Warm up ### **MOPSS** 11 May 2025 # Suggested readings - Evan Chen's advice On reading solutions, available at https://blog.evanchen.cc/2017/03/06/on-reading-solutions/. - Evan Chen's Advice for writing proofs/Remarks on English, available at https://web.evanchen.cc/handouts/english/english.pdf. - Notes on proofs by Evan Chen from OTIS Excerpts [Che25, Chapter 1]. - Tips for writing up solutions by Edward Barbeau, available at https://www.math.utoronto.ca/barbeau/writingup.pdf. - Evan Chen discusses why math olympiads are a valuable experience for high schoolers in the post on Lessons from math olympiads, available at https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/. ## List of problems and examples | 1.1 | Example (India RMO 2016g P1) | |------|-----------------------------------------------------------| | 1.2 | Example (India BMath 2006) | | 1.3 | Exercise | | 1.4 | Exercise | | 1.5 | Example (Tournament of Towns, Fall 2013, Senior, A Level, | | | P4) | | 1.6 | Example (India RMO 2003 P7) | | 1.7 | Example (India RMO 2013c P6) 6 | | 1.8 | Example (India RMO 2014d P6) | | 1.9 | Question | | 1.10 | Example (India RMO 2016c P4) | | 1.11 | Example (India RMO 2016e P6) | | 1.12 | Example (India RMO 2016g P2) | | 1.13 | Example (India RMO 2017b P1) | | 1.14 | Example (India RMO 2017b P3) | | 1.15 | Example (Moscow MO 2015 Grade 11 Day 1 P5) 14 | | 1.16 | Example (India RMO 2018b P4) | # §1 Warm up **Example 1.1** (India RMO 2016g P1). Suppose in a given collection of 2016 integers, the sum of any 1008 integers is positive. Show that sum of all 2016 integers is positive. ``` Walkthrough — Think about it! ``` **Example 1.2** (India BMath 2006). A domino is a 2 by 1 rectangle. For what integers m and n, can one cover an m by n rectangle with non-overlapping dominoes? #### Walkthrough — - (a) If an $m \times n$ rectangle admits a covering by non-overlapping dominos, then show that at least one of the integers m, n has to be even. - (b) If at least one of m, n is even, then prove that an $m \times n$ rectangle admits a covering by non-overlapping dominos. **Solution 1.** In the following, an $m \times n$ rectangle is to be thought as an $m \times n$ rectangular grid. To be able to cover an $m \times n$ rectangle by non-overlapping dominoes, it is necessary for the product mn to be even, and hence, at least one of m, n is Figure 1: India BMath 2006 (a tiling of a 5×8 rectangle with non-overlapping dominoes), Example 1.2 even. Indeed, if an $m \times n$ rectangle admits a covering using k non-overlapping dominoes, then those dominoes together cover 2k unit squares, and this yields that 2k = mn. Moreover, when at least one of m, n is even, an $m \times n$ rectangle can be covered by non-overlapping dominoes by covering each row by m/2 (resp. each column by n/2) non-overlapping dominos if m (resp. n) is even. This shows that an $m \times n$ rectangle can be covered by non-overlapping dominoes if and only if at least one of m, n is even. **Remark.** The above conclusion shows that an $m \times n$ rectangle admits a covering by non-overlapping dominoes if and only if it admits a covering by non-overlapping dominoes in the *most obvious manner*, i.e. a covering by non-overlapping dominoes such that all of them are either horizontal or vertical (cf. [Bru10, p. 6]). The following problem is a more general version of Example 1.2. **Exercise 1.3.** [Eng98, Problem 8, Chapter 2, p. 26] Show that an $m \times n$ rectangle admits a covering by non-overlapping $k \times 1$ rectangles if and only if k divides m or k divides n. **Exercise 1.4.** [Eng98] [Bru10, p. 4] Consider an $n \times n$ chessboard and remove the squares at the end of one diagonal. Determine whether the mutilated chessboard admits a covering by non-overlapping dominos. **Example 1.5** (Tournament of Towns, Fall 2013, Senior, A Level, P4). Integers 1, 2, ..., 100 are written on a circle, not necessarily in that order. Can it be that the absolute value of the difference between any two adjacent integers is at least 30 and at most 50? **Solution 2.** Let us assume that the integers 1, 2, ..., 100 can be arranged along the circumference of a circle in some order such that the absolute value of the difference between any two adjacent integers is at least 30 and at most 50. Since the difference of any two of the integers $1, 2, \ldots, 25, 76, 77, \ldots, 100$ is less than 30 or greater than 50, it follows that no two of these integers are adjacent. Consequently, the elements of the sets $$\{1, 2, \dots, 25, 76, 77, \dots, 100\}, \{26, 27, \dots, 50\}$$ are placed alternately along the circle. However, 26 is adjacent to 76 only, which is impossible. This shows that there is no arrangement of the integers $1, 2, \ldots, 100$ along the circumference of a circle satisfying the given condition. **Example 1.6** (India RMO 2003 P7). Consider the set $X = \{1, 2, 3, \dots, 9, 10\}$. Find two disjoint nonempty subsets A and B of X such that - (a) $A \cup B = X$, - (b) $\operatorname{prod}(A)$ is divisible by $\operatorname{prod}(B)$, where for any finite set of numbers C, $\operatorname{prod}(C)$ denotes the product of all numbers in C, - (c) the quotient prod(A)/prod(B) is as small as possible. Summary — It is equivalent to finding a subset B of $\{1, \ldots, 10\}$, other than $\emptyset, \{1, \ldots, 10\}$, such that $\operatorname{prod}(B)^2$ divides 10! and the quotient $10!/\operatorname{prod}(B)^2$ is minimized. To do so, - (a) write down the prime power factorization of 10!, - (b) throw in enough elements in B so that prod(B) is maximized, and $prod(B)^2$ divides 10!. #### Walkthrough — - (a) Observe that it is enough to find a nonempty proper subset B of $\{1, 2, ..., 10\}$ such that $prod(B)^2$ divides 10! and prod(B) is the maximum. - (b) Writing down the prime power factorization of 10!, deduce that B does not contain 7, it contains a multiple of 5, and also a multiple of 2 and a multiple of 3. - (c) Prove that B contains exactly one multiple of 5, and not more that two multiples of 3. - (d) Show that B is equal to one of the subsets $\{5,3,6,2^3\}$, $\{5,3,6,2^3,1\}$, $\{5,3,6,2,2^2\}$, $\{5,3,6,2,2^2,1\}$, $\{5,9,2,2^3\}$, $\{5,9,2,2^3,1\}$, $\{10,3,6,2^2\}$, $\{10,3,6,2^2,1\}$, $\{10,9,2^3\}$, $\{10,9,2^3,1\}$, $\{10,9,2^3\}$, $\{10,9,2^3,1\}$. - (e) Show that any of these three subsets also have the stated property. First, let's work on it. Let A, B be two nonempty disjoint subsets of X satisfying the required conditions (note that such subsets exist since X can be written as the union of two disjoint subsets in finitely many ways only). Due to the equality $$\frac{\operatorname{prod}(A)}{\operatorname{prod}(B)} = \frac{10!}{(\operatorname{prod}(B))^2},$$ it is equivalent to having a subset B of X such that $\operatorname{prod}(B)^2$ divides 10! and $\operatorname{prod}(B)$ is the maximum. Note that 10! is equal to the product $2^8 \cdot 3^4 \cdot 5^2 \cdot 7$. So $\operatorname{prod}(B)$ divides $2^4 \cdot 3^2 \cdot 5$, and hence, B does not contain 7. Moreover, B contains a multiple of 5, otherwise $(\operatorname{prod}(B \cup \{5\}))^2$ would divide 10! and $\operatorname{prod}(B \cup \{5\})$ would be strictly larger than $\operatorname{prod}(B)$, which contradicts the choice of B. Similarly, B also contains a multiple of 2 and a multiple of 3. Note that B contains exactly one multiple of 5 (since $5^3 \nmid 10!$). Since $(\operatorname{prod}(B))^2$ divides 10! and $\operatorname{prod}(B)$ is the maximum, B is equal to one of the following sets - $\{5,3,2,2^3\}$, $\{5,3,2,2^3,1\}$, $\{5,6,2,2^3\}$, $\{5,6,2,2^3,1\}$, $\{5,3,6,2^3\}$, $\{5,3,6,2^3,1\}$, $\{5,3,6,2,2^2\}$, $\{5,3,6,2,2^2,1\}$, $\{5,9,2,2^3\}$, $\{5,9,2,2^3,1\}$ if B contains 5, - $\{10,3,2^3\}$, $\{10,3,2^3,1\}$, $\{10,3,2,2^2\}$, $\{10,3,2,2^2,1\}$, $\{10,6,2^2\}$, $\{10,6,2^2,1\}$, $\{10,3,6,2^2\}$, $\{10,3,6,2^2,1\}$, $\{10,9,2^3\}$, $\{10,9,2^3,1\}$, $\{10,9,2,2^2\}$, $\{10,9,2,2^2,1\}$ if B contains 10. For any of the above sets, the product of its elements is equal to 240, 480, or 720. So B is equal to one of the sets $\{5,3,6,2^3\}$, $\{5,3,6,2^3,1\}$, $\{5,3,6,2,2^2\}$, $\{5,3,6,2,2^2,1\}$, $\{5,9,2,2^3\}$, $\{5,9,2,2^3,1\}$, $\{10,3,6,2^2\}$, $\{10,3,6,2^2,1\}$, $\{10,9,2^3\}$, $\{10,9,2^3,1\}$. Also note that if B denotes one of these subsets of $\{1, \ldots, 10\}$, then $\operatorname{prod}(B)^2$ divides 10! and $\operatorname{prod}(B)$ is the maximum. This proves that $\{5,3,6,2^3\}$, $\{5,3,6,2^3,1\}$, $\{5,3,6,2,2^2\}$, $\{5,3,6,2,2^2,1\}$, $\{5,9,2,2^3\}$, $\{5,9,2,2^3,1\}$, $\{10,3,6,2^2\}$, $\{10,3,6,2^2,1\}$, $\{10,9,2^3\}$, $\{10,9,2^3,1\}$, are precisely all the subsets of $\{1,\ldots,10\}$ having the required property. Thus we could take $A=\{1,2,3,4,5,6,7\}$, $B=\{8,9,10\}$ for instance. **Remark.** Note that the above discussion provides more than what has been required. After observing that $\operatorname{prod}(B)$ divides $2^4 \cdot 3^2 \cdot 5$, one may show that there is a subset B with $\operatorname{prod}(B)$ equal to $2^4 \cdot 3^2 \cdot 5$ (for instance, $B = \{8, 9, 10\}$), and then conclude. **Solution 3.** Let A, B be two nonempty disjoint subsets of X satisfying the required conditions (note that such subsets exist since X can be written as the union of two disjoint subsets in finitely many ways only). Due to the equality $$\frac{\operatorname{prod}(A)}{\operatorname{prod}(B)} = \frac{10!}{(\operatorname{prod}(B))^2},$$ it is equivalent to having a subset B of X such that $\operatorname{prod}(B)^2$ divides 10! and $\operatorname{prod}(B)$ is the maximum. Note that 10! is equal to the $\operatorname{product}\ 2^8\cdot 3^4\cdot 5^2\cdot 7$. So $\operatorname{prod}(B)$ divides $2^4\cdot 3^2\cdot 5$. If $B=\{8,9,10\}$, then $\operatorname{prod}(B)$ is equal to $2^4\cdot 3^2\cdot 5$. Hence, $A=\{1,\ldots,7\}, B=\{8,9,10\}$ are two disjoint nonempty subsets of $X=\{1,\ldots,10\}$ satisfying the required conditions. Remark. Don't be surprised that it took a bit long to arrive at the above solution. It is often the case. Further, it is a standard practice to write down a complete solution as the final one, without any reference to the prior attempts (possibly several). Those attempts have their important role in providing insights, which may lead to a solution. Here, the details of those attempts have not been hidden from you, in order to take you along the journey. However, I would like to highlight that a *solution* to a problem has to be complete, and at the same time, has to be free from the prior thoughts that have no direct role to play in that solution, though they might have played a significant role in gaining insight. **Example 1.7** (India RMO 2013c P6). Let $n \geq 4$ be a natural number. Let $A_1A_2\cdots A_n$ be a regular polygon and $X=\{1,2,3,\ldots,n\}$. A subset $\{i_1,i_2,\ldots,i_k\}$ of X, with $k\geq 3$ and $i_1< i_2<\cdots < i_k$, is called a *good subset* if the angles of the polygon $A_{i_1}A_{i_2}\cdots A_{i_k}$, when arranged in the increasing order, are in an arithmetic progression. If n is a prime, show that a proper good subset of X contains exactly four elements. #### Walkthrough — - (a) Note that the angle subtended by any side of a regular n-gon at the center of its circumcircle is equal to $2\pi/n$. - (b) Show that the angle, subtended by any arc corresponding to two consecutive vertices of a polygon of the form $A_{i_1}A_{i_2}...A_{i_k}$, is a multiple of $2\pi/n$. - (c) Conclude that the angles of a polygon of the form $A_{i_1}A_{i_2}\dots A_{i_k}$ is a multiple of π/n . **Solution 4.** Note that the angle subtended by any side of the regular n-gon $A_1A_2\cdots A_n$ at the center of its circumcircle is equal to $2\pi/n$. Let $k\geq 3$ be a positive integer, and $\{i_1,i_2,\ldots,i_k\}$ be a proper good subset of $\{1,2,\ldots,n\}$, with $i_1 < i_2 < \cdots < i_k$. This shows that the angle, subtended by any arc corresponding to two consecutive vertices of the polygon $A_{i_1}A_{i_2}...A_{i_k}$, is a multiple of $2\pi/n$. Since the angle subtended by an arc of a circle at its center, is twice of the angle subtended by it at any point on the circumference, it follows that the angles of the polygon are multiples of π/n . Since $\{i_1, i_2, ..., i_k\}$ is a good subset, and the angles of a k-gon add up to $(k-2)\pi$, it follows that there are k integers Figure 2: India RMO 2014, Example 1.8 $n_1 \leq n_2 \leq \cdots \leq n_k$, which are in arithmetic progression, and their sum is equal to (k-2)n. This shows that $k(n_1+n_k)/2=(k-2)n$, which implies that k divides 2(k-2)n. Since $\{i_1,i_2,\ldots,i_k\}$ is a proper subset of $\{1,2,\ldots,n\}$, and n is a prime, it follows that the integers k,n are relatively prime. This gives that k divides 2(k-2), and consequently, k divides 4. Using the bound $k \geq 3$, we obtain k=4. **Example 1.8** (India RMO 2014d P6). In Fig. 2, can the numbers $1, 2, 3, 4, \ldots, 18$ be placed, one on each line segment, such that the sum of the numbers on the three line segments meeting at each point is divisible by 3? Summary — Since there are 18 line segments, it follows that if the integers 0, 1, 2 can be put on the segments, using each of them exactly six times, such that 3 divides the sum of the integers on the segments meeting at any given point, then it would be possible to place $1, 2, \ldots, 18$ satisfying the required condition. **Solution 5.** Note that if the integers 0, 1, 2 can be put on the segments, using each of them exactly six times, such that 3 divides the sum of the integers on the segments meeting at any given point, then it would be possible to place $1, 2, \ldots, 18$ satisfying the required condition (by replacing the 0's (resp. 1's, 2's) by the six integers among $1, 2, \ldots, 18$ which are congruent to 0 (resp. 1, 2) modulo 3, and such a replacement can be carried out since there are six elements among $1, 2, \ldots, 18$ congruent to $i \mod 3$ for any $i \in \{0, 1, 2\}$). We now show that such an arrangement of 0, 1, 2 exists. First, put 0's on all the vertical segments as in Fig. 3b, and then put 1's on the 'diagonal' segments as shown in Fig. 3c. This forces to put 2's on the 'diagonal' segments as shown in Figure 3d, which in turn, forces to write 1's and 2's on the horizontal segments as in Figure 3e. Note that the sum of the numbers (as in Figure 3e) on the three line segments meeting at each point is divisible by 3. So this gives an arrangement of 0, 1, 2 satisfying the desired properties, then $1, 2, \ldots, 18$ can be arranged satisfying the given conditions (as described above). Example 1.8 leads to the following question. Figure 3: India RMO 2014, Example 1.8 Question 1.9. Under which conditions, does a k-regular graph admit an edge coloring by the k-th roots of unity such that the sum of the colors incident at any vertex equals to zero? **Example 1.10** (India RMO 2016c P4). There are 100 countries participating in an olympiad. Suppose n is a positive integer such that each of the 100 countries is willing to communicate in exactly n languages. If each set of 20 countries can communicate in at least one common language, and no language is common to all 100 countries, what is the minimum possible value of n? #### Walkthrough — - (a) Choose a country C, and let L_1 denote a language in which C communicates. Note that L_1 is not common to some country C_1 . Hence, some language L_2 is common to the countries C, C_1 . - (b) The language L_2 is not common to some country C_2 . Hence, some language L_3 is common to the countries C, C_1, C_2 . - (c) Continuing this line of argument, show that there are pairwise distinct languages L_1, \ldots, L_{20} and C communicates in them. - (d) Conclude that $n \geq 20$. - (e) Show that 20 is the minimum possible value of n. #### Solution 6. **Claim** — The inequality $n \ge 20$ holds. Proof of the Claim. Let C denote a country. Let L_1 denote a language in which C communicates. By hypothesis, the language L_1 is not common to some country C_1 . Some language L_2 is common to the countries C, C_1 . By hypothesis, L_2 is not common to some country C_2 . Note that some language L_3 is common to the countries C, C_1, C_2 . Suppose for some integer $2 \leq i$, there are countries C_1, C_2, \ldots, C_i and there are languages $L_1, L_2, \ldots, L_{i+1}$ such that for any $1 \leq k \leq i$, the language L_{k+1} is common to the k+1 countries C, C_1, \ldots, C_k , and L_k is not common to C_k . By the hypothesis, L_{i+1} is not common to some country C_{i+1} . If $i+2 \leq 20$, then the i+2 countries C, C_1, \ldots, C_{i+1} have some common language L_{i+2} . By induction, there are countries C_1, C_2, \ldots, C_{19} , and there are languages L_1, \ldots, L_{20} such that for any $1 \leq k \leq 19$, the language L_k is not common to the k+1 countries C, C_1, \ldots, C_k , and that the language L_k is not common to the country C_k . For any $1 \leq k \leq 19$, the language L_{k+1} is common to the k+1 countries C, C_1, \ldots, C_k , and for any $1 \leq i \leq k$, the language L_i is not common to C_i , and hence, L_{k+1} is not equal to any of L_1, \ldots, L_k . This proves that the languages L_1, \ldots, L_{20} are pairwise distinct, and C communicates in them. The Claim follows. #### **Claim** — One possible value of n is 20. Proof of the Claim. Let $\mathcal{L}_1, \ldots, \mathcal{L}_{21}$ be pairwise languages. Let $\mathcal{C}_1, \ldots, \mathcal{C}_{100}$ be a choice of 100 countries. Suppose for $1 \leq i \leq 21$, the country \mathcal{C}_i communicates in all the languages $\mathcal{L}_1, \ldots, \mathcal{L}_{21}$ other than \mathcal{L}_i . Assume further that for any $22 \leq i \leq 100$, the country \mathcal{C}_i communicates in $\mathcal{L}_1, \ldots, \mathcal{L}_{20}$. Note that each country communicates in exactly 20 languages, and that no language is common to all the 100 countries. Moreover, each set of 20 countries among $\mathcal{C}_1, \ldots, \mathcal{C}_{21}$ share exactly one common language. Note that at most 19 countries from $\mathscr{C}_1, \ldots, \mathscr{C}_{21}$, share at least two languages among $\mathscr{L}_1, \ldots, \mathscr{L}_{21}$ in common, and hence share at least one language among $\mathscr{L}_1, \ldots, \mathscr{L}_{20}$ in common. Hence, each set of 20 countries among $\mathscr{C}_1, \ldots, \mathscr{C}_{100}$, having at most 19 countries from $\mathscr{C}_1, \ldots, \mathscr{C}_{20}$, share at least one language in common. This proves the Claim. Combining the above Claims, it follows that the minimum possible value of n is 20. **Example 1.11** (India RMO 2016e P6). A deck of 52 cards is given. There are four suites each having cards numbered 1, 2, ..., 13. The audience chooses some five cards with distinct numbers written on them. The assistant of the magician comes by, looks at the five cards and turns exactly one of them face down and arranges all five cards in some order. Then the magician enters and with an agreement made beforehand with the assistant, he has to determine the face down card (both suite and number). Explain how the trick can be completed. **Solution 7.** The following could be an agreement between the magician and the assistant, so that the magician can determine the face down card. - 1. Given a collection of five cards, having distinct numbers written on them, the assistant puts them in a row, as follows. - 2. Note that among the five cards, at least two are of the same suite. - 3. The assistant chooses two cards of the same color, and puts them next to each other, and then keeps the remaining three cards to their right. - 4. Note that if the integers $1, 2, \ldots, 13$ are written along the circumference of a circle Γ (in some order that is known to both the magician and the assistant, for instance, in the clockwise direction), then for any two distinct integers i, j lying between 1 and 13, one of them (call it Q) can be reached from the other one (call it P) by traversing from P along the circumference in the clockwise or in the anti-clockwise direction within at most 6 steps. - 5. Denote the chosen cards of the same color, by P and Q, so that Q can be reached from P, by traversing along the circumference, in the clockwise or in the anti-clockwise direction, within at most 6 steps. The assistant puts the cards P and Q in the order Q, P (resp. P, Q) if Q can be reached from P, by traversing along the circumference, in the anti-clockwise (resp. clockwise) direction, in $s \leq 6$ steps. The assistant turns the card Q face down. - 6. The assistant keeps the remaining three cards to the right of these two cards, in an order, which helps to determine the integer s as follows. - 7. Denote the integers written on the remaining three cards by a,b,c with a < b < c. The 3! = 6 permutations of 1,2,3 can be identified with the integers 1,2,3,4,5,6 in some order (known to both the magician and the assistant), and the 3! = 6 permutations of the three remaining cards can be identified with the permutations of 1,2,3 in an obvious way that is known to both the magician and the assistant (for instance, sending a permutation σ of $\{a,b,c\}$ to the permutation $f \circ \sigma \circ f^{-1}$ of $\{1,2,3\}$ where $f:\{a,b,c\} \to \{1,2,3\}$ denotes the map sending a,b,c to 1,2,3 respectively.). Under the composition of these two identifications, a positive integer ≤ 6 corresponds to a unique permutation of the three remaining cards. The assistant keeps the three remaining cards to the right of the first two cards, as per the permutation which corresponds to the integer s. Since the suite of the face down card is same as the face up card which is the first in the row of the five cards, the magician determines the suite of the face down card. The magician knows that the number written on the face down card can be reached, by traversing along Γ from the number written on the first face up card, in the clockwise (resp. anti-clockwise) direction if the face down card in the second (resp. first) one in the row of five. **Example 1.12** (India RMO 2016g P2). On a stormy night ten guests came to dinner party and left their shoes outside the room in order to keep the carpet clean. After the dinner there was a blackout, and the guests leaving one by one, put on at random, any pair of shoes big enough for their feet. (Each pair of shoes stays together). Any guest who could not find a pair big enough spent the night there. What is the largest number of guests who might have had to spend the night there? Walkthrough — What happens if a person having shoe of the smallest size wears a shoe of the largest size, and next, if a person having shoe of the second smallest size wears a shoe of the second largest size, and it continues? **Solution 8.** If a person having shoe of the k-th smallest size wears a shoe of the k-th largest size for k = 1, 2, 3, 4, 5, and if the sizes of the shoes of the ten persons are distinct, then none of the remaining five persons will not find a big enough shoe. We claim that if k persons have left for some $1 \le k \le 4$, then one of the remaining 10 - k persons will find a big enough shoe. Let us denote the sizes of the shoes of the guests by s_1, s_2, \ldots, s_{10} . If the claim is false, then for some $1 \le k \le 4$, there are 10 - k guests whose shoes have sizes larger than some 10 - k numbers among s_1, \ldots, s_{10} . So, some 10 - k numbers among s_1, \ldots, s_{10} are larger than some 10 - k numbers among s_1, \ldots, s_{10} . It follows that $$10 - k + 10 - k \le 10$$, which shows that $k \geq 5$. This contradicts the bound $k \leq 4$. This proves the claim. Consequently, at most five guests may need to spend the night there. We conclude that the largest number of the guests who might need to spend the night there is five. **Example 1.13** (India RMO 2017b P1). Consider a chessboard of size 8 units \times 8 units (i.e. each small square on the board has a side length of 1 unit). Let S be the set of all the 81 vertices of all the squares on the board. What is the number of line segments whose vertices are in S, and whose length is a positive integer? (The segments need not be parallel to the sides of the board.) Summary — A segment having vertices in S and length a positive integer, is horizontal or vertical, or the hypotenuse of a right-angled triangle whose smaller sides are parallel to the sides of the board. To count such right-angled triangles, note that they cannot have a too large hypotenuse. #### Walkthrough — - (a) Determine the number of the horizontal segments with vertices in S and whose lengths are positive integers. - (b) By symmetry, the number of such vertical segments is equal to the above. - (c) To determine the slanted ones, note that such a slanted segment is the hypotenuse of a right-angled triangle whose smaller sides are parallel to the sides of the board, and have integer lengths. Note that the diagonal of an 8×8 chessboard has length $8\sqrt{2} < 12$. Thus, the only right-angled triangles, that can be fit within the board having sides parallel to the sides of the board and of integer length, have side lengths equal to (3, 4, 5), (4, 3, 5), (6, 8, 10), (8, 6, 10). - (d) Does a symmetry argument help? For instance, flipping around a diagonal, and then flipping around an axis (i.e. a line parallel to one of the sides of the board and dividing the board in two equal halves). **Solution 9.** Note that within each horizontal line, there are $8 - \ell + 1$ horizontal segments of length ℓ for any $1 \le \ell \le 8$. This shows that the number of the Figure 4: India RMO 2017 — Several configurations of triangles with side lengths (3, 4, 5), Example 1.13 horizontal segments with vertices in S and whose lengths are positive integers is equal to $$8 \times (1 + 2 + \dots + 8)) = \frac{1}{2}8^2 \cdot 9.$$ By symmetry, the number of such vertical segments is also equal to $\frac{1}{2}8^2 \cdot 9$. Hence, there are $8^2 \cdot 9$ segments parallel to the sides of the board, which have vertices in S and whose lengths are positive integers. Note that the diagonal of an 8×8 chessboard has length $8\sqrt{2} < 12$. Thus, the only right-angled triangles, that can be fit within the board having sides parallel to the sides of the board and of integer length, have the side lengths equal to (3,4,5), (4,3,5), (6,8,10), (8,6,10). The number of such right-angled triangles, having the side lengths equal to (3,4,5), is equal to $$4 \times (8 - 3 + 1) \times (8 - 4 + 1).$$ The number of such right-angled triangles, having the side lengths equal to the remaining triples, can be expressed in a similar way. This shows that the total count of such triangles is $$2 \times 4 \times ((8-3+1) \times (8-4+1) + (8-6+1) \times (8-8+1)) = 360.$$ Hence, the number of the line segments with the stated property is $$8^2 \cdot 9 + \frac{1}{2} \cdot 360 = 756.$$ **Remark.** Note that the above argument considers the line segments whose endpoints are distinct. There are 81 line segments having equal end-points and end-points lying in S. **Example 1.14** (India RMO 2017b P3). Let P(x) and Q(x) be polynomials of degree 6 and degree 3 respectively, such that $$P(x) > Q(x)^{2} + Q(x) + x^{2} - 6$$ for all $x \in \mathbb{R}$. If all the roots of P(x) are real numbers, then prove that there exist two roots of P(x), say α, β such that $|\alpha - \beta| < 1$. **Solution 10.** For any real number x, note that $$P(x) > \left(Q(x) + \frac{1}{2}\right)^2 + x^2 - \frac{25}{4} \ge x^2 - \frac{25}{4}$$ holds. This implies that any root α of P(x) satisfies $\alpha^2 < \frac{25}{4}$. Since P(x) is a polynomial of degree 6 and all its roots are real, it follows that its six roots lie in the interval (-5/2, 5/2), which is the union of the five intervals $$(-5/2,-3/2),[-3/2,-1/2),[-1/2,1/2),[1/2,3/2),[3/2,5/2).$$ Hence, there are two roots α, β of P(x) such that $|\alpha - \beta| < 1$. **Example 1.15** (Moscow MO 2015 Grade 11 Day 1 P5). Prove that it is impossible to put the integers from 1 to 64 (using each integer once) into an 8×8 table so that for any 2×2 square $\boxed{a \mid b \atop c \mid d}$, the difference ad - bc is equal to 1 or -1. Figure 5: $ad - bc = \pm 1$, $ps - qr = \pm 1$, Example 1.15 Figure 6: $ad - bc = \pm 1$, $ps - qr = \pm 1$, Example 1.15 #### Remark. • Given a 2×2 square $c \mid d$, the difference ad - bc is equal to the product of the diagonal terms - the product of the anti-diagonal terms. Let us call this difference the determinant of the 2×2 square. - For instance, - $-\begin{pmatrix}1&2\\3&4\end{pmatrix}$ has determinant equal to -2, - $-\begin{pmatrix} 8 & 9 \\ 7 & 12 \end{pmatrix}$ has determinant equal to 96 63 = 33, $-\begin{pmatrix} 13 & 14 \\ 5 & 7 \end{pmatrix}$ has determinant equal to 91 70 = 21. - Did you notice that if the determinant is odd, then the diagonal entries are odd or the anti-diagonal entries are odd? - We need to show that there is no filling of an 8×8 table using the integers from 1 to 64, using each integer once, such that any 2×2 square (such squares have been marked in Fig. 5, Fig. 6, note that there 9 + 16 = 25such 2×2 squares.) has a determinant equal to 1 or -1. Equivalently^a, no matter how one may fill an 8×8 table using using the integers from 1 to 64, using each integer once, some 2×2 square has to have a determinant other than 1, -1. Summary — If such a filling exists, then divide the 8×8 table into 16 pairwise disjoint 2×2 squares (as in Fig. 7). Due to parity constraints, each square contains precisely two evens along its diagonal or anti-diagonal, and their product is at most one more than the product of the odd entries. Consequently, for any of these 16 squares, the product of its even entries is less than the product of the successors of its odd entries. Multiplying across the squares gives a contradiction. #### Walkthrough — (a) Assume that such a filling exists. Figure 7: Moscow MO 2015 Grade 11 Day 1 P5, Example 1.15 (b) Recall that the determinant of a 2×2 square $c \mid d$ the product of the diagonal terms — the product of the anti-diagonal terms. - (c) Note that $\boxed{\text{even} \text{even} \neq \pm 1, \text{odd} \text{odd} \neq \pm 1}$, and hence any square contains two odd numbers along the diagonal $\boxed{}$ or on the anti-diagonal - (d) Divide the 8×8 table into 16 pairwise disjoint 2×2 squares. - (e) Each of these 16 squares contains at least two odd integers, and hence, they together contain at least 32 odd integers. - (f) Conclude that each of these 16 squares contains precisely two odd integers, and precisely two even integers. ^aIs the equivalence clear? Try to think about it! (g) Consider a square among them. It is of the form $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with a, d both odd, and b, c both even, or of the form - (h) The product of its even entries is at most one more than the product of its odd entries. - (i) Note that for any two odd positive integers b, c, the inequality bc + 1 < (b+1)(c+1) holds. - (j) This shows that the product of two evens between 1 and 64 < the product of two (possibly different) evens between 1 and 64. (k) Multiply all the even entries of the 16 squares to obtain $$2 \cdot 4 \cdot \ldots \cdot 64 < (1+1) \cdot (3+1) \cdot \ldots \cdot (63+1) = 2 \cdot 4 \cdot \ldots \cdot 64.$$ **Solution 11.** Let us assume that an 8×8 table admits a filling by the integer from 1 to 64, using each integer once, such that each 2×2 square, considered as a matrix, has determinant equal to 1 or -1. Claim — Any 2×2 square contains at least two odd integers. Proof of the claim. Since the difference of two integers can be odd only when they are of different parity (i.e. one of them is odd, and the other is even), it follows that for any 2×2 square, the product of its diagonal entries and the product of its anti-diagonal entries are of different parity, and hence of these two products is odd, and consequently, the diagonal entries are odd or the anti-diagonal entries are odd. In particular, any 2×2 square contains at least two odd integers. Let us divide the 8×8 table into 16 pairwise disjoint 2×2 squares (as in Fig. 7). **Claim** — Each of these 16 squares contains exactly two even integers, lying along its diagonal or anti-diagonal. *Proof of the claim.* By the previous Claim, each of these 16 squares contains at least two odd integers, and they contain at least $16 \times 2 = 32$ odd integers. Since there are precisely 32 odd integers between 1 and 64, it follows that each of these 16 squares contains exactly two odd integers along its diagonal or anti-diagonal, and hence exactly two even integers along its anti-diagonal or diagonal. Since the determinant of any 2×2 square is 1 or -1, it follows that for any of the 16 squares as in Fig. 7, the product of its even entries is at most one more than the product of its odd entries. Note that for any two odd positive integers b, c, the inequality bc + 1 < (b+1)(c+1) holds. Consequently, for any of the 16 squares as in Fig. 7, the product of its even entries is less than the product of the successors of its odd entries. This implies that the product of the even entries of all the 16 squares is less than the product of the successors of the odd entries of these boxes. Note that the even entries of these squares are the even integers lying between 1 and 64, so are the successors of the odd entries of these squares. It follows that $$2 \cdot 4 \cdot \ldots \cdot 64 < (1+1) \cdot (3+1) \cdot \ldots \cdot (63+1) = 2 \cdot 4 \cdot \ldots \cdot 64.$$ This contradicts the assumption that an 8×8 table admits a filling by the integer from 1 to 64, using each integer once, such that each 2×2 square, considered as a matrix, has determinant equal to 1 or -1. Hence, no such filling is possible. **Example 1.16** (India RMO 2018b P4). Suppose 100 points in the plane are coloured using two colours, red and white, such that each red point is the centre of a circle passing through at least three white points. What is the least possible number of white points? Summary — It relies on the fact that one can find enough points on the plane such that no three of them are collinear and no four of them are concyclic. #### Walkthrough — - (a) There is an upper bound on the number of the red points in terms of the number of the white points. This gives an upper bound on the total number of points, which is 100, in terms of the number of the white points. - (b) Use this bound to guess the least possible number of the white points, which would turn out to be 10. - (c) Begin with 10 white points on the plane in *general position*, and then, introduce enough red points to construct a configuration of 100 points with the stated properties. **Solution 12.** Let n denote the number of white points. Since each red point is the centre of a circle passing through at least three white points, it follows that the number of red points is at most $\binom{n}{3}$. This shows that $$n + \binom{n}{3} \ge 100.$$ Note that $n \mapsto n + \binom{n}{3}$ defines an increasing function on the nonnegative integers. Observe that $$9 + {9 \choose 3} = 93, \quad 10 + {10 \choose 3} = 130.$$ This implies that $n \geq 10$. We claim that there is a configuration of 100 points on the plane such that it admits a coloring using two colors, red and white, such that precisely 10 points are colored white, and that each red point is the centre of a circle passing through at least three white points. Indeed, consider 10 points on the plane such that no three of them are collinear and no four of them are concyclic ¹. Color these 10 points white. These white points have $\binom{10}{3} = 120$ subsets of size 3. Consider only 90 such subsets of the white points, and for any such subset of size 3, color the center of the circle passing through them red. Since no three white points are collinear and no four white points are concyclic, it follows that there are precisely 90 pairwise distinct red points. So, the red and the white points together form a set of 100 points such that each red point is the centre of a circle passing through at least three white points. ### References - [Bru10] RICHARD A. BRUALDI. *Introductory combinatorics*. Fifth. Pearson Prentice Hall, Upper Saddle River, NJ, 2010, pp. xii+605. ISBN: 978-0-13-602040-0; 0-13-602040-2 (cited p. 3) - [Che25] EVAN CHEN. The OTIS Excerpts. Available at https://web.evanchen.cc/excerpts.html. 2025, pp. vi+289 (cited p. 1) - [Eng98] Arthur Engel. Problem-solving strategies. Problem Books in Mathematics. Springer-Verlag, New York, 1998, pp. x+403. ISBN: 0-387-98219-1 (cited p. 3) ¹Why does such a collection exist? This could be intuitively clear, but can you write down a precise proof? Does induction help?