
Pigeonhole principle

MOPSS

7 May 2025

MOPSS

Mathematics Olympiad
Problem Solving Sessions

Department of Mathematics

IISER Bhopal

https://jpsaha.github.io/MOTP/MOPSS/

Suggested readings

• Evan Chen’s advice On reading solutions, available at https://blog.

evanchen.cc/2017/03/06/on-reading-solutions/.

• Evan Chen’s Advice for writing proofs/Remarks on English, available at
https://web.evanchen.cc/handouts/english/english.pdf.

• Notes on proofs by Evan Chen from OTIS Excerpts [Che25, Chapter 1].

• Tips for writing up solutions by Edward Barbeau, available at https:
//www.math.utoronto.ca/barbeau/writingup.pdf.

• Evan Chen discusses why math olympiads are a valuable experience for
high schoolers in the post on Lessons from math olympiads, available at
https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/.

https://web.evanchen.cc/
https://blog.evanchen.cc/2017/03/06/on-reading-solutions/
https://blog.evanchen.cc/2017/03/06/on-reading-solutions/
https://web.evanchen.cc/
https://web.evanchen.cc/handouts/english/english.pdf
https://web.evanchen.cc/
https://web.evanchen.cc/excerpts.html
https://www.math.utoronto.ca/barbeau/home.html
https://www.math.utoronto.ca/barbeau/writingup.pdf
https://www.math.utoronto.ca/barbeau/writingup.pdf
https://www.youtube.com/c/vEnhance
https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/


List of problems and examples

1.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Example (India RMO 1990 P1) . . . . . . . . . . . . . . . . 2
1.3 Example (India RMO 1996 P7) . . . . . . . . . . . . . . . . 3
1.4 Example (Putnam 2002 A2) . . . . . . . . . . . . . . . . . . 3
1.5 Example (India BMath 2006) . . . . . . . . . . . . . . . . . 3
1.6 Example (India RMO 2011a P2) . . . . . . . . . . . . . . . . 4
1.7 Example (India RMO 2013d P6) . . . . . . . . . . . . . . . . 6
1.8 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.9 Example (India RMO 2014a P4) . . . . . . . . . . . . . . . . 7
1.10 Example (India INMO 2016 P4) . . . . . . . . . . . . . . . . 8
1.11 Example (India RMO 2018a P4) . . . . . . . . . . . . . . . . 8
1.12 Example (India RMO 2023b P6) . . . . . . . . . . . . . . . . 9
1.13 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.14 Example (India RMO 2024a P6) . . . . . . . . . . . . . . . . 11
1.15 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.16 Example (India RMO 2019b P4) . . . . . . . . . . . . . . . . 12

§1 Pigeonhole principle

See [Sob13, Chapter 2], [Mat24, Chapter 6].

Example 1.1. Let X = {a1, a2, . . . , a5} where a1, a2, . . . , a5 are integers which
are perfect squares. Show that there exists a subset Y = {b1, b2, b3} of X such
that b1 + b2 + b3 is divisible by 3.

Solution 1. Since perfect squares are congruent to 0 or 1 modulo 3, at least
three elements b1, b2, b3 of X are congruent to either 0 modulo 3, or 1 modulo
3. So their sum is divisible by 3. ■

Example 1.2 (India RMO 1990 P1). Two boxes contain between them 65
balls of several different sizes. Each ball is white, black, red or yellow. If you
take any 5 balls of the same colour at least two of them will always be of the
same size (radius). Prove that there are at least 3 balls which lie in the same
box have the same colour and have the same size (radius).

Walkthrough —

(a) At least how many balls are there in the box with more balls?

(b) At least how many balls are there in a large colour class in this box?

(c) What about the sizes of the balls of this colour class?
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Solution 2. By the pigeonhole principle, one box contains at least 33 balls.
Applying the pigeonhole principle once again, it follows that at least 9 balls in
this box are of the same colour. Since among five balls of the same colour, at
least two of them are of the same size we conclude that these 9 balls of the
same colour are of at most four different sizes. By the pigeonhole principle, at
least three of these 9 balls are of the same size. ■

Example 1.3 (India RMO 1996 P7). If A is a fifty-element subset of the set
{1, 2, 3, . . . , 100} such that no two numbers from A add up to 100, show that
A contains a square.

Walkthrough — Decompose {1, 2, . . . , 100} as the union of the subsets
{1, 99}, {2, 98}, . . . , {49, 51}, {50}, {100}. Does one of these subsets contain
two perfect squares?

Solution 3. Note that the set A is formed by choosing at most one element
from each of the following sets {1, 99}, {2, 98}, . . . , {49, 51}, {50}, {100}. If 100
lies in A, then we are done. Otherwise, A is formed by choosing at most one
element from the first 50 sets. Since A has 50 elements, one element of each
of these 50 sets lies in A. In particular, one of 36, 64 lies in A, and hence A
contains a perfect square. ■

Example 1.4 (Putnam 2002 A2). Given any five points on a sphere, show
that some four of them must lie on a closed hemisphere.

Walkthrough —

(a) Draw a great circle passing through at least two of the five points.

(b) At least one closed hemisphere contains at least two of the remaining
three points.

(c) Conclude!

Solution 4. Draw a great circle passing through at least two of the five points.
Then at least one closed hemisphere contains at least two of the remaining
three points. This proves the result. See [AN10, Example 3.2]. ■

Example 1.5 (India BMath 2006). Show that the maximum number of
non-attacking bishops that can be put in an n× n chessboard is 2n− 2.

Walkthrough — Does considering a diagonal and the lines parallel to it help?
See Fig. 2.

Some style files, prepared by Evan Chen, have been adapted here. 3
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(a) (b)

(c) (d)

Figure 1: USA Putnam 2002 A2, Example 1.4

Solution 5. The maximum number of non-attacking bishops that can be put
in an n×n chessboard cannot exceed the number of diagonals (see Fig. 2) since
each square of the chessboard passes through at least one diagonal and each
diagonal can contain at most one bishop. Moreover, the maximum number
of non-attacking bishops is one less than the number of diagonals. Otherwise,
each diagonal has to accommodate at least one bishop and then the bishops at
the top-right corner and at the bottom-left corner would be attacking. If we
put bishops at all the squares along the left column and the right column except
the top-right and the bottom right squares (as in Fig. 3a), then these bishops
would be non-attacking. Hence the maximum number of non-attacking bishops
that can be put in an n× n chessboard is equal to (2n− 1)− 1 = 2n− 2. ■

Example 1.6 (India RMO 2011a P2). Let (a1, a2, a3, . . . , a2011) be a permu-
tation of the numbers 1, 2, 3, . . . , 2011. Show that there exist two numbers j, k
such that 1 ≤ j < k ≤ 2011 and |aj − j| = |ak − k|.

Solution 6. Since a1, a2, . . . , a2011 is a permutation of 1, 2, . . . , 2011, the sum

4 The content posted here and at this blog by Evan Chen are quite useful.
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Figure 2: India BMath 2006
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Figure 3: India BMath 2006

∑2011
j=1 (aj − j) is equal to zero, which gives∑

1≤j≤2011
aj−j>0

(aj − j) = −
∑

1≤j≤2011
aj−j<0

(aj − j). (1)

For any 1 ≤ j ≤ 2011, note that −2010 ≤ aj − j ≤ 2010, that is, 0 ≤ |aj − j| ≤
2010 holds. If |aj − j|, |ak − k| are equal for no j, k with 1 ≤ j < k ≤ 2011,
then |a1 − 1|, |a2 − 2|, . . . , |a2011 − 2011| are equal to 0, 1, 2, . . . , 2010 in some
order, and hence

|a1 − 1|+ |a2 − 2|+ · · ·+ |a2011 − 2011| = 1 + 2 + · · ·+ 2010 = 1005 · 2011,

which is odd and thus contradicts Eq. (1). So there exist two numbers j, k such
that 1 ≤ j < k ≤ 2011 and |aj − j| = |ak − k|. ■

Some style files, prepared by Evan Chen, have been adapted here. 5

https://github.com/vEnhance/dotfiles/blob/main/texmf/tex/latex/evan/evan.sty
https://web.evanchen.cc/otis.html


7 May 2025 https://jpsaha.github.io/MOTP/

A1

A2

A3

A4

A5

A6

A7

A8

A9A10
A11

A12

A13

A14

A15

A16

A17

A18

A19
A20

Figure 4: India RMO 2013, Example 1.7

Example 1.7 (India RMO 2013d P6). Suppose that the vertices of a regular
polygon of 20 sides are coloured with three colors red, blue and green, such that
there are exactly three red vertices. Prove that there are three vertices A,B,C
of the polygon having the same colour such that triangle ABC is isosceles.

Walkthrough — Decompose the set of vertices of the 20-gon using the
vertices of the pentagons as in Fig. 4.

Solution 7. Since there are exactly three red vertices and any of the remaining
17 vertices are blue or green, it follows that at least 9 of these 17 vertices are of
the same color, say blue. Note that the set of vertices of a regular 20-gon can be
written as the union of the four pairwise disjoint sets, each of them consisting
of the vertices of a regular pentagon. Since there are nine blue vertices, by the
pigeonhole principle, at least one of these four sets contains three blue points.
Since any three points on a pentagon form an isosceles triangle, the statement
follows. ■

Example 1.8. [AE11, Problem 3.10] Show that the numbers 1 to 81 cannot
be arranged in a 9 × 9 chessboard so that the product of the entries of the
i-th row is equal to the product of the entries of the i-th column for any i,
1 ≤ i ≤ 9.

6 The content posted here and at this blog by Evan Chen are quite useful.
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Figure 5: India RMO 2014, Example 1.9

Walkthrough — Show that the diagonal contains the primes larger than 81
2
.

How many primes are there between 81
2

and 81?

Solution 8. Note that 41 occurs in certain row, say at the i-th row. So
41 divides the product of the entries of the i-th column. Since no number
between 1 and 81 is a multiple of 41 except itself, 41 is common to i-th row and
the i-th column, that is, it appears on the diagonal. Similarly, the diagonal
contains all the primes less than 81 which are larger than 40, that is, it contains
41, 43, 47, 53, 59, 61, 67, 71, 73, 79. However, 10 primes cannot be put along the
diagonal. This proves the result. ■

Example 1.9 (India RMO 2014a P4). Is it possible to write the numbers
17, 18, 19, . . . , 32 in a 4× 4 grid of unit squares with one number in each square
such that if the grid is divided into four 2× 2 subgrids of unit squares, then
the product of numbers in each of the subgrids divisible by 16?

Walkthrough —

(a) Show that the product of the entries in some subgrid is divisible by 32.

(b) Conclude that the product of all the 16 entries is divisible by 16× 16×
16× 32.

(c) Is the product of the integers 17, 18, . . . , 32 divisible by 16× 16× 16× 32?

Solution 9. The highest exponents of 2 dividing 32! and 16! are given by

v2(32!) = 16 + 8 + 4 + 2 + 1, v2(16!) = 8 + 4 + 2 + 1.

Some style files, prepared by Evan Chen, have been adapted here. 7
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Figure 6: India RMO 2018, Example 1.11

So the highest power of 2 dividing the product of 17, 18, 19, . . . , 32 is 216. Now
if it were possible to write these numbers in a 4×4 grid in the above-mentioned
manner, then the product of the numbers in each of the subgrids with blue
boundary (see Fig. 5) would be divisible by 24. Note that one such subgrid
would contain 32, which implies that the product of 17, 18, . . . , 32 is divisible
by 24 · 24 · 24 · 32 = 217, which is impossible. Hence it is not possible to write
the integers 17, 18, . . . , 32 in a 4× 4 grid satisfying the given conditions. ■

Example 1.10 (India INMO 2016 P4). Suppose 2016 points of the circumfer-
ence of a circle are coloured red and the remaining points are coloured blue.
Given any natural number n ≥ 3, prove that there is a regular n-sided polygon
all of whose vertices are blue.

Solution 10. Draw a regular n-gon circumscribed in the circle. If all its
vertices are blue, then we are done. Otherwise, we rotate the regular n-gon by
a sufficiently small angle so that all its vertices become red. This is possible
since there are only finitely many blue points on the circle. ■

Example 1.11 (India RMO 2018a P4). Let E denote the set of 25 points
(m,n) in the xy-plane, where m,n are natural numbers, 1 ≤ m ≤ 5, 1 ≤ n ≤ 5.
Suppose the points of E are arbitrarily coloured using two colours, red and
blue. Show that there always exist four points in the set E of the form
(a, b), (a+ k, b), (a+ k, b+ k), (a, b+ k) for some positive integer k such that at
least three of these four points have the same colour. (That is, there always
exist four points in the set E which form the vertices of a square and having
at least three points of the same colour.)

8 The content posted here and at this blog by Evan Chen are quite useful.

https://jpsaha.github.io/MOTP/
https://artofproblemsolving.com/community/c6h1186109p5763329
https://artofproblemsolving.com/community/c6h1719236p11113674
https://web.evanchen.cc/
https://blog.evanchen.cc/
https://www.youtube.com/c/vEnhance


1 Pigeonhole principle Typos may be reported to jpsaha@iiserb.ac.in.

Walkthrough —

(a) Assume that the conclusion is false, and that there are more red points
than the blue ones.

(b) Show that one of the four corners is red, and assume that the point E is
red.

(c) Considering the number of red points in each of the sets {A,A′}, {B,B′},
{C,C′}, {D,D′}, prove that the green square contains exactly 8 red
points, and each of the sets {A,A′}, {B,B′}, {C,C′}, {D,D′} contains
exactly one red point.

(d) Conclude that the four points lying on the dashed diagonal are blue.

(e) Use the points within the green square, lying outside the diagonal, to
form suitable pairs, and show that these points are all red.

Solution 11. On the contrary, let us assume that there is no axes-parallel
square having at least three vertices of the same color.

Note that at least 13 among those 25 points are of the same color. Without
loss of generality, assume that those are red. By our hypothesis, it follows
that among the four vertices at the corners, there is at least one red vertex.
Without loss of generality, let us assume that the bottom-right vertex is red,
and denote this vertex by E (as in Fig. 6).
Note that each of the sets {A,A′}, {B,B′}, {C,C ′}, {D,D′} (as in Fig. 6)

contains at most one red point, otherwise, we can form an axes-parallel square
with at least three vertices of the same color. Consequently, the green square
(as in Fig. 6) contains at least 13− 5 = 8 red points.

If the green square contains at least 9 red points, then at least one of the four
blue squares (as in Fig. 6) contains at least three red points, which is not the
case by our hypothesis. Hence, the green square contains exactly 8 red points.
Consequently, there are precisely 13 red points all together, and each of the
sets {A,A′}, {B,B′}, {C,C ′}, {D,D′} contains exactly one red point. By our
hypothesis, it follows that all the points on the gray diagonal (as in Fig. 6) are
blue. This shows that all the points within the green square, lying outside the
gray diagonal, are red. Hence, there exists an axes-parallel square, all whose
vertices are red. ■

Example 1.12 (India RMO 2023b P6). Consider a set of 16 points arranged
in a 4×4 square grid formation. Prove that if any 7 of these points are coloured
blue, then there exists an isosceles right-angled triangle whose vertices are all
blue.

The following is from AoPS, is due to Rohan (Goyal?) as mentioned here by
L567.

Some style files, prepared by Evan Chen, have been adapted here. 9
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(a) (b)

Figure 7: India RMO 2023, Example 1.12

Walkthrough —

(a) Show that if the small square (as in Fig. 7a) does not contain a blue
point, then we are done, and assume that the small square contains at
least one blue point.

(b) Rotating the configuration about the center of the small square (if neces-
sary), assume that the top-left vertex of the small square (as in Fig. 7a)
is blue.

(c) Prove that the gray square contains at most three blue points. (Consider
what happens when one of the dashed circle contains more than one blue
point.) Conclude that there are at most three blue points within the gray
square, as in Fig. 7b.

(d) It suffices to consider that each one of the red, purple, and green L-shapes,
has at most one end-point which is blue (otherwise, we are done).

(e) Consider the point at the bottom-right corner, and argue.

Solution 12. Note that the 16 points are the vertices of the four squares. If
no vertex of the small square is blue, then by the pigeonhole principle, at least
three of the vertices of at least one of the remaining three squares are blue (as
in Fig. 7a), and hence there exists an isosceles right-angled triangle with blue
vertices.

Let us assume that the small square (as in Fig. 7a) contains a blue point.
Rotating the configuration about the center of the small square (if necessary),
we may and do assume that the top-left vertex of the small square is blue.

Claim — The gray square (as in Fig. 7a) contains at most three blue
points.

10 The content posted here and at this blog by Evan Chen are quite useful.
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Proof of the Claim. We consider the case when at least two blue points lie on
at least one of the dashed circles, as in Fig. 7a.

If at least two blue points lie on the bigger dashed circle, then note that no
more blue points lies on it, and hence these two blue points lie along a diameter.
It follows that no blue point lies on the smaller dashed circle.
If at least two blue points lie on the smaller dashed circle, then using a

similar argument, it follows that no blue point lies on the bigger dashed circle.
The Claim follows.

Note that if both the end-points of one of the red, purple, and green L-shapes
(as in Fig. 7b) are blue, then these points together with the center of gray
square form the vertices of an isosceles triangle, as required.

Thus, it remains to consider the case when each one of these three L-shapes
has at most one end-point which is blue. Applying the above Claim, it follows
that the bottom-right point is blue. Note that the center of the gray square,
the bottom-right point, and a blue end-point of an L-shape, form the vertices
of an isosceles triangle having the required properties. ■

Example 1.13. Given five integers, show that the sum of some three of them
is divisible by 3.

Solution 13. If each of the integers 0, 1, 2 is congruent to at least one of the
given integers, then we could take three integers among the five given integers,
which are congruent to 0, 1, 2 modulo 3, respectively, and note that their sum
is divisible by 3.
Otherwise, there is a two-element subset A of {0, 1, 2} such that each of

those five integers is congruent to one of the elements of A modulo 3. Since
A contains two elements, by the pigeonhole principle, it follows that at least
three of the given five integers are congruent to one of the elements in A. The
sum of these three integers is divisible by 3. ■

Example 1.14 (India RMO 2024a P6). Let X be a set of 11 integers. Prove
that one can find a nonempty subset {a1, a2, . . . , ak} of X such that 3 divides

k and 9 divides the sum
∑k

i=1 4
iai.

Walkthrough — Use repeatedly the fact that given five integers, the sum of
some five of them is divisible by 3.

Solution 14. From the eleven elements of X, one can find three elements
whose sum is divisible by 3. From the remaining 8 elements, one can find three
elements whose sum is divisible by 3. From the remaining 5 elements, one can
find three elements whose sum is divisible by 3. Hence, there are nine elements
in X, denoted by a1, a2, . . . , a9 such that the sums

a1 + a2 + a3, a4 + a5 + a6, a7 + a8 + a9

Some style files, prepared by Evan Chen, have been adapted here. 11
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are divisible by 3. It follows that the sums

α :=

3∑
i=1

4iai, β :=

6∑
i=4

4iai, γ :=

9∑
i=7

4iai

are divisible by 3. Each of α, β, γ is congruent to one of 0, 3, 6 modulo 9. To
conclude, let us consider the following cases.
Suppose one of α, β, γ is divisible by 9. Noting that 43 ≡ 1 (mod 9), we

can find a subset of X of size 3 with the desired property. Henceforth, let us
assume that none of α, β, γ is divisible by 9.

If all of α, β, γ are congruent to 3 modulo 9, then we can find a subset of X
of size 9 with the desired property.
If one of α, β, γ is congruent to 6 modulo 9, and the remaining two are

congruent to 3 modulo 9, then we can find a subset of X of size 6 with the
desired property.
If one of α, β, γ is congruent to 3 modulo 9, and the remaining two are

congruent to 6 modulo 9, then we can find a subset of X of size 6 with the
desired property.

If all of α, β, γ are congruent to 6 modulo 9, then we can find a subset of X
of size 9 with the desired property.

The completes the proof. ■

Exercise 1.15. [Mat24, Problem 8, §6.4] Show that given 17 integers, the
sum of some 9 of them is divisible by 9.

Walkthrough — Use repeatedly the fact that given five integers, the sum of
some five of them is divisible by 3.

Example 1.16 (India RMO 2019b P4). Let a1, a2, . . . , a6, a7 be seven positive
integers. Let S be the set of all numbers of the form a2i +a2j where 1 ≤ i < j ≤ 7.
Prove that there exist two elements of S which have the same remainder on
dividing by 36.

Solution 15. Note that the square of an integer is congruent to one of 0, 1, 4, 7
modulo 9. It follows that the sum of two squares is congruent to one of
0, 1, 2, 4, 5, 7, 8 modulo 9. Denote the set {0, 1, 2, 4, 5, 7, 8} by R. Note that the
sum of two squares is congruent to one of 0, 1, 2 modulo 4. Let P denote the
set of pairs of the form (i, j) with 1 ≤ i < j ≤ 7.
If for some s ∈ {0, 1, 2}, there are at least eight pairs (i, j) in P such that

the corresponding sums are congruent to s modulo 4, then by the pigeonhole
principle, the result follows.
Suppose this does not hold. Noting that

(
7
2

)
= 21 = 3 · 7, it follows that

for each s ∈ {0, 1, 2}, there are precisely seven pairs in P such that the
corresponding sums are congruent to s modulo 4.

12 The content posted here and at this blog by Evan Chen are quite useful.
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In particular, there are seven pairs (i, j) in P such that the corresponding
sums are divisible by 4, and hence, for any such pair, the integers ai, aj are
even. If precisely k among the integers a1, a2, . . . , a7 are even, then there are(
k
2

)
pairs in P such that the corresponding sum is divisible by 4. We obtain(

k
2

)
= 7, which holds for no integer k ≥ 0. This completes the proof. ■
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