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Suggested readings

e Evan Chen’s advice On reading solutions, available at https://blog.
evanchen.cc/2017/03/06/on-reading-solutions/.

e Evan Chen’s Advice for writing proofs/Remarks on English, available at
https://web.evanchen.cc/handouts/english/english.pdf.

e Notes on proofs by Evan Chen from OTIS Excerpts [Che25, Chapter 1].

e Tips for writing up solutions by Edward Barbeau, available at https:
//www.math.utoronto.ca/barbeau/writingup.pdf.

e Evan Chen discusses why math olympiads are a valuable experience for
high schoolers in the post on Lessons from math olympiads, available at

https://blog.evanchen.cc/2018/01/05/1lessons-from-math-olympiads/.
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§1 Warm up

Example 1.1 (India RMO 2016g P1). Suppose in a given collection of 2016
integers, the sum of any 1008 integers is positive. Show that sum of all 2016
integers is positive.

I Walkthrough — Think about it!

Example 1.2 (India BMath 2006). A domino is a 2 by 1 rectangle. For what
integers m and n, can one cover an m by n rectangle with non-overlapping

dominoes?

Walkthrough —

(a) If an m x n rectangle admits a covering by non-overlapping dominos,

then show that at least one of the integers m,n has to be even.

(b) If at least one of m,n is even, then prove that an m X n rectangle admits

a covering by non-overlapping dominos.

Solution 1. In the following, an m X n rectangle is to be thought as an m x n
rectangular grid.

To be able to cover an m x n rectangle by non-overlapping dominoes, it is
necessary for the product mn to be even, and hence, at least one of m,n is
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Figure 1: India BMath 2006 (a tiling of a 5 x 8 rectangle with non-overlapping
dominoes), Example 1.2

even. Indeed, if an m x n rectangle admits a covering using k non-overlapping
dominoes, then those dominoes together cover 2k unit squares, and this yields
that 2k = mn.

Moreover, when at least one of m,n is even, an m X n rectangle can be
covered by non-overlapping dominoes by covering each row by m/2 (resp. each
column by n/2) non-overlapping dominos if m (resp. n) is even.

This shows that an m X n rectangle can be covered by non-overlapping
dominoes if and only if at least one of m,n is even. |

Remark. The above conclusion shows that an m X n rectangle admits a
covering by non-overlapping dominoes if and only if it admits a covering by
non-overlapping dominoes in the most obvious manner, i.e. a covering by non-
overlapping dominoes such that all of them are either horizontal or vertical (cf.
[Brulo, p. 6]).

The following problem is a more general version of Example 1.2.

Exercise 1.3. [Eng98, Problem 8, Chapter 2, p. 26] Show that an m X n
rectangle admits a covering by non-overlapping k£ x 1 rectangles if and only if
k divides m or k divides n.

Exercise 1.4. [Eng98] [Brul0, p. 4] Consider an n x n chessboard and remove
the squares at the end of one diagonal. Determine whether the mutilated
chessboard admits a covering by non-overlapping dominos.

Example 1.5 (Tournament of Towns, Fall 2013, Senior, A Level, P4). Integers
1,2,...,100 are written on a circle, not necessarily in that order. Can it be
that the absolute value of the difference between any two adjacent integers is
at least 30 and at most 507

Solution 2. Let us assume that the integers 1,2,...,100 can be arranged
along the circumference of a circle in some order such that the absolute value
of the difference between any two adjacent integers is at least 30 and at most
50.

Some style files, prepared by Evan Chen, have been adapted here. 3
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Since the difference of any two of the integers 1,2,...,25,76,77,...,100 is
less than 30 or greater than 50, it follows that no two of these integers are
adjacent. Consequently, the elements of the sets

{1,2,...,25,76,77,...,100},{26,27,...,50}

are placed alternately along the circle. However, 26 is adjacent to 76 only,
which is impossible. This shows that there is no arrangement of the integers

1,2,...,100 along the circumference of a circle satisfying the given condition.
|

Example 1.6 (India RMO 2003 P7). Consider the set X = {1,2,3,...,9,10}.
Find two disjoint nonempty subsets A and B of X such that

(a) AUB =X,

(b) prod(A) is divisible by prod(B), where for any finite set of numbers C,
prod(C) denotes the product of all numbers in C,

(c¢) the quotient prod(A)/prod(B) is as small as possible.

Summary — It is equivalent to finding a subset B of {1,...,10}, other than
0,{1,...,10}, such that prod(B)? divides 10! and the quotient 10!/prod(B)? is
minimized. To do so,

(a) write down the prime power factorization of 10!,

(b) throw in enough elements in B so that prod(B) is maximized, and
prod(B)? divides 10!.

Walkthrough —

(a) Observe that it is enough to find a nonempty proper subset B of {1,2,...,10}
such that prod(B)? divides 10! and prod(B) is the maximum.

(b) Writing down the prime power factorization of 10!, deduce that B does
not contain 7, it contains a multiple of 5, and also a multiple of 2 and a
multiple of 3.

(c) Prove that B contains exactly one multiple of 5, and not more that two
multiples of 3.

(d) Show that B is equal to one of the subsets {5,3,6,2%}, {5,3,6,2% 1},
{5,3,6,2,2°}, {5,3,6,2,2%,1}, {5,9,2,2°}, {5,9,2,2% 1}, {10,3,6,27},
{10,3,6,22,1}, {10,9, 2%}, {10,9,23,1}, {10,9,2%}, {10,9,23,1}.

(e) Show that any of these three subsets also have the stated property.

First, let’s work on it. Let A, B be two nonempty disjoint subsets of X
satisfying the required conditions (note that such subsets exist since X can be

4 The content posted here and at this blog by Evan Chen are quite useful.
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written as the union of two disjoint subsets in finitely many ways only). Due
to the equality
prod(A) 10!

prod(B)  (prod(B))?’

it is equivalent to having a subset B of X such that prod(B)? divides 10! and
prod(B) is the maximum. Note that 10! is equal to the product 28 - 3% . 52 . 7.
So prod(B) divides 2% - 3% - 5, and hence, B does not contain 7. Moreover,
B contains a multiple of 5, otherwise (prod(B U {5}))? would divide 10! and
prod(B U {5}) would be strictly larger than prod(B), which contradicts the
choice of B. Similarly, B also contains a multiple of 2 and a multiple of 3. Note
that B contains exactly one multiple of 5 (since 5% { 10!). Since (prod(B))?2
divides 10! and prod(B) is the maximum, B is equal to one of the following
sets

o {5,3,2,23} {5,3,2,23,1}, {5,6,2,23}, {5,6,2,23 1}, {5,3,6,23}, {5,3,6,23,1},
{5,3,6,2,2%}, {5,3,6,2,22 1}, {5,9,2,23}, {5,9,2,23,1} if B contains 5,

e {10,3,2%}, {10,3,23 1}, {10, 3,2, 22}, {10, 3, 2,22 1}, {10, 6, 2%}, {10,6,22, 1},
{10,3,6,2%}, {10,3,6,22 1}, {10,9, 23}, {10,9, 23,1}, {10, 9, 2,22}, {10,9, 2,22, 1}
if B contains 10.

For any of the above sets, the product of its elements is equal to 240, 480,
or 720. So B is equal to one of the sets {5, 3,6, 2%}, {5,3,6,2%,1}, {5,3,6,2, 2%},
{5,3,6,2,22 1}, {5,9,2,23}, {5,9, 2,23 1}, {10, 3, 6,22}, {10, 3,6,22,1}, {10,9,23},
{10,9,23,1}, {10,9,2%}, {10,9,23,1}.

Also note that if B denotes one of these subsets of {1,...,10}, then prod(B)?
divides 10! and prod(B) is the maximum.

This proves that {5,3,6,2%}, {5,3,6,23,1}, {5,3,6,2,22}, {5,3,6,2,22,1},
{5,9,2,23}, {5,9,2,23,1}, {10, 3,6,22}, {10, 3,6,2%,1}, {10,9,23}, {10,9, 23,1},
{10,9,23}, {10,9,23,1} are precisely all the subsets of {1,...,10} having the
required property. Thus we could take A = {1,2,3,4,5,6,7}, B = {8,9,10} for
instance. &

Remark. Note that the above discussion provides more than what has been
required. After observing that prod(B) divides 2*.32.5, one may show that
there is a subset B with prod(B) equal to 2*-32.5 (for instance, B = {8,9,10}),
and then conclude.

Solution 3. Let A, B be two nonempty disjoint subsets of X satisfying the
required conditions (note that such subsets exist since X can be written as the
union of two disjoint subsets in finitely many ways only). Due to the equality

prod(A) 10!

prod(B)  (prod(B))?’

Some style files, prepared by Evan Chen, have been adapted here. 5
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it is equivalent to having a subset B of X such that prod(B)? divides 10! and
prod(B) is the maximum. Note that 10! is equal to the product 28-3%-52.7. So
prod(B) divides 2 -3%.5. If B = {8,9,10}, then prod(B) is equal to 2* - 32 - 5.
Hence, A = {1,...,7}, B = {8,9,10} are two disjoint nonempty subsets of
X ={1,...,10} satisfying the required conditions. |

Remark. Don’t be surprised that it took a bit long to arrive at the above
solution. It is often the case. Further, it is a standard practice to write down a
complete solution as the final one, without any reference to the prior attempts
(possibly several). Those attempts have their important role in providing
insights, which may lead to a solution. Here, the details of those attempts have
not been hidden from you, in order to take you along the journey. However, I
would like to highlight that a solution to a problem has to be complete, and
at the same time, has to be free from the prior thoughts that have no direct
role to play in that solution, though they might have played a significant role
in gaining insight.

Example 1.7 (India RMO 2013¢c P6). Let n > 4 be a natural number.
Let A1As--- A, be a regular polygon and X = {1,2,3,...,n}. A subset
{i1,42,...,i5} of X, with k > 3 and 4 < iy < --- < iy, is called a good subset
if the angles of the polygon A; A;, --- A;,, when arranged in the increasing
order, are in an arithmetic progression. If n is a prime, show that a proper
good subset of X contains exactly four elements.

Walkthrough —

(a) Note that the angle subtended by any side of a regular n-gon at the center
of its circumcircle is equal to 27 /n.

(b) Show that the angle, subtended by any arc corresponding to two con-
secutive vertices of a polygon of the form A;, A, ... A, , is a multiple of
27 /n.

(¢) Conclude that the angles of a polygon of the form A; A;, ... A;, is a
multiple of 7/n.

Solution 4. Note that the angle subtended by any side of the regular n-gon
A1As -+ A, at the center of its circumcircle is equal to 27 /n. Let k > 3 be a
positive integer, and {i1,42,...,i;} be a proper good subset of {1,2,...,n},
with 47 < ig < -+ < ig.

This shows that the angle, subtended by any arc corresponding to two
consecutive vertices of the polygon A;, A;, ... A;,, is a multiple of 27 /n. Since
the angle subtended by an arc of a circle at its center, is twice of the angle
subtended by it at any point on the circumference, it follows that the angles of
the polygon are multiples of 7/n. Since {i1,42,...,4} is a good subset, and
the angles of a k-gon add up to (k — 2)m, it follows that there are k integers

6 The content posted here and at this blog by Evan Chen are quite useful.
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Figure 2: India RMO 2014, Example 1.8

n1 < ng < --- < nyg, which are in arithmetic progression, and their sum is equal
to (k — 2)n. This shows that k(n; + ng)/2 = (k — 2)n, which implies that k
divides 2(k — 2)n. Since {i1,42,...,9} is a proper subset of {1,2,...,n}, and
n is a prime, it follows that the integers k,n are relatively prime. This gives
that k divides 2(k — 2), and consequently, k divides 4. Using the bound k > 3,
we obtain k = 4. |

Example 1.8 (India RMO 2014d P6). In Fig. 2, can the numbers 1,2, 3,4, ..., 18
be placed, one on each line segment, such that the sum of the numbers on the
three line segments meeting at each point is divisible by 37

Summary — Since there are 18 line segments, it follows that if the integers
0,1,2 can be put on the segments, using each of them exactly six times, such
that 3 divides the sum of the integers on the segments meeting at any given
point, then it would be possible to place 1,2,...,18 satisfying the required
condition.

Solution 5. Note that if the integers 0,1, 2 can be put on the segments, using
each of them exactly six times, such that 3 divides the sum of the integers
on the segments meeting at any given point, then it would be possible to
place 1,2, ..., 18 satisfying the required condition (by replacing the 0’s (resp.
1’s, 2’s) by the six integers among 1,2, ..., 18 which are congruent to 0 (resp.
1,2) modulo 3, and such a replacement can be carried out since there are six
elements among 1,2,...,18 congruent to ¢ mod 3 for any i € {0,1,2}). We
now show that such an arrangement of 0, 1,2 exists. First, put 0’s on all the
vertical segments as in Fig. 3b, and then put 1’s on the ‘diagonal’ segments as
shown in Fig. 3c. This forces to put 2’s on the ‘diagonal’ segments as shown in
Figure 3d, which in turn, forces to write 1’s and 2’s on the horizontal segments
as in Figure 3e. Note that the sum of the numbers (as in Figure 3¢) on the
three line segments meeting at each point is divisible by 3. So this gives an
arrangement of 0, 1,2 satisfying the desired properties, then 1,2,...,18 can be
arranged satisfying the given conditions (as described above). |

Example 1.8 leads to the following question.

Some style files, prepared by Evan Chen, have been adapted here. 7
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Figure 3: India RMO 2014, Example 1.8

The content posted here and at this blog by Evan Chen are quite useful.


https://jpsaha.github.io/MOTP/
https://web.evanchen.cc/
https://blog.evanchen.cc/
https://www.youtube.com/c/vEnhance

1 Warm up Typos may be reported to jpsaha@iiserb.ac.in.

Question 1.9. Under which conditions, does a k-regular graph admit an edge
coloring by the k-th roots of unity such that the sum of the colors incident at
any vertex equals to zero?

Example 1.10 (India RMO 2016¢ P4). There are 100 countries participating
in an olympiad. Suppose n is a positive integer such that each of the 100
countries is willing to communicate in exactly n languages. If each set of 20
countries can communicate in at least one common language, and no language
is common to all 100 countries, what is the minimum possible value of n?

Walkthrough —

(a) Choose a country C, and let Ly denote a language in which C' commu-
nicates. Note that L; is not common to some country C. Hence, some
language Lo is common to the countries C, C1.

(b) The language L is not common to some country C2. Hence, some
language L3 is common to the countries C, C1, Ca.

(c) Continuing this line of argument, show that there are pairwise distinct
languages L1, ..., L2o and C communicates in them.

(d) Conclude that n > 20.

(e) Show that 20 is the minimum possible value of n.

Solution 6.

Claim — The inequality n > 20 holds.

Proof of the Claim. Let C' denote a country. Let L; denote a language in
which C' communicates. By hypothesis, the language L; is not common to
some country C7. Some language Lo is common to the countries C,C;. By
hypothesis, Lo is not common to some country C5. Note that some language
Lj is common to the countries C, Cy, Cs.

Suppose for some integer 2 < i, there are countries C1,Cs, ..., C; and there
are languages L1, Lo, ..., L;11 such that for any 1 < k < i, the language Lj4+1
is common to the k + 1 countries C,C1, ..., Ck, and Lj, is not common to Cj.
By the hypothesis, L;;1 is not common to some country C;y;. If 1 +2 < 20,
then the i + 2 countries C,CY,...,C;;41 have some common language L; o.
By induction, there are countries Ci,Cjy,...,Cg, and there are languages
Ly, ..., Log such that for any 1 < k < 19, the language Lj41 is common to the
k + 1 countries C, C4, ..., Ck, and that the language Ly, is not common to the
country Ci. For any 1 < k <19, the language Lj1 is common to the k£ + 1

countries C, C,...,Cy, and for any 1 <+ < k, the language L; is not common
to C;, and hence, L1 is not equal to any of Ly, ..., L. This proves that the
languages L1, ..., Loy are pairwise distinct, and C' communicates in them. The
Claim follows. O

Some style files, prepared by Evan Chen, have been adapted here. 9
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Claim — One possible value of n is 20.

Proof of the Claim. Let 4, ..., %1 be pairwise languages. Let 41, ..., %100
be a choice of 100 countries. Suppose for 1 < i < 21, the country %; commu-
nicates in all the languages %, ..., % other than .%;. Assume further that
for any 22 < ¢ < 100, the country %; communicates in %, ..., %g. Note that
each country communicates in exactly 20 languages, and that no language is
common to all the 100 countries. Moreover, each set of 20 countries among
61, ...,%5 share exactly one common language.

Note that at most 19 countries from %61, . .., 621, share at least two languages
among .7}, ..., % in common, and hence share at least one language among
A, ..., L in common. Hence, each set of 20 countries among %7, . . . , 100,
having at most 19 countries from %7, ..., %29, share at least one language in
common. This proves the Claim. O

Combining the above Claims, it follows that the minimum possible value of
n is 20. ]

Example 1.11 (India RMO 2016e P6). A deck of 52 cards is given. There
are four suites each having cards numbered 1,2,...,13. The audience chooses
some five cards with distinct numbers written on them. The assistant of the
magician comes by, looks at the five cards and turns exactly one of them face
down and arranges all five cards in some order. Then the magician enters and
with an agreement made beforehand with the assistant, he has to determine
the face down card (both suite and number). Explain how the trick can be
completed.

Solution 7. The following could be an agreement between the magician and
the assistant, so that the magician can determine the face down card.

1. Given a collection of five cards, having distinct numbers written on them,
the assistant puts them in a row, as follows.

2. Note that among the five cards, at least two are of the same suite.

3. The assistant chooses two cards of the same color, and puts them next
to each other, and then keeps the remaining three cards to their right.

4. Note that if the integers 1,2,...,13 are written along the circumference
of a circle I' (in some order that is known to both the magician and
the assistant, for instance, in the clockwise direction), then for any two
distinct integers i, j lying between 1 and 13, one of them (call it @)) can
be reached from the other one (call it P) by traversing from P along the
circumference in the clockwise or in the anti-clockwise direction within
at most 6 steps.

10 The content posted here and at this blog by Evan Chen are quite useful.
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5. Denote the chosen cards of the same color, by P and @), so that @ can be
reached from P, by traversing along the circumference, in the clockwise
or in the anti-clockwise direction, within at most 6 steps. The assistant
puts the cards P and @ in the order @, P (resp. P, Q) if @ can be reached
from P, by traversing along the circumference, in the anti-clockwise (resp.
clockwise) direction, in s < 6 steps. The assistant turns the card @ face
down.

6. The assistant keeps the remaining three cards to the right of these two
cards, in an order, which helps to determine the integer s as follows.

7. Denote the integers written on the remaining three cards by a, b, ¢ with
a < b < c. The 3! = 6 permutations of 1,2,3 can be identified with
the integers 1,2,3,4,5,6 in some order (known to both the magician
and the assistant), and the 3! = 6 permutations of the three remaining
cards can be identified with the permutations of 1,2,3 in an obvious
way that is known to both the magician and the assistant (for instance,
sending a permutation o of {a,b,c} to the permutation f oo o f~1 of
{1,2,3} where f: {a,b,c} — {1,2,3} denotes the map sending a, b, ¢ to
1,2, 3 respectively.). Under the composition of these two identifications,
a positive integer < 6 corresponds to a unique permutation of the three
remaining cards. The assistant keeps the three remaining cards to the
right of the first two cards, as per the permutation which corresponds to
the integer s.

Since the suite of the face down card is same as the face up card which is the
first in the row of the five cards, the magician determines the suite of the face
down card. The magician knows that the number written on the face down
card can be reached, by traversing along I' from the number written on the
first face up card, in the clockwise (resp. anti-clockwise) direction if the face
down card in the second (resp. first) one in the row of five. [ |

Example 1.12 (India RMO 2016g P2). On a stormy night ten guests came to
dinner party and left their shoes outside the room in order to keep the carpet
clean. After the dinner there was a blackout, and the guests leaving one by
one, put on at random, any pair of shoes big enough for their feet. (Each pair
of shoes stays together). Any guest who could not find a pair big enough spent
the night there. What is the largest number of guests who might have had to
spend the night there?

Walkthrough — What happens if a person having shoe of the smallest size
wears a shoe of the largest size, and next, if a person having shoe of the second
smallest size wears a shoe of the second largest size, and it continues?

Solution 8. If a person having shoe of the k-th smallest size wears a shoe of
the k-th largest size for k = 1,2, 3,4, 5, and if the sizes of the shoes of the ten

Some style files, prepared by Evan Chen, have been adapted here. 11
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persons are distinct, then none of the remaining five persons will not find a big
enough shoe.

We claim that if & persons have left for some 1 < k < 4, then one of the
remaining 10 — k persons will find a big enough shoe. Let us denote the sizes
of the shoes of the guests by s1, so,...,s19. If the claim is false, then for some
1 < k < 4, there are 10 — k guests whose shoes have sizes larger than some
10 — k numbers among s1, ..., S19. S0, some 10 — k numbers among s1, ..., S1g
are larger than some 10 — k£ numbers among s1, ..., s19. It follows that

10 — k + 10 — k < 10,

which shows that k£ > 5. This contradicts the bound k& < 4. This proves the

claim. Consequently, at most five guests may need to spend the night there.
We conclude that the largest number of the guests who might need to spend

the night there is five. |

Example 1.13 (India RMO 2017b P1). Consider a chessboard of size 8 units
x 8 units (i.e. each small square on the board has a side length of 1 unit). Let
S be the set of all the 81 vertices of all the squares on the board. What is the
number of line segments whose vertices are in .S, and whose length is a positive
integer? (The segments need not be parallel to the sides of the board.)

Summary — A segment having vertices in S and length a positive integer,
is horizontal or vertical, or the hypotenuse of a right-angled triangle whose
smaller sides are parallel to the sides of the board. To count such right-angled
triangles, note that they cannot have a too large hypotenuse.

Walkthrough —

(a) Determine the number of the horizontal segments with vertices in S and
whose lengths are positive integers.

(b) By symmetry, the number of such vertical segments is equal to the above.

(¢) To determine the slanted ones, note that such a slanted segment is the
hypotenuse of a right-angled triangle whose smaller sides are parallel to
the sides of the board, and have integer lengths. Note that the diagonal
of an 8 x 8 chessboard has length 8v/2 < 12. Thus, the only right-angled
triangles, that can be fit within the board having sides parallel to the
sides of the board and of integer length, have side lengths equal to (3,4, 5),
(4,3,5), (6,8,10), (8,6, 10).

(d) Does a symmetry argument help? For instance, flipping around a diagonal,
and then flipping around an axis (i.e. a line parallel to one of the sides of
the board and dividing the board in two equal halves).

Solution 9. Note that within each horizontal line, there are 8 — £+ 1 horizontal
segments of length ¢ for any 1 < ¢ < 8. This shows that the number of the

12 The content posted here and at this blog by Evan Chen are quite useful.
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(c) (d)

Figure 4: India RMO 2017 — Several configurations of triangles with side
lengths (3,4, 5), Example 1.13

horizontal segments with vertices in S and whose lengths are positive integers
is equal to

1
8><(1+2+-~~~|—8)):§82~9.

By symmetry, the number of such vertical segments is also equal to %82 - 9.
Hence, there are 82 - 9 segments parallel to the sides of the board, which have
vertices in S and whose lengths are positive integers.

Note that the diagonal of an 8 x 8 chessboard has length 8v/2 < 12. Thus,
the only right-angled triangles, that can be fit within the board having sides
parallel to the sides of the board and of integer length, have the side lengths
equal to (3,4,5), (4,3,5), (6,8,10), (8,6,10). The number of such right-angled
triangles, having the side lengths equal to (3,4, 5), is equal to

4x(8-3+1)x (8—4+1).
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The number of such right-angled triangles, having the side lengths equal to the
remaining triples, can be expressed in a similar way. This shows that the total
count of such triangles is

2x4x((8=3+1)x(8—4+1)+(8—-6+1)x(8—8+1))=360.
Hence, the number of the line segments with the stated property is
9 1
8 -9+§-3602756.
|

Remark. Note that the above argument considers the line segments whose
endpoints are distinct. There are 81 line segments having equal end-points and
end-points lying in S.

Example 1.14 (India RMO 2017b P3). Let P(z) and Q(x) be polynomials of
degree 6 and degree 3 respectively, such that

P(z) > Q(x)* + Q(z) + 2* — 6 for all z € R.
If all the roots of P(z) are real numbers, then prove that there exist two roots

of P(x), say a, 8 such that | — ] < 1.

Solution 10. For any real number z, note that

2
P(z) > (Q(m)+2) +x2—%2x2—%

holds. This implies that any root a of P(z) satisfies o® < 2. Since P(z) is a
polynomial of degree 6 and all its roots are real, it follows that its six roots lie
in the interval (—5/2,5/2), which is the union of the five intervals

(=5/2,-3/2),[=3/2,-1/2),[-1/2,1/2),[1/2,3/2),[3/2,5/2).

Hence, there are two roots «, 8 of P(x) such that |a — 8] < 1. [ ]

Example 1.15 (Moscow MO 2015 Grade 11 Day 1 P5). Prove that it is
impossible to put the integers from 1 to 64 (using each integer once) into an
alb
8 x 8 table so that for any 2 x 2 square L¢1d], the difference ad — be is equal to
1or —1.

14 The content posted here and at this blog by Evan Chen are quite useful.
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Figure 6: ad — bc = £1, ps — qr = +1, Example 1.15

Remark.

b
e Given a 2 x 2 square L€ d|, the difference ad — be is equal to

the product of the diagonal terms

— the product of the anti-diagonal terms.

Let us call this difference the determinant of the 2 X 2 square.

e For instance,

— <:1)) i) has determinant equal to —2,

— (? 192) has determinant equal to 96 — 63 = 33,

= <153 174) has determinant equal to 91 — 70 = 21.

— Did you notice that if the determinant is odd, then the diagonal
entries are odd or the anti-diagonal entries are odd?

e We need to show that there is no filling of an 8 x 8 table using the integers
from 1 to 64, using each integer once, such that any 2 X 2 square (such
squares have been marked in Fig. 5, Fig. 6, note that there 9 + 16 = 25
such 2 x 2 squares.) has a determinant equal to 1 or —1. Equivalently”, no
matter how one may fill an 8 x 8 table using using the integers from 1 to
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16

64, using each integer once, some 2 x 2 square has to have a determinant
other than 1, —1.

%Ts the equivalence clear? Try to think about it!

Summary — If such a filling exists, then divide the 8 x 8 table into 16
pairwise disjoint 2 X 2 squares (as in Fig. 7). Due to parity constraints, each
square contains precisely two evens along its diagonal or anti-diagonal, and their
product is at most one more than the product of the odd entries. Consequently,
for any of these 16 squares, the product of its even entries is less than the
product of the successors of its odd entries. Multiplying across the squares gives
a contradiction.

Walkthrough —

(a) Assume that such a filling exists.

Figure 7: Moscow MO 2015 Grade 11 Day 1 P5, Example 1.15

alb
(b) Recall that the determinant of a 2 x 2 square LELd] is

the product of the diagonal terms

— the product of the anti-diagonal terms.

(c¢) Note that ’ even — even # +1,odd — odd # +1 ‘, and hence any square

contains two odd numbers along the diagonal Eﬂ or on the anti-diagonal

%]

(d) Divide the 8 x 8 table into 16 pairwise disjoint 2 X 2 squares.

(e) Each of these 16 squares contains at least two odd integers, and hence,
they together contain at least 32 odd integers.

(f) Conclude that each of these 16 squares contains precisely two odd integers,
and precisely two even integers.

The content posted here and at this blog by Evan Chen are quite useful.
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(g) Consider a square among them. It is of the form

alb
cld| with a,d both odd, and b, c both even,

or of the form

bla
d

o

with a, d both odd, and b, ¢ both even.

(h) The product of its even entries is at most one more than the product of
its odd entries.

(i) Note that for any two odd positive integers b, ¢, the inequality bc + 1 <
(b+1)(c+1) holds.

(j) This shows that

the product of two evens between 1 and 64
< the product of
two (possibly different) evens between 1 and 64.

(k) Multiply all the even entries of the 16 squares to obtain

2:4-...64<(141)-(3+1)-...-(63+1)=2-4-...-64.

Solution 11. Let us assume that an 8 x 8 table admits a filling by the integer
from 1 to 64, using each integer once, such that each 2 x 2 square, considered
as a matrix, has determinant equal to 1 or —1.

Claim — Any 2 x 2 square contains at least two odd integers.

Proof of the claim. Since the difference of two integers can be odd only when
they are of different parity (i.e. one of them is odd, and the other is even), it
follows that for any 2 x 2 square, the product of its diagonal entries and the
product of its anti-diagonal entries are of different parity, and hence of these
two products is odd, and consequently, the diagonal entries are odd or the
anti-diagonal entries are odd. In particular, any 2 x 2 square contains at least
two odd integers. O

Let us divide the 8 x 8 table into 16 pairwise disjoint 2 x 2 squares (as in
Fig. 7).

Claim — Each of these 16 squares contains exactly two even integers,
lying along its diagonal or anti-diagonal.

Proof of the claim. By the previous Claim, each of these 16 squares contains
at least two odd integers, and they contain at least 16 x 2 = 32 odd integers.
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Since there are precisely 32 odd integers between 1 and 64, it follows that each
of these 16 squares contains exactly two odd integers along its diagonal or
anti-diagonal, and hence exactly two even integers along its anti-diagonal or
diagonal. O

Since the determinant of any 2 x 2 square is 1 or —1, it follows that for any
of the 16 squares as in Fig. 7, the product of its even entries is at most one
more than the product of its odd entries. Note that for any two odd positive
integers b, ¢, the inequality be +1 < (b+ 1)(¢+ 1) holds. Consequently, for any
of the 16 squares as in Fig. 7, the product of its even entries is less than the
product of the successors of its odd entries. This implies that the product of
the even entries of all the 16 squares is less than the product of the successors
of the odd entries of these boxes. Note that the even entries of these squares
are the even integers lying between 1 and 64, so are the successors of the odd
entries of these squares. It follows that

2:4-...-64<(1+1)-(3+1)-...-(63+1)=2-4-...-64.

This contradicts the assumption that an 8 x 8 table admits a filling by the
integer from 1 to 64, using each integer once, such that each 2 x 2 square,
considered as a matrix, has determinant equal to 1 or —1. Hence, no such
filling is possible. |

Example 1.16 (India RMO 2018b P4). Suppose 100 points in the plane are
coloured using two colours, red and white, such that each red point is the
centre of a circle passing through at least three white points. What is the least
possible number of white points?

Summary — It relies on the fact that one can find enough points on the
plane such that no three of them are collinear and no four of them are concyclic.

Walkthrough —

(a) There is an upper bound on the number of the red points in terms of
the number of the white points. This gives an upper bound on the total
number of points, which is 100, in terms of the number of the white
points.

(b) Use this bound to guess the least possible number of the white points,
which would turn out to be 10.

(c) Begin with 10 white points on the plane in general position, and then,
introduce enough red points to construct a configuration of 100 points
with the stated properties.

Solution 12. Let n denote the number of white points. Since each red point
is the centre of a circle passing through at least three white points, it follows

18 The content posted here and at this blog by Evan Chen are quite useful.
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that the number of red points is at most (g‘) This shows that

n
> 100.
n —+ <3> =

Note that n + n + (}) defines an increasing function on the nonnegative
integers. Observe that

9 10
= ]_ :1 .
9+(3> 93, 0+<3> 30

This implies that n > 10.

We claim that there is a configuration of 100 points on the plane such that it
admits a coloring using two colors, red and white, such that precisely 10 points
are colored white, and that each red point is the centre of a circle passing
through at least three white points. Indeed, consider 10 points on the plane
such that no three of them are collinear and no four of them are concyclic *.
Color these 10 points white. These white points have (130) = 120 subsets of
size 3. Consider only 90 such subsets of the white points, and for any such
subset of size 3, color the center of the circle passing through them red. Since
no three white points are collinear and no four white points are concyclic, it
follows that there are precisely 90 pairwise distinct red points. So, the red and
the white points together form a set of 100 points such that each red point is
the centre of a circle passing through at least three white points. |
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I'Why does such a collection exist? This could be intuitively clear, but can you write down
a precise proof? Does induction help?
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