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Suggested readings

• Evan Chen’s advice On reading solutions, available at https://blog.

evanchen.cc/2017/03/06/on-reading-solutions/.

• Evan Chen’s Advice for writing proofs/Remarks on English, available at
https://web.evanchen.cc/handouts/english/english.pdf.

• Notes on proofs by Evan Chen from OTIS Excerpts [Che25, Chapter 1].

• Tips for writing up solutions by Edward Barbeau, available at https:
//www.math.utoronto.ca/barbeau/writingup.pdf.

• Evan Chen discusses why math olympiads are a valuable experience for
high schoolers in the post on Lessons from math olympiads, available at
https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/.
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§1 Rational and irrational numbers

Example 1.1 (Putnam 2009 B1). Show that every positive rational number
can be written as a quotient of products of factorials of (not necessarily distinct)
primes. For example,

10

9
=

2! · 5!
3! · 3! · 3!

.

Example 1.2. Let n ≥ 2 be an integer. Let m be the largest integer which
is less than or equal to n, and which is a power of 2. Put ℓn = the least
common multiple of 1, 2, . . . , n. Show that ln/m is odd, and that for every
integer k ≤ n, k ̸= m, ln/k is even. Hence prove that

1 +
1

2
+ · · ·+ 1

n

is not an integer.

Example 1.3 (Moscow Math Circles). Does there exist irrational numbers
x, y with x > 0 such that xy is rational?

Summary — Consider
√
2
√
2
.

Walkthrough —

(a) Consider
√
2
√
2
.

(b) If
√
2
√
2
is rational, then we are done by taking x = y =

√
2.

(c) If
√
2
√
2
is irrational, then can you find out suitable x, y?

Solution 1. Consider
√
2
√
2
. If

√
2
√
2
is rational, then we may take x = y =

√
2.

If
√
2
√
2
is irrational, then taking x =

√
2
√
2
and y =

√
2, we find that

xy =

(√
2

√
2
)√

2

=
(√

2
)2

= 2,

2
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which is a rational number. ■

Example 1.4 (India RMO 2013d P4). Let x be a nonzero real number such
that x4 + 1

x4 and x5 + 1
x5 are both rational numbers. Prove that x + 1

x is a
rational number.

Summary — Consider the difference(
x5 +

1

x5

)
−

(
x4 +

1

x4

)(
x+

1

x

)
.

Solution 2. For a positive integer n, put yn = xn + 1
xn . Note that

y5 = y1y4 − y3 = y1y4 − y1(y2 − 1) = y1(y4 − y2 + 1),

and y4 − y2 + 1 is nonzero, otherwise, we would get y22 − y2 − 1 = 0, that is,

y2 = 1±
√
5

2 , which shows that y4 = 3±
√
5

2 , which contradicts that y4 is rational.
To show that y1 is rational, it suffices to show that y2 is rational. Observe that

y10 = y2y8 − y6 = y2y8 − y2y4 + y2 = y2(y8 − y4 + 1),

and y8 − y4 + 1 ̸= 0 (otherwise, we would obtain y24 − y4 − 1 = 0, which
contradicts the rationality of y4). Since y10, y8, y4 are rational, it follows that
y2 is rational. Using

y5 = y1(y4 − y2 + 1),

and that y4 − y2 + 1 is nonzero, we conclude that y1 is rational. ■

Example 1.5 (All-Russian MO 2001–2002 Final stage Grade 11 P1). Real
numbers x and y are such that xp + yq is rational for any different odd primes
p, q. Show that x and y are rational.

Solution 3. The given condition implies that for any three distinct primes
p, q, r,

xp − xq, xq − xr

are rational since

xp − xq = (xp + yr)− (xq + yr) , xq − xr = (xq + yp)− (xr + yp) .

It follows that
a = x7 − x5, b = x5 − x3

are rational. If b = 0, then x = 0 or x = ±1, and hence x is rational. If b ̸= 0,
then note that x2 = a

b , which shows that x2 is rational. Observing that

b = x2(x2 − 1)x,

it follows that if b ̸= 0, then x is rational. The rationality of y follows
similarly. ■

Some style files, prepared by Evan Chen, have been adapted here. 3
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Example 1.6 (British Mathematical Olympiad Round 1 2004/5 P5). Let S
be a set of rational numbers with the following properties:

1. 1
2 ∈ S,

2. If x ∈ S, then both 1
x+1 ∈ S and x

x+1 ∈ S.

Prove that S contains all rational numbers in the interval 0 < x < 1.

Walkthrough —

(a) Since 1
2
lies in S, by the second condition, it follows that 2

3
lies in S and

so does 1
3
.

(b) Taking x = 1
3
, it follows that

3

4
,
1

4

lie in S. Note that we have showed that S contains all the rationals
between 0 and 1 with denominator at most 4.

(c) Taking x = 2
3
, it follows that

2

5
,
3

5

lie in S. We are not in a position to conclude that S contains all the
rationals between 0 and 1 with denominator at most 5.

(d) Taking x = 1
4
, it follows that

1

5
,
4

5

lie in S. It follows that S contains all the rationals between 0 and 1 with
denominator at most 5.

(e) Does the above provide any insight to conclude that S contains all the
rationals between 0 and 1? For instance, can one expect the following
(and then prove, or realize that it is false, or argue along different lines)?

For a rational number x lying in S, the rationals

1

x+ 1
,

x

x+ 1

have denominators largera than that of x.

aOften, while being naive, one takes the liberty to write larger to mean
no smaller, that is, greater than or equal to. But this is NOT allowed
while writing down a solution.

Or, stated in a different way,

4 The content posted here and at this blog by Evan Chen are quite useful.
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A rational number lying in (0, 1) can be obtained from a rational
number lying in (0, 1) with smaller denominator by applying one of
the maps

x 7→ 1

x+ 1
, x 7→ x

x+ 1
.

Solution 4. It suffices to establish the following.

Claim — For any integer k ≥ 2, all the rationals lying in (0, 1) with
denominators not exceeding k lie in S, that is, we have{

1

ℓ
,
2

ℓ
, . . . ,

ℓ− 2

ℓ
,
ℓ− 1

ℓ

}
⊆ S for all 2 ≤ ℓ ≤ k. (1)

Proof of the Claim. Eq. (1) holds for k = 2 from condition (1). Suppose Eq. (1)
holds for k = n − 1 for some integer n ≥ 3. Let m be an integer satisfying
1 ≤ m < n. Using the induction hypothesis, we will show that m

n lies in S.
Note that for 0 < x < 1, the inequalities

0 <
x

x+ 1
<

1

2
,
1

2
<

1

x+ 1
< 1

hold. Using Condition (1), it follows that m
n lies in S if m

n = 1
2 . If 0 < m

n < 1
2 ,

then
x

x+ 1
=

m

n

holds for x = m
n−m , which is a rational number lying in (0, 1) with denominator

≤ n − 1, and by induction hypothesis, the set S contains m
n . Moreover, if

1
2 < m

n < 1, then
1

x+ 1
=

m

n

holds for x = n−m
m , which is a rational number lying in (0, 1) with denominator

≤ n− 1, and by induction hypothesis, the set S contains m
n . We conclude that

for any integer n ≥ 3, Eq. (1) holds for k = n if it holds for k = n− 1.

■

Example 1.7 (Junior Balkan MO TST 1999). Let S be a set of rational
numbers with the following properties:

1. 1
2 ∈ S,

2. If x ∈ S, then both x
2 ∈ S and 1

x+1 ∈ S.

Prove that S contains all the rational numbers from the interval (0, 1).

Some style files, prepared by Evan Chen, have been adapted here. 5
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Walkthrough —

(a) Taking x = 1
2
, it follows that S contains 2

3
, and hence it also contains 1

3
.

(b) Taking x = 1
2
, it follows that S contains 1

4
. Next, taking x = 1

3
, we obtain

that S contains 3
4
.

(c) Applying the map x 7→ 1
x+1

to x = 2
3
, 1
4
, it follows that S contains 3

5
, 4
5
.

Since S contains 4
5
, the set S also contains 2

5
, 1
5
.

(d) Applying x 7→ 1
x+1

to x = 1
5
, it follows that S contains 5

6
. Note that S

contains 4
6
= 2

3
, 3
6
= 1

2
, 2
6
= 1

3
. It also follows that S contains 1

6
.

(e) Does the above provide any insight into the problem? Can one expect
the following?

The rationals lying in ( 1
2
, 1) can be obtained by applying the map

x 7→ 1
x+1

to the rationals lying in (0, 1) with small denominators.

Moreover, a rational number r lying in (0, 1
2
) can be obtained by

applying the map x 7→ x
2
to the rationals lying in ( 1

2
, 1), more specif-

ically, to those rationals with denominators at most the denominator
of r.

Solution 5. It suffices to establish the following.

Claim — For any integer k ≥ 2, all the rationals lying in (0, 1) with
denominators not exceeding k lie in S, that is, we have{

1

ℓ
,
2

ℓ
, . . . ,

ℓ− 2

ℓ
,
ℓ− 1

ℓ

}
⊆ S for all 2 ≤ ℓ ≤ k. (2)

Proof of the Claim. Note that Eq. (2) holds for k = 2 by hypothesis. Suppose
Eq. (2) holds for k = n − 1 where n ≥ 3 is an integer. Let m be an integer
satisfying 1 ≤ m < n. Using the induction hypothesis, we will show that m

n
lies in S. Note that for 0 < x < 1, the inequalities

1

2
<

x

x+ 1
< 1

hold. If m
n is equal to 1

2 , then it lies in S by hypothesis. If m
n lies in ( 12 , 1), then

1

x+ 1
=

m

n

holds for x = n−m
m , which is a rational number lying in (0, 1) with denominator

≤ n− 1, and by induction hypothesis, the set S contains m
n . If m

n lies in (0, 1
2 ),

then the rational number 2m
n lies in ( 12 , 1), and if it has denominator < n

(when expressed in its least form), then it is an element of S by the induction
hypothesis, and if it has denominator equal to n (when expressed in its least

6 The content posted here and at this blog by Evan Chen are quite useful.
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form), then by the above argument, it lies in S, and consequently, S contains
m
n . We conclude that for any integer n ≥ 3, Eq. (2) holds for k = n if it holds
for k = n− 1.

■

Example 1.8 (India RMO 2019a P1). Suppose x is a nonzero real number
such that both x5 and 20x+ 19

x are rational numbers. Prove that x is a rational
number.

Solution 6. Let us establish the following more general claim.

Claim — Let x be a nonzero real number and r be a rational number
such that x5 and x+ r

x are rational numbers. Then x is a rational number.

Proof of the Claim. Note that

x2 +
r2

x2
, x3 +

r3

x3

are rational. Write s = x5 and note that

x3 +
r3

x3
=

r3

s
x2 +

s

x2
.

It follows that there are rational numbers a, b such that(
1 r2

r3

s s

)(
x2

1
x2

)
=

(
a
b

)

holds. If the determinant of
(

1 r2

r3

s s

)
is nonzero, then it follows that x2 is

rational, and using the rationality of x5, we obtain that x is rational. If

the determinant of
(

1 r2

r3

s s

)
is zero, then we get s2 = r5, which implies that

x10 = r5, and hence, x2 is rational, and consequently, so is x.

■
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