Prove that among any 12 consecutive
positive integers, there is at least one which is smaller than the sum of its
proper divisors. (The proper divisors of a positive integer n are all positive
integers other than 1 and n which divide n. For example, the proper divisors
of 14 are 2 and 7.)

Walkthrough — 3, 4, . . . !

Solution 1. Among any twelve consecutive integers, there is a multiple of 12.
For any positive integer n, note that

3n, 4n, 6n

are proper divisors of 12n, and

12n < 3n+ 4n+ 6n

holds. This completes the proof. ■

Remark. Note that

22 = 4,

26 = 64,

25 = 32,

225 = 33554432

holds. This shows that there are distinct powers of 2 whose last digits are equal,
and that there are distinct powers of 2 whose blocks of last two digits are the
same. This leads to the following questions.

Exercise 1.4. Are there two powers of 2 such that the blocks of their last
three digits are the same?

Walkthrough — Apply the pigeonhole principle to all powers of 2, considering
their last three digits.

Exercise 1.5. Are there two powers of 2 such that the blocks of their last
2025 digits are the same?

Some style files, prepared by Evan Chen, have been adapted here. 3
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Remark. Observe that both of the integers 3457, 7453 leave a remainder of 1
when divided by 9. Note that

(i) 3000 differs from 3 by a multiple of 9,

(ii) 400 differs from 4 by a multiple of 9,

(iii) 50 differs from 5 by a multiple of 9,

(iv) 7 differs from 7 by a multiple of 9,

and hence 3457 differs from the sum 3 + 4 + 5 + 7 by a multiple of 9.

Exercise 1.6. Suppose we are given a positive integer. We interchange its
digits to form another integer. Show that these two integers leave the same
remainder when divided by 9.

Walkthrough — Does the above remark help?

Remark. One may move towards discussing criteria for divisibility by 3, 9,
2, 4, 8, 16, 11 etc.

Exercise 1.7. Note that 3, 5, 7 are three consecutive odd integers and all of
them are primes. How many such examples of three consecutive odd integers
are there such that all of them are primes?

Remark. Examples of three consecutive odd integers include

• 11, 13, 15,

• 25, 27, 29,

• 37, 39, 41.

Example 1.8. [FGI96, Problem 83, p. 72] Prove that if a prime number is
divided by 30, the remainder is a prime or 1.

Solution 2. Let p be a prime number. If p is less than 5, then we are done.
Henceforth, let us assume that p ≥ 5. It follows that p is of the form 6k± 1 for
some positive integer k. If k ≡ 1 (mod 5), then p is equivalent to one of 5, 7
modulo 30. If k ≡ 2 (mod 5), then p is equivalent to one of 1, 3 modulo 30. If
k ≡ 3 (mod 5), then p is equivalent to 2 modulo 30. If k ≡ 4 (mod 5), then p
is equivalent to one of 3, 5 modulo 30. This completes the proof. ■

Example 1.9 (Infinitude of primes). [Sai06] Let a1, a2, a3, a4, a5, . . . be a
sequence of integers such that

a1 = 2,

4 The content posted here and at this blog by Evan Chen are quite useful.
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a2 = a1(a1 + 1),

a3 = a2(a2 + 1),

a4 = a3(a3 + 1),

a5 = a4(a4 + 1),

a6 = a5(a5 + 1)

etc. holds, that is, for any positive integer n,

an+1 = an(an + 1)

holds. Show that an has at least n distinct prime factors for any positive
integer n.

Walkthrough — Check it for first few values to n. Expect that the pattern will
continue! Try to figure out what more to do to see/get convinced/prove/estab-
lish that the pattern does continue.

This is important since the statement that every positive integer n is
smaller than 1000 is true for first few values of n! However, “the pattern”
does not continue in this case. The upshot is that observing a pattern does not
guarantee its validity all throughout.

Walkthrough —

(a) Show that an ≥ 2 for any integer n ≥ 1.

(b) Note that the integers an, an + 1 have no common prime factor.

(c) Conclude using induction.

Remark. This shows that the list of primes does not stop anywhere.

Exercise 1.10. Show that for any odd prime number p, the numerator of the
rational number

1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

p− 1

is divisible by p.

Walkthrough — Let S denote the above sum. Consider 2S and arrange the
summands suitably.

Example 1.11. Among any four consecutive positive integers, one of them is
coprime to (that is, no common factor with) the remaining three.

Some style files, prepared by Evan Chen, have been adapted here. 5
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Walkthrough — Show that among any four consecutive positive integers,
at least one of the odd integers is not divisible by 3. Consider the case when
this odd integer is equal to 1, and the case when it it greater than one. In the
second case, find a suitable prime divisor of this odd integer.

Proof. Note that among any four consecutive positive integers, at least one
of the odd integers is not divisible by 3, and hence, either it is equal to 1, in
which case it is coprime to the remaining ones, or it is greater than one, and
its smallest prime factor is at least 5, and hence, it is coprime to the remaining
ones.

Exercise 1.12 (Tournament of Towns, Spring 2019, Junior, O Level, P4 by
Boris Frenkin). The product of two positive integers m and n is divisible by
their sum. Prove that m+ n ≤ n2.

Walkthrough — Note that if m+ n divides mn, then m+ n divides n(m+
n)−mn.

Exercise 1.13. Show that a perfect square leaves 0 or 1 as the remainder
upon division by 4.

Walkthrough — Consider the squares of 2n and 2n+ 1.

Exercise 1.14. If an integer leaves a remainder of 3 upon division by 4, then
it cannot be expressed as a sum of two squares.

Walkthrough — Use the above Exercise.

Exercise 1.15. Is 20252025 divisible by 23? If not, what would be the remainder
when it is divided by 23?

Walkthrough — Check that 2025 ≡ 1 (mod 23).

Exercise 1.16. Determine the remainder to be obtained when 133133 is divided
by 13.

Exercise 1.17. No integer that leaves a remainder of 7 upon division by 8
can be expressed as a sum of three squares.

6 The content posted here and at this blog by Evan Chen are quite useful.
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Walkthrough — Try to read the squares modulo 8.

Exercise 1.18 (Tournament of Towns, Fall 2019, Junior, O Level, P4 by
Boris Frenkin). There are given 1000 integers a1, . . . , a1000. Their squares
a21, . . . , a

2
1000 are written along the circumference of a circle. It so happened

that the sum of any 41 consecutive numbers on this circle is a multiple of 412.
Is it necessarily true that every integer a1, . . . , a1000 is a multiple of 41?

Remark. Replace 1000 by 10 and 41 by 7, and try to work on the problem.

Solution 3. For any integer m, let m denote the integer lying between 1 and
1000, which is congruent to m modulo 1000. Note that

a2i ≡ a2j mod 412

holds for any integers i, j lying between 1 and 1000, and satisfying i ≡ j mod 41.
It follows that

a21 ≡ a2
41k+1

mod 412

for any integer k. Since the integers 41, 1000 are relatively prime, it follows
that the integers

41, 41 · 2, 41 · 3, . . . , 41 · 1000
are pairwise distinct modulo 1000, that is, these integers are congruent to
1, 2, . . . , 1000 modulo 1000 in some order. This shows that a21 is congruent to
a2i modulo 412 for any integer 1 ≤ i ≤ 1000. It follows that

41a21 ≡ a21 + a22 + · · ·+ a241 mod 412

Since the sum a21 + a22 + · · ·+ a241 is divisible by 412, this shows that 41 divides
a1. For any integer 1 ≤ i ≤ 1000, 412 divides a21−a2i , and using that 41 divides
a1, we obtain 41 divides ai.

This proves that it is necessary that every integer a1, . . . , a1000 is a multiple
of 41. ■

Exercise 1.19 (India RMO 2017a P2). Show that the sum of the cubes of
any seven consecutive integers cannot be expressed as the sum of the fourth
powers of two consecutive integers.

Walkthrough — Read it modulo !

Solution 4. Note that the fourth powers of the integers 0, 1, 2, 3, 4, 5, 6 are
congruent to 0, 1, 2, 4, 4, 2, 1 modulo 7 respectively. The shows that the sum of
the fourth powers of two consecutive integers is congruent to one of

0 + 1, 1 + 2, 2 + 4, 4 + 2, 2 + 1, 1 + 0

Some style files, prepared by Evan Chen, have been adapted here. 7
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modulo 7. Hence, the sum of the fourth powers of two consecutive integers
is not divisible by 7. Also note the cubes of seven consecutive integers is
congruent to

03 + 13 + 23 + 33 + 43 + 53 + 63

modulo 7, which is congruent to

13 + 23 + 33 + (−3)3 + (−2) + (−1)3 = 0

modulo 7. This shows that the sum of the cubes of seven consecutive integers
is not equal to the sum of the fourth powers of two consecutive integers. This
completes the proof. ■

§2 Congruences

Consider the integers 0, 1, 2, 3, . . . . Dividing them by 2 yields

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, . . .

as the respective remainders. Also note that dividing 0, 1, 2, 3, . . . by 3 yields

0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, . . .

as the respective remainders. Observe that dividing 0, 1, 2, 3, . . . by 3 yields

0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, . . .

as the respective remainders.
The integers 0, 2, 4, 6, . . . leave the same remainder when divided by 2, and

the integers 1, 3, 5, 7, . . . leave the same remainder when divided by 2.
Note that the integers 0, 3, 6, 9, . . . leave the same remainder when divided

by 3, the integers 1, 4, 7, . . . leave the same remainder when divided by 3, and
the integers 2, 5, 8, . . . leave the same remainder when divided by 3.
From now on, let us call the integers 0, 2, 4, 6, . . . the same with respect to

2, or congruent modulo 2, and also call the integers 1, 3, 5, 7, . . . congruent
modulo 2.

Definition 1. Let n be a positive integer. Two integers a, b are said to be
congruent modulo n if

n divides a− b.

If a, b are congruent modulo n, we write

a ≡ b (mod n).

8 The content posted here and at this blog by Evan Chen are quite useful.
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Remark. Note that if a, b, n are integers with n ≥ 1, then

a ≡ b (mod n) ⇒ b ≡ a (mod n),

a ≡ b (mod n) ⇐ b ≡ a (mod n).

These are often combinded and written as

a ≡ b (mod n) ⇐⇒ b ≡ a (mod n).

Lemma 2

Let a, b, c, d, k, n be integers with n ≥ 1 and k ̸= 0.

1. The congruence a ≡ a (mod n) holds.

2. If a ≡ b (mod n), then b ≡ a (mod n).

3. If a ≡ b (mod n) and b ≡ c (mod n), then

a ≡ c (mod n).

4. If a ≡ b (mod n), then

ka ≡ kb (mod kn)

and
ka ≡ kb (mod n)

holds.

5. If ac ≡ bc (mod n) and gcd(c, n) = 1, then

a ≡ b (mod n).

6. If a ≡ b (mod n) and c ≡ d (mod n), then

a+ c ≡ b+ d (mod n),

ac ≡ bd (mod n)

holds.

7. If a ≡ b (mod n), then

am ≡ bm (mod n)

holds for any positive integer m.

Some style files, prepared by Evan Chen, have been adapted here. 9
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Example 2.1 (China TST 1995 Day 1 P1). Find the smallest prime number p
that cannot be represented in the form |3a−2b|, where a and b are non-negative
integers.

Walkthrough —

(a) Any prime smaller than 41 can be expressed as the absolute value of the
difference of a nonnegative power of 3 and a nonnegative power of 2.

(b) If 41 = 2b−3a, then b ≥ 3 and hence 3a ≡ −1 mod 8, which is impossible.

(c) Assume that 41 = 3a − 2b. Considering congruence modulo 3, show that
b is an even positive integer. Reduce modulo 4 to show that a is even.

(d) Write a = 2x, b = 2y, and factorize 41.

(e) Conclude by obtaining a contradiction.

Solution 5. Note that any prime smaller than 41 can be expressed as the
absolute value of the difference of a nonnegative power of 3 and a nonnegative
power of 2, as shown below.

2 = 3− 1,

3 = 4− 1,

5 = 9− 4,

7 = 8− 1,

11 = 27− 16,

13 = 16− 3,

17 = 81− 64,

19 = 27− 8,

23 = 32− 9,

29 = 32− 3,

31 = 32− 1,

37 = 64− 27.

Let us prove the following claim.

Claim — The prime number 41 cannot be expressed as the absolute
value of the difference of a nonnegative power of 3 and a nonnegative
power of 2.

Proof of the Claim. On the contrary, let us assume that

41 = |3a − 2b|

holds for some nonnegative integers a, b.

10 The content posted here and at this blog by Evan Chen are quite useful.
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First, let us consider the case that 41 = 2b − 3a. Note that b ≥ 3 holds,
and reducing the above modulo 8, it follows that 3a ≡ −1 (mod 8), which is
impossible.

Now, let us consider the case that 41 = 3a − 2b. Reducing modulo 3, it
follows that 2b ≡ 1 (mod 3), which shows that b is even. Note that b is nonzero.
Next, reducing modulo 4, we obtain 3a ≡ 1 (mod 4), which implies that a is
even. Writing a = 2x, b = 2y for some positive integers x, y, we obtain

41 = 32x − 22y = (3x − 2y)(3x + 2y)

with 1 ≤ 3x − 2y < 3x + 2y, which yields

3x − 2y = 1, 3x + 2y = 41,

which is impossible.

Considering the above cases, the claim follows.

This proves that 41 is smallest prime that cannot be expressed in the given
form. ■

Example 2.2 (India RMO 1998 P2). Let n be a positive integer and p1, p2, . . . , pn
be n prime numbers all larger than 5 such that 6 divides p21 + p22 + · · ·+ p2n.
Prove that 6 divides n.

Walkthrough — Observe that any prime larger than 5 is congruent to ±1
modulo 6.

Solution 6. Note that any prime number larger than 5 is of the form 6k ± 1.
This yields

p21 + p22 + · · ·+ p2n ≡ (±1)2 + (±1)2 + · · ·+ (±1)2 mod 6 ≡ n mod 6.

Since 6 divides p21 + p22 + · · ·+ p2n, it follows that 6 divides n. ■

Example 2.3 (India RMO 2023a P2). Given a prime number p such that 2p
is equal to the sum of the squares of some four consecutive positive integers.
Prove that p− 7 is divisible by 36.

Walkthrough — Show that the sum of four consecutive squares is congruent to
6 modulo 8, and conclude that p ≡ 3 mod 4. Considering congruence conditions
modulo 3, prove that the smallest of the four consecutive numbers is a multiple
of 3. Deduce that the sum of the four consecutive squares is 5 modulo 9.

Some style files, prepared by Evan Chen, have been adapted here. 11
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Solution 7. Let p be a prime satisfying the given condition. Write

2p = x2 + (x+ 1)2 + (x+ 2)2 + (x+ 3)2

where x is a positive integer. Note that

x2 + (x+ 1)2 + (x+ 2)2 + (x+ 3)2 = 4x2 + 12x+ 14

≡ 4x(x+ 1) + 6 mod 8

≡ 6 mod 8

holds. It follows that 2p is congruent to 6 modulo 8, which shows that p is
congruent to 3 modulo 4.

Note that if x ≡ ±1 mod 3, then

x2 + (x+ 1)2 + (x+ 2)2 + (x+ 3)2 = 4x2 + 12x+ 14

≡ x2 + 2 mod 3

≡ 0 mod 3

holds, which shows that 3 divides 2p, and hence p = 3. However, 6 cannot be
expressed as the sum of four consecutive positive integers since 32 > 6. This
shows that x is divisible by 3. It follows that

x2 + (x+ 1)2 + (x+ 2)2 + (x+ 3)2 = 4x2 + 12x+ 14

≡ 14 mod 9.

So, 2p− 14 is a multiple of 9, and hence, it is an even multiple of 9, implying
that p− 7 is a multiple of 9. Since p ≡ 3 mod 4, we obtain p ≡ 7 mod 36. ■

Example 2.4 (India RMO 2023b P1). Let N be the set of all positive integers
and

S =
{
(a, b, c, d) ∈ N4 : a2 + b2 + c2 = d2

}
.

Find the largest positive integer m such that m divides abcd for all (a, b, c, d) ∈
S.

Walkthrough —

(a) Show that (1, 2, 2, 3) lies in S, and deduce that m divides 12.

(b) Let (a, b, c, d) be an element of S. Show that at least one of a, b, c, d is
divisible by 3, and at least one of them is even.

(c) Prove that if d is even, then at least one of a, b, c is even, and that if d is
odd, then at least two of a, b, c are even.

(d) Conclude that m is divisible by 2 · 2 · 3.

12 The content posted here and at this blog by Evan Chen are quite useful.
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Solution 8. Let m denote the largest positive integer such that it divides abcd
for all (a, b, c, d) in S. Note that 12 + 22 + 22 = 32 holds, which shows that
(1, 2, 2, 3) lies in S. This shows that m divides 12.

Let (a, b, c, d) be an element of S. Note that at least one of a, b, c, d is divisible
by 3 since

(±1)2 + (±1)2 + (±1)2 ̸≡ (±1)2 mod 3.

Also note that if all of a, b, c, d are odd, then we obtain

(±1)2 + (±1)2 + (±1)2 ≡ (±1)2 mod 4,

which is impossible. It follows that at least one of a, b, c, d is even.
If d is even, then at least one of a, b, c is even because the sum of squares of

three odd integers is congruent to 3 modulo 4. If d is odd, then at least one of
a, b, c is even. Note that 0 + (±1)2 + (±1)2 ̸≡ (±1)2 mod 4, which shows that
if d is odd, then at least two of a, b, c are even. This implies that at least two
of a, b, c, d are even. Hence, m is divisible by 2 · 2 · 3 = 12.
This proves that m = 12. ■
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