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§1 Warm up

Example 1.1 (Tournament of Towns, Spring 2020, Junior, O Level, P4 by
Alexandr Yuran). For some integer n, the equation x2+y2+z2−xy−yz−zx = n
has an integer solution x, y, z. Prove that the equation x2 + y2 − xy = n also
has an integer solution x, y.
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Summary — Note that

x2 + y2 + z2 − xy − yz − zx = (x− y)2 + (z − ∗)2 − . . . .

§2 Polynomials

For further problems, we refer to [Goy21].

§2.1 Warm up

Example 2.1 (Moscow MO 2015 Grade 9 P6). Do there exist two polynomials
with integer coefficients such that each of them has a coefficient with absolute
value exceeding 2015, but no coefficient of their product has absolute value
exceeding 1?

Summary — Try to come up with enough polynomials g1(x), g2(x), g3(x), . . .
and h1(x), h2(x), h3(x), . . . such that each of the products g1g2g3 . . . and
h1h2h3 . . . have at least one coefficient which is large in absolute value, and all
the coefficients of the product (g1g2g3 . . . )(h1h2h3 . . . ) are at most 1 in absolute
value.

§2.2 Even and odd polynomials

Example 2.2 (Moscow MO 1946 Grades 7–8 P5). Prove that after completing
the multiplication and collecting the terms

(1− x+ x2 − x3 + · · · − x99 + x100)(1 + x+ x2 + · · ·+ x99 + x100)

has no monomials of odd degree.

Summary — What happens if x is replaced by −x?

Example 2.3. Let n be an even positive integer, and let p(x) be a polynomial
of degree n such that p(k) = p(−k) for k = 1, 2, . . . , n. Prove that there is a
polynomial q(x) such that p(x) = q(x2).

Walkthrough — Note that the polynomial p(x) − p(−x) has degree < n
because n is even. Observe that it has at least n roots.

4 The content posted here and at this blog by Evan Chen are quite useful.
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Remark. What would happen if n is not assumed to be even?

Example 2.4 (Tournament of Towns, Spring 2014, Senior, A Level, P7 by D.
A. Zvonkin). Consider a polynomial P (x) such that

P (0) = 1, (P (x))2 = 1 + x+ x100Q(x),

where Q(x) is also a polynomial. Prove that in the polynomial (P (x) + 1)100,
the coefficient of x99 is zero.

§2.3 Factorization and roots

Example 2.5. Let a, b, c be three distinct real numbers. Show that

(a− x)(b− x)

(a− c)(b− c)
+

(b− x)(c− x)

(b− a)(c− a)
+

(c− x)(a− x)

(c− b)(a− b)
= 1.

Walkthrough — Can a polynomial having degree at most two admit more
than two distinct roots?

Example 2.6 (USAMO 1975 P3). A polynomial P (x) of degree n satisfies

P (k) =
k

k + 1
for k = 0, 1, 2, . . . , n.

Find P (n+ 1).

Example 2.7. Determine the remainder when x+ x9 + x25 + x49 + x81 + x121

is divided by x3 − x.

Example 2.8. Let g(x) and h(x) be polynomials with real coefficients such
that

g(x)(x2 − 3x+ 2) = h(x)(x2 + 3x+ 2)

and f(x) = g(x)h(x) + (x4 − 5x2 + 4). Prove that f(x) has at least four real
roots.

Example 2.9. Let P (x) be a polynomial of degree ≤ n having rational
coefficients. Suppose P (k) = 1

k holds for 1 ≤ k ≤ n+ 1. Determine P (0).

Example 2.10. Let P (x) be a polynomial with real coefficients such that
P (sinα) = P (cosα) for all α ∈ R. Show that P (x) = Q(x2 − x4) for some
polynomial Q(x) with real coefficients.

Some style files, prepared by Evan Chen, have been adapted here. 5

https://www.math.toronto.edu/oz/turgor/archives/TT2014S_SAsolutions.pdf
https://www.turgor.ru/en/problems/35/vs-35-sl-avt.pdf
https://www.turgor.ru/en/problems/35/vs-35-sl-avt.pdf
https://artofproblemsolving.com/wiki/index.php/1975_USAMO_Problems/Problem_3
https://github.com/vEnhance/dotfiles/blob/main/texmf/tex/latex/evan/evan.sty
https://web.evanchen.cc/otis.html


17 May 2025 https://jpsaha.github.io/MOTP/

Walkthrough —

(a) Show that P (x) = P (−x) for any −1 ≤ x ≤ 1, and hence P (x) = f(x2).

(b) Deduce that f(x) = f(1− x) for any 0 ≤ x ≤ 1.

(c) Using induction or otherwise, prove that f(x) = g(x − x2) for some
polynomial g(x) with real coefficients.

Example 2.11. Let p1, . . . , pn denote n ≥ 1 distinct integers. Show that the
polynomial

(x− p1)
2(x− p2)

2 · · · (x− pn)
2 + 1

cannot be expressed as the product of two non-constant polynomials with
integral coefficients.

Example 2.12. Show that any odd degree polynomial with real coefficients
has at least one real root.

Example 2.13 (Putnam 1999 A2). Show that for some fixed positive integer
n, we can always express a polynomial with real coefficients which is nowhere
negative as a sum of the squares of n polynomials.

Walkthrough —

(a) Show that the real roots of P have even multiplicity.

(b) Conclude that P can be expressed as a product of monic quadratic
polynomials with real coefficients having nonreal roots, and even powers
of linear polynomials with real coefficients.

(c) Show that a monic quadratic polynomial with real coefficients having
nonreal roots is the sum of the squares of two polynomials with real
coefficients.

§3 Differentiation and double roots

Lemma 1

Let P (x) be a polynomial with complex coefficients, and α be a complex
number. Then α is a root of P (x) having multiplicity at least r ≥ 2 (i.e.,
(x−α)r divides P (x)) if and only if it is a root of P (x), P ′(x), . . . , P (r)(x),
where P (r)(x) denotes the r-fold derivative of P (x).

To solve the problem below, it suffices to have following weaker version.

6 The content posted here and at this blog by Evan Chen are quite useful.
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Lemma 2

Let P (x) be a polynomial with complex coefficients, and α be a complex
number. Then α is a double root of P (x) (i.e., (x− α)2 divides P (x)) if
and only if it is a root of P (x) and P ′(x).

Example 3.1 (Putnam 1956 B7, IMOSL 1981 Cuba). The polynomials P (z)
and Q(z) with complex coefficients have the same set of numbers for their
zeroes but possibly different multiplicities. The same is true of the polynomials
P (z)+1 and Q(z)+1. Assume that at least one of P (z), Q(z) is nonconstant.
Prove that P (z) = Q(z).

Walkthrough —

(a) Assume that degP ≥ degQ.

(b) Denote these two set of roots by S1, S2. Considering multiplicities, show
that

2 degP − |S1| − |S2| ≤ degP ′ = degP − 1,

which yields
|S1|+ |S2| > degP.

(c) Note that P −Q vanishes at the elements of S1∪S2, which has size larger
than the degree of P −Q.

§4 Finite differences

Example 4.1 (India RMO 2013b P3). Consider the expression

20132 + 20142 + 20152 + · · ·+ n2.

Prove that there exists a natural number n > 2013 for which one can change a
suitable number of plus signs to minus signs in the above expression to make
the resulting expression equal 9999.

Summary — “Differentiating” a polynomial enough times makes it linear.

Walkthrough —

(a) Consider the polynomial P (k) = k2, and the polynomial Q(k) := P (k)−
(k − 1).

(b) Since Q(k) is a linear polynomial in k, the difference R(k) := Q(k) −
Q(k − 2) is a constant, that is, it does not depend on k.

(c) Note that R(k) is a ±1-linear combinationa of four consecutive squares.

Some style files, prepared by Evan Chen, have been adapted here. 7
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(d) Does this help?

aWhat does it mean?

Example 4.2 (Bay Area MO 12 2016 P4). Find a positive integer N and
a1, a2, . . . , aN , where ak = 1 or ak = −1 for each k = 1, 2, . . . , N , such that

a1 · 13 + a2 · 23 + a3 · 33 + · · ·+ aN ·N3 = 20162016,

or show that this is impossible.

Summary — “Differentiating” a polynomial enough times makes it linear.

§5 Growth of polynomials

Example 5.1. Does there exist a polynomial P (x) with rational coefficients
such that sinx = P (x) for all x ≥ 100?

Example 5.2 (India RMO 2015b P3). Let P (x) be a nonconstant polynomial
whose coefficients are positive integers. If P (n) divides P (P (n)− 2015) for all
natural numbers n, then prove that P (−2015) = 0.

Summary — In absolute value, a higher degree polynomial dominates a
smaller degree polynomial at arguments which are large enough in absolute
value.

§6 Rational and irrational numbers

Example 6.1. Show that for any n ≥ 2, the rational number

1 +
1

2
+

1

3
+ · · ·+ 1

n

is not an integer.

Example 6.2 (Moscow Math Circles). Does there exist irrational numbers
x, y with x > 0 such that xy is rational?

Summary — Consider
√
2
√
2
.

8 The content posted here and at this blog by Evan Chen are quite useful.
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Walkthrough —

(a) Consider
√
2
√
2
.

(b) If
√
2
√
2
is rational, then we are done by taking x = y =

√
2.

(c) If
√
2
√
2
is irrational, then can you find out suitable x, y?

Example 6.3 (Junior Balkan MO TST 1999). Let S be a set of rational
numbers with the following properties:

1. 1
2 ∈ S,

2. If x ∈ S, then both x
2 ∈ S and 1

x+1 ∈ S.

Prove that S contains all the rational numbers from the interval (0, 1).

Example 6.4 (British Mathematical Olympiad Round 1 2004/5 P5). Let S
be a set of rational numbers with the following properties:

1. 1
2 ∈ S,

2. If x ∈ S, then both 1
x+1 ∈ S and x

x+1 ∈ S.

Prove that S contains all rational numbers in the interval 0 < x < 1.

§7 Size of the roots

Example 7.1. Let f(x) and g(x) be nonconstant polynomials with real
coefficients such that f(x2 + x + 1) = f(x)g(x). Show that f(x) has even
degree.

Walkthrough — If the polynomial f(x) admits a real root α, then note that
α2 + α+ 1 is also a real root of f(x) and α2 + α+ 1 > α.

Example 7.2. Find all polynomials P (with complex coefficients) satisfying

P (x)P (x+ 2) = P (x2).

Summary — Note that if α is a root of P , then so are α2 and (α − 2)2.
Considering absolute values, show that P cannot have a root other than 1.
Conclude that P (x) = c(x− 1)n.

Example 7.3 (Problem 4.12 of Putnam training problems by Miguel A. Lerma).
Does there exist a polynomial f(x) satisfying

xf(x− 1) = (x+ 1)f(x)?

Some style files, prepared by Evan Chen, have been adapted here. 9
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Example 7.4 (Problem 2 of the Problem session for October 28, Fall 2020,
Putnam Club). Find all polynomials P (x) satisfying

xP (x− 1) = (x− 20)P (x).

Example 7.5 (INMO 2018 P4). Find all polynomials P (x) with real coefficients
such that P (x2 + x+ 1) divides P (x3 − 1).

Walkthrough —

(a) Show that if α is a root of P (x), then P (x) vanishes at (β1 − 1)α and
(β2 − 1)α, where β1, β2 are the roots of x2 + x+ 1 = α.

(b) If α is nonzero, then show that one of (β1 − 1)α and (β2 − 1)α is larger
than α in absolute value.

Example 7.6 (IMOSL 1979 Bulgaria). Find all polynomials f(x) with real
coefficients satisfying

f(x)f(2x2) = f(2x3 + x).

§8 Roots of unity

Example 8.1 (India Pre-RMO 2012 P17). Let x1, x2, x3 be the roots of the
equation x3 + 3x+ 5 = 0. What is the value of the expression(

x1 +
1

x1

)(
x2 +

1

x2

)(
x3 +

1

x3

)
?

Example 8.2 (USAMO 2014 P1). Let a, b, c, d be real numbers such that
b− d ≥ 5 and all zeros x1, x2, x3, x4 of the polynomial P (x) = x4 + ax3 + bx2 +
cx+ d are real. Find the smallest value the product

(x2
1 + 1)(x2

2 + 1)(x2
3 + 1)(x2

4 + 1)

can take.

Example 8.3 (USAMO 1976 P5). If P (x), Q(x), R(x), and S(x) are all
polynomials such that

P (x5) + xQ(x5) + x2R(x5) = (x4 + x3 + x2 + x+ 1)S(x),

prove that x− 1 is a factor of P (x).

Example 8.4 (Leningrad Math Olympiad 1991). A finite sequence a1, a2, . . . , an
is called p-balanced if any sum of the form

ak + ak+p + ak+2p + . . .

10 The content posted here and at this blog by Evan Chen are quite useful.
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is the same for any k = 1, 2, 3, . . . , p. For instance the sequence

a1 = 1, a2 = 2, a3 = 3, a4 = 4, a5 = 3, a6 = 2

is a 3-balanced. Prove that if a sequence with 50 members is p-balanced for
p = 3, 5, 7, 11, 13, 17, then all its members are equal zero.

Summary — Consider the polynomial
∑50

i=1 aix
i.

Example 8.5. Let P (x) be a monic polynomial with integer coefficients such
that all its zeroes lie on the unit circle. Show that all the zeroes of P (x) are
roots of unity, that is, P (x) divides (xn − 1)k for some positive integers n, k.

§9 Crossing the x-axis

Here are a few problems from this notes, and this one.

Example 9.1. Suppose P (x) is a polynomial with real coefficients such that
P (x) = x has no real solution. Show that P (P (x)) = x has no real solutions.

Example 9.2. Show that any polynomial of odd degree with real coefficients
has a real root.

Example 9.3. Let P (x) and Q(x) be monic polynomials of degree 10 having
real coefficients. Assume that the equation P (x) = Q(x) has no real roots.
Prove that the equation P (x+ 1) = Q(x− 1) has at least one real root.

Example 9.4. Let P (x) be a nonconstant polynomial with real coefficients
having a real root. Suppose it does not vanish at 0. Show that the monomial
terms appearing in P (x) can be erased one by one to obtain its constant term
such that the intermediate polynomial have at least one real root.

Example 9.5 (China TST 1995 Day 2 P2). Alice and Bob play a game with
a polynomial of degree at least 4:

x2n +□x2n−1 +□x2n−2 + · · ·+□x+ 1.

They take turns to fill the empty boxes. If the resulting polynomial has no real
root, Alice wins, otherwise, Bob wins. If Alice goes first, who has a winning
strategy?

§10 Lagrange interpolation
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Lemma 3

Let x1, . . . , xn be pairwise distinct real numbers, and y1, . . . , yn be real
numbers. Then there exists a unique polynomial P (x) of degree at most
n − 1 having real coefficients such that P (xi) = yi for all 1 ≤ i ≤ n.
Moreover, this statement also holds if the reals are replaced by rationals
or complex numbers all throughout.

Proof. Note that there is at most one polynomial satisfying the required
condition. Observe that the polynomial P (x), defined by

P (x) =

n∑
i=1

yi
∏
j ̸=i

x− xj

xi − xj
,

satisfies the required condition.

Exercise 10.1. If a polynomial of degree n takes rationals to rationals on
n+ 1 points, then show that it is a rational polynomial.

Lemma 4

Let x1, . . . , xn be pairwise distinct real numbers, and y1, . . . , yn be real
numbers. Then there exists a unique monic polynomial P (x) of degree n
having real coefficients such that P (xi) = yi for all 1 ≤ i ≤ n. Moreover,
this statement also holds if the reals are replaced by rationals or complex
numbers all throughout.

Proof. Note that such a polynomial is unique if it exists. By the above lemma,
there exists a polynomial Q(x) of degree at most n− 1 with real coefficients
such that Q(xi) = yi−xn

i for all 1 ≤ i ≤ n. Write P (x) = xn+Q(x). Note that
P (x) is a monic polynomial of degree n with real coefficients and P (xi) = yi
for all 1 ≤ i ≤ n.

Here is an alternate argument.

Proof. Note that such a polynomial is unique if it exists. By the above lemma,
there exists a polynomial Q(x) of degree at most n− 1 such that Q(xi) = yi
for any 1 ≤ i ≤ n. Consider the polynomial

(x− x1)(x− x2) . . . (x− xn) +Q(x),

which a monic polynomial of degree n, and sends xi to yi for all 1 ≤ i ≤ n.

12 The content posted here and at this blog by Evan Chen are quite useful.
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Example 10.2. Suppose P (x) is a monic polynomial of degree n− 1 with real
coefficients. Let a1, a2, . . . , an be distinct real numbers. Show that

n∑
i=1

P (ai)∏
j ̸=i(aj − ai)

= 1.

Solution 1. For 1 ≤ i ≤ n, write yi = P (ai). Note that

P (x) =

n∑
i=1

yi
∏
j ̸=i

x− ai
ai − aj

.

Comparing the leading coefficients, the result follows. ■

Example 10.3. Let P (x) be a monic polynomial of degree n. Show that

n∑
i=0

(−1)n−i

(
n

i

)
P (i) = n!.

Walkthrough — Is the above of some use?

Example 10.4 (USAMO 2002 P3). Prove that any monic polynomial (a
polynomial with leading coefficient 1) of degree n with real coefficients is the
average of two monic polynomials of degree n with n real roots.

Walkthrough —

(a) Let F (x) be a monic polynomial of degree n with real coefficients. We
would like to write

2F (x) = P (x) +Q(x),

where P (x), Q(x) are polynomials with certain properties.

(b) Let us take P (x) to be a polynomial which changes sign very often, so
that it is likely to have n real roots. To do so, choose n real numbers
satisfying

x1 < x2 < · · · < xn,

and let y1, . . . , yn be real numbers (to be specified later). Apply the La-
grange interpolation formula to obtain a monic polynomial P (x) satisfying
P (xi) = yi for all i.

(c) Define the polynomial Q(x) using

2F (x) = P (x) +Q(x).

Note that Q(x) is a monic polynomial with real coefficients.
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(d) Can one impose suitable conditions on y1, . . . , yn such that Q(x) changes
sign often?

Example 10.5 (Putnam 1968 A6). Find all polynomials whose coefficients
are all ±1 and whose roots are all real.

Walkthrough —

(a) Consider the average of the squares of the roots, and show that it is small
(and consequently, smaller than their geometric mean) if the polynomial
has degree ≥ 4.

(b) Repeat the argument for degree three polynomials.

(c) Finding the degree one and degree two polynomials is easy.

§11 Integer divisibility

Lemma 5

If P is a polynomial with integer coefficients and a, b are integers, then
P (a)− P (b) is a multiple of a− b.

Example 11.1. Let P (x) be a polynomial with integer coefficients such that
P (0), P (1) are odd. Show that P (x) does not have any integer root.

Example 11.2 (India RMO 2016g P8). At some integer points a polynomial
with integer coefficients take values 1, 2 and 3. Prove that there exist not more
than one integer at which the polynomial is equal to 5.

Example 11.3. Let P (x) be a polynomial with integer coefficients such that
P (20), P (25) are of absolute value equal to 1. Show that P (x) does not vanish
at any integer.

Example 11.4 (USAMO 1974 P1). Let a, b, and c denote three distinct
integers, and let P denote a polynomial having all integral coefficients. Show
that it is impossible that P (a) = b, P (b) = c, and P (c) = a.

Here is a more general result.

Example 11.5. Let P (x) be a polynomial with integer coefficients, and let n
be an odd positive integer. Suppose that x1, x2, . . . , xn is a sequence of integers
such that x2 = P (x1), x3 = P (x2), . . . , xn = P (xn−1), and x1 = P (xn). Prove
that all the xi’s are equal.

14 The content posted here and at this blog by Evan Chen are quite useful.
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Walkthrough — Show that

a1 − a2 | a2 − a3 | a3 − a4 | · · · | an − a1 | a1 − a2.

Note that sum of these differences is an odd multiple of their absolute value.

Example 11.6 (Tournament of Towns, Spring 2014, Senior, A Level, P4
by G.K. Zhukov). In the plane, the points with integer coordinates (x, y)
satisfying 0 ≤ y ≤ 10 are marked. Consider a polynomial of degree 20 with
integer coefficients. Determine the maximum possible number of marked points
which can lie on its graph.

Lemma 6

Let P be a polynomial with integer coefficients. Suppose a is an integer
and k is a positive integer such that P k(a) = a, where P k denotes the
k-fold composite map from Z → Z. Show that P 2(a) = a.

Example 11.7 (IMO 2006 P5). (Dan Schwarz, Romania) Let P (x) be a
polynomial of degree n > 1 with integer coefficients, and let k be a positive
integer. Consider the polynomial Q(x) = P (P (. . . P (P (x)) . . . )), where P
occurs k times. Prove that there are at most n integers t such that Q(t) = t.

§12 Primes, divisors, and congruences

Example 12.1 (Infinitude of primes). [Sai06] Let a1 = 2 and an+1 = an(an+1).
Show that an has at least n distinct prime factors.

Example 12.2 (Tournament of Towns, Fall 2019, Junior, O Level, P4 by
Boris Frenkin). There are given 1000 integers a1, . . . , a1000. Their squares
a21, . . . , a

2
1000 are written along the circumference of a circle. It so happened

that the sum of any 41 consecutive numbers on this circle is a multiple of 412.
Is it necessarily true that every integer a1, . . . , a1000 is a multiple of 41?

Example 12.3 (Tournament of Towns, India RMO 1995 P3). [Tao06, Problem
2.1] Prove that among any 18 consecutive three digit numbers there is at least
one number which is divisible by the sum of its digits.

Example 12.4 (China TST 1995 Day 1 P1). Find the smallest prime number p
that cannot be represented in the form |3a−2b|, where a and b are non-negative
integers.

Solution 2. Note that any prime smaller than 41 can be expressed as the
absolute value of the difference of a nonnegative power of 3 and a nonnegative
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power of 2, as shown below.

2 = 3− 1,

3 = 4− 1,

5 = 9− 4,

7 = 8− 1,

11 = 27− 16,

13 = 16− 3,

17 = 81− 64,

19 = 27− 8,

23 = 32− 9,

29 = 32− 3,

31 = 32− 1,

37 = 64− 27.

Let us prove the following claim.

Claim — The prime number 41 cannot be expressed as the absolute
value of the difference of a nonnegative power of 3 and a nonnegative
power of 2.

Proof of the Claim. On the contrary, let us assume that

41 = |3a − 2b|

holds for some nonnegative integers a, b.
First, let us consider the case that 41 = 2b − 3a. Note that b ≥ 3 holds,

and reducing the above modulo 8, it follows that 3a ≡ −1 (mod 8), which is
impossible.
Now, let us consider the case that 41 = 3a − 2b. Reducing modulo 3, it

follows that 2b ≡ 1 (mod 3), which shows that b is even. Note that b is nonzero.
Next, reducing modulo 4, we obtain 3a ≡ 1 (mod 4), which implies that a is
even. Writing a = 2x, b = 2y for some positive integers x, y, we obtain

41 = 32x − 22y = (3x − 2y)(3x + 2y)

with 1 ≤ 3x − 2y < 3x + 2y, which yields

3x − 2y = 1, 3x + 2y = 41,

which is impossible.
Considering the above cases, the claim follows.

This proves that 41 is smallest prime that cannot be expressed in the given
form. ■

16 The content posted here and at this blog by Evan Chen are quite useful.
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Example 12.5 (Bay Area MO 2000 P1). Prove that any integer greater than
or equal to 7 can be written as a sum of two relatively prime integers, both
greater than 1.

§13 Gauss’s lemma

Example 13.1 (ELMO 2009 P1, proposed by Evan O’Dorney). Let a, b, c be
positive integers such that a2 − bc is a square. Prove that 2a + b + c is not
prime.

Solution 3. Consider the quadratic polynomial p(x) = bx2 + 2ax + c with
integer coefficients. Since its discriminant is a perfect square, it follows that its
roots are rational, that is, it can be factored over the rationals. By Gauss’s
lemma, p(x) can be factored into linear polynomials with integer coefficients.
Since the leading coefficient of p(x) is positive, it follows that it can be factored
into linear polynomials with integer coefficients and having positive leading
coefficients. Note that the roots of p(x) are negative rationals. This proves that
p(x) can be factored into linear polynomials with positive integer coefficients.
Noting that p(1) = 2a+ b+ c, it follows that 2a+ b+ c is not a prime. ■

Remark. Note that in the above, one may prove that p(x) can be factored
into linear polynomials with integer coefficients without using Gauss’s lemma,
possibly by establishing the lemma in this specific case. In fact, the above
problem could serve as an introduction to Gauss’s lemma.

The following is an argument from Mandar Kasulkar.

Solution 4. Let x be a nonnegative integer such that a2 − bc = x2. Note that

(2a+ b+ c)(2a− b− c) = 4a2 − (b+ c)2

= 4a2 − 4bc+ (b− c)2

= 4x2 − (b− c)2

= (2x− b+ c)(2x+ b− c)

holds. Also note that

−(2a+ b+ c) < 2x− b+ c

< 2a− b+ c

< 2a+ b+ c,

−(2a+ b+ c) < 2x+ b− c

< 2a+ b− c

< 2a+ b+ c.
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If 2a = b + c, then 2a + b + c is not a prime. It remains to consider the
case 2a ̸= b + c, which we assume from now on. It follows that the integers
2x− b+ c, 2x+ b− c are nonzero, and lies strictly between −p and p. Since
their product is a multiple of 2a+ b+ c, we conclude that 2a+ b+ c is not a
prime. ■

§14 Irreducibility

Theorem 7 (Eisenstein’s criterion)

Let
f(x) = anx

n + · · ·+ a1 + a0

be a polynomial with integer coefficients. Let p be a prime number and
assume that

an ̸≡ 0 mod p,

an−1, . . . , a0 ≡ 0 mod p,

a0 ̸≡ 0 mod p2

holds. Then f(x) cannot be expressed as a product of two non-constant
polynomials with rational coefficients.

Example 14.1. [Art91, Chapter 11, Exercise 4.10, p. 444] Let

f(x) = a2n+1x
2n+1 + a2nx

2n + · · ·+ a1x+ a0

be a polynomial of degree 2n+ 1 with integer coefficients. Let p be a prime
number and assume that

a2n+1 ̸≡ 0 mod p,

a0, a1, . . . , an ≡ 0 mod p2,

an+1, . . . , a2n ≡ 0 mod p,

a0 ̸≡ 0 mod p3.

Show that f(x) cannot be expressed as a product of two non-constant polyno-
mials with rational coefficients.

Example 14.2. For any prime p, show that there exist non-constant monic
polynomials fp(x), gp(x) with integer coefficients such that

x4 − 10x2 + 1 ≡ fp(x)gp(x) mod p

holds. Can the polynomial x4 − 10x2 + 1 be expressed as the product of two
non-constant polynomials with rational coefficients?

18 The content posted here and at this blog by Evan Chen are quite useful.
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§15 Order

Let p be a prime, and a be an integer, not divisible by p. The order of a modulo
p, denoted by ordp(a), is defined to be the smallest positive integer such that
aordp(a) ≡ 1 mod p.

Example 15.1 (Tournament of Towns, India RMO 2014a P3). [Tao06, Prob-
lem 2.2] [AE11, Problem 3.81] Suppose for some positive integers r and s, 2r

is obtained by permuting the digits of 2s in decimal expansion and 2r, 2s have
same number of digits. Prove that r = s.

Solution 5. Since a positive integer is congruent to the sum of its digits
modulo 9, it follows that 2r and 2s are congruent modulo 9.

Let us consider the case that r < s. Note that 9 divides 2s−r − 1. Since the
order of 2 modulo 9 is equal to 6, it follows that 6 divides s − r, and hence
2s ≥ 64 · 2r, which is impossible. This shows that r ≥ s holds. Similarly, it also
follows that s ≥ r holds. This proves that s = r, as required. ■

Example 15.2 (Mathematical Ashes 2011 P2). Find all pairs (m,n) of non-
negative integers for which

m2 + 2 · 3n = m(2n+1 − 1).

Walkthrough —

(a) Let m,n be nonnegative integers satisfying the given equation. Consider-
ing the roots of x2 − x(2n+1 − 1) + 2 · 3n, it follows that

3k + 2 · 3ℓ = 2n+1 − 1

holds, for some nonnegative integers k, ℓ satisfying k + ℓ = n.

(b) Show that if n ≥ 6, then min{k, ℓ} ≥ 2 holds. Note that

3k < 2n+1 < 9(n+1)/3

holds, implying k < 2(n+ 1)/3. Also note that

2 · 3ℓ < 2n+1 < 2 · 32n/3

holds, implying ℓ < 2n/3. Using k + ℓ = n, it follows that

k >
n− 2

3
, ℓ >

n− 2

3
.

(c) Let us consider the casea that n ≥ 6. Note that m := min{k, ℓ} ≥ 2
holds.
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(i) Note that 9 divides 2n+1−1, and show that 6 divides n+1. Writing
n+ 1 = 6j yields

2n+1−1 = (4j −1)(42j +4j +1) = (2j −1)(2j +1)((4j −1)2+3 ·4j).

(ii) Noting that (4j − 1)2 +3 · 4j is divisible by 3, but not by 9, and that
the integers 2j − 1, 2j + 1 are coprime, conclude that 3m−1 divides
one of 2j − 1, 2j + 1.

(iii) Prove that

3m−1 ≤ 2j + 1 ≤ 3j = 3
n+1
6 ,

implying

m− 1 ≤ n+ 1

6
.

(iv) Conclude that
n− 2

3
− 1 < m− 1 ≤ n+ 1

6
.

holds.

(v) This yields n < 11, contradicting n ≥ 6 and 6 divides n+ 1.

(d) It remains to consider the case n ≤ 5.

aIt also suffices to assume that n ≥ 5 holds to obtain m ≥ 2.

§16 Primitive roots

Given a prime p, and an integer a, define the Legendre symbol
(

a
p

)
by

(
a

p

)
=


0 if p divides a,

1 if p does not divide a, and a ≡ m2 mod p for some integer m,

−1 if p ̸≡ m2 mod p for every integer m.

Exercise 16.1. Show that(
−3

p

)
= 1 if p ≡ 1 mod 3.

Walkthrough — Show that

(2ξ + 1)2 ≡ −3 mod p

holds for any integer ξ, which is of order 3 modulo p. Does such an integer
exist?

Exercise 16.2. Show that(
5

p

)
= 1 if p ≡ 1 mod 5.

20 The content posted here and at this blog by Evan Chen are quite useful.

https://jpsaha.github.io/MOTP/
https://web.evanchen.cc/
https://blog.evanchen.cc/
https://www.youtube.com/c/vEnhance


17 Quadratic residues Typos may be reported to jpsaha@iiserb.ac.in.

Walkthrough — Show that

(ξ + ξ4)2 + (ξ + ξ4) ≡ 1 mod p

holds for any integer ξ, which is of order 5 modulo p. Does such an integer
exist?

§17 Quadratic residues

Henceforth, p denotes an odd prime.

Exercise 17.1. Show that the number of solutions of x2 ≡ a mod p is given
by

1 +

(
a

p

)
.

Exercise 17.2 (Counting squares and non-squares). Show that

p−1∑
a=1

(
a

p

)
= 0.

Exercise 17.3. Prove that

p−1∑
x=0

(
ax+ b

p

)
= 0

holds for any integers a, b with p ∤ a.

Note that the sums in the above problems are over different sets.

Exercise 17.4. Let a be an integer. Show that the number of solutions to
x2 − y2 ≡ a mod p is given by

p−1∑
y=0

(
1 +

(
y2 + a

p

))
.

Exercise 17.5. Let a be an integer. Prove that the number of solutions to
x2 − y2 ≡ a mod p is equal to{

p− 1 if p ∤ a,
2p− 1 if p | a.
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Corollary 8

Prove that
p−1∑
y=0

(
y2 + a

p

)
=

{
−1 if p ∤ a,
p− 1 if p | a,

p−1∑
y=0

(
a− y2

p

)
=

−
(

−1
p

)
if p ∤ a,

(p− 1)
(

−1
p

)
if p | a.

Lemma 9

Let p be an odd prime. Then for any integer a, the congruence(
a

p

)
≡ a(p−1)/2 mod p

holds.

Walkthrough — Count the squares! Does Exercise 17.2 help?

Example 17.6 (China TST 2009 P6). Determine whether there exists an
arithmetic progression consisting of 40 terms and each of whose terms can be
written in the form 2m + 3n or not, where m,n are nonnegative integers.

Here is an argument by AoPS user iceillusion.

Walkthrough —

(a) On the contrary, let us assume that there exists such a progression of
length 23.

(b) Put p = 23. Note that(
2

p

)
=

(
3

p

)
= 1,

(
−1

p

)
= −1.

It follows that the terms of the progression are nonzero modulo p, and
hence at two of those 23 term progression are congruence modulo p. This
shows that their common difference is divisible by p, and hence the 23
terms are congruent to a nonzero residue a modulo p.

(c) Prove the following.

22 The content posted here and at this blog by Evan Chen are quite useful.

https://jpsaha.github.io/MOTP/
https://artofproblemsolving.com/community/c6h268743p1456566
https://artofproblemsolving.com/community/c6h268743p15445298
https://artofproblemsolving.com/community/user/218286
https://web.evanchen.cc/
https://blog.evanchen.cc/
https://www.youtube.com/c/vEnhance
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Claim — For any integer a with p ∤ a, the number of pairs (x, y) of
nonzero quadratic residues modulo p, satisfying x+ y ≡ a mod p is
equal to

=
1

4

p−1∑
y=1

(
1 +

(
a− y2

p

))
− 1

4

(
1 +

(
a

p

))

=
1

4

(
p− 1−

(
−1

p

)
−

(
a

p

)
−

(
1 +

(
a

p

)))
=

1

4

(
p− 2−

(
−1

p

)
− 2

(
a

p

))
.

(d) Consider the 23 pairs (2m, 3n) corresponding to the 23 terms of the
progression. Note that these pairs, when reduced modulo p, can take at
most

1

4

(
p− 2−

(
−1

p

)
− 2

(
a

p

))
≤ p− 3

4
= 5

values. By the pigeonhole principle, it follows that at least five pairs
among these 23 pairs, are congruent to each other modulo p.

(e) Note that the integers 2, 3 are of order 11 modulo 23. It follows that the
pairs of the exponents (m,n), corresponding to these five congruent pairs,
are congruent to each other modulo 11.

(f) This produces three suitable positive integers of the form x + k1d, x +
k2d, x+ k3d, with 1 ≤ k1 < k2 < k3 ≤ 22.

(g) Obtain a contradiction!

Lemma 10

Let p be an odd prime. Then(
2

p

)
= (−1)(p

2−1)/8.

Proof. Let Z[i] denote the set of complex numbers whose real and imaginary
parts are integers. For two elements z1, z2 of Z[i], we write

z1 ≡ z2 mod p

if the real part and the imaginary part of z1 − z2 are multiples of p.
Note that

(1 + i)p = (1 + i)(2i)(p−1)/2 = (1 + i)i(p−1)/22(p−1)/2

holds, which yields(
2

p

)
(1 + i)i(p−1)/2 ≡ 1 + i(−1)(p−1)/2 mod p.

Some style files, prepared by Evan Chen, have been adapted here. 23

https://github.com/vEnhance/dotfiles/blob/main/texmf/tex/latex/evan/evan.sty
https://web.evanchen.cc/otis.html
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This shows that (
2

p

)
=

{
(−1)(p−1)/4 if p−1

2 is even,

(−1)(p+1)/4 if p−1
2 is odd.
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