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Suggested readings

• Evan Chen’s advice On reading solutions, available at https://blog.

evanchen.cc/2017/03/06/on-reading-solutions/.

• Evan Chen’s Advice for writing proofs/Remarks on English, available at
https://web.evanchen.cc/handouts/english/english.pdf.

• Notes on proofs by Evan Chen from OTIS Excerpts [Che25, Chapter 1].

• Tips for writing up solutions by Edward Barbeau, available at https:
//www.math.utoronto.ca/barbeau/writingup.pdf.

• Evan Chen discusses why math olympiads are a valuable experience for
high schoolers in the post on Lessons from math olympiads, available at
https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/.
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§1 Invariance principle

Example 1.1 (Moscow MO 1959 Day 2 Grade 7 P5). Consider n numbers
x1, . . . , xn, each equal to 1 or −1. Prove that if

x1x2 + x2x3 + · · ·+ xn−1xn + xnx1 = 0, (1)

then n is divisible by 4.

Solution 1. Since each of the summands of x1x2+x2x3+ · · ·+xn−1xn+xnx1

is equal to 1 or −1, using Eq. (1), it follows that the number of the summands
of x1x2 + x2x3 + · · ·+ xn−1xn + xnx1 equal to 1 coincides with the number
of the summands of x1x2 + x2x3 + · · ·+ xn−1xn + xnx1 equal to −1. These
two numbers add up to n, and hence n is even, i.e. n = 2m for some positive
integer m.

Note that m is equal to the number of the summands of x1x2 + x2x3 + · · ·+
xn−1xn + xnx1, which are equal to −1. In other words, m is equal to the
number of alterations, i.e. pairs of consecutive terms of the sequence

x1, x2, . . . , xn, x1,

whose signs differ. Since the initial and the final term of the above sequence are
equal, their signs remain unchanged, and hence the number of the alterations
of the above sequence has to be an even number. Since m is even, it follows
that n is divisible by 4. ■

Remark. An elementary congruence argument may also be used to observe
that n is even. Note that

n = x2
1x

2
2 + x2

2x
2
3 + · · ·+ x2

n−1x
2
n + x2

nx
2
1

≡ x1x2 + x2x3 + · · ·+ xn−1xn + xnx1 (mod 2),

and hence n is even.
One may also proceed as follows. For 1 ≤ i ≤ n, write

εi :=

{
1 if xi and xi+1 are of the same sign,

−1 otherwise,

where xn+1 := x1. In other words,

εi = xixi+1.
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Note that
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= ε1x1x2 + ε2x2x3 + · · ·+ εn−1xn−1xn + εnxnx1

= (ε1 − 1)x1x2 + (ε2 − 1)x2x3 + · · ·+ (εn−1 − 1)xn−1xn + (εn − 1)xnx1

= 2
∑

1≤i≤n,εi=−1

(−xixi+1)

= 2× the number of alternations of the sequence x1, . . . , xn, x1.

Note that to arrive at the above, we did not use the fact that n is even. Moreover,
the prior argument tells us that any (finite) sequence of ±1’s, with equal initial
and final terms, have an even number of alterations. Hence, n is a multiple of 4.

Upshot — At times, algebraic techniques might be quite useful.

Example 1.2. [Eng98, p. 5] Let a1, a2, . . . , an be n numbers such that each
ai is either 1 or −1. If

a1a2a3a4 + a2a3a4a5 + · · ·+ ana1a2a3 = 0,

then prove that 4 divides n.

Solution 2. The solution relies on the following claim.

Claim — Let y1, y2, . . . , yn be a sequence of integers such that each yi is
1 or −1. Let 1 ≤ m ≤ n be an integer. Then the sum

y1y2y3y4 + y2y3y4y5 + · · ·+ yny1y2y3,

and the new sum obtained by replacing ym by −ym in the above sum,
leave the same remainder upon divisiona by 4.

aIf b is a positive integer, and a is an integer, then there are integers q, r such that

a = qb+ r, 0 ≤ r ≤ b

hold. The integer q is called the quotient and r is called the remainder.
Note that one may divide any integer (even the negative ones) by a positive integer

and obtain the quotient and the remainder. For example, if 9 is divided by 4, it
leaves a remainder of 1. If −11 is divided by 4, then (after writing −11 = (−3) ·4+1,
one finds that) it leaves a remainder of 1. If −53 is divided by 4, then (after writing
−53 = (−14) · 4 + 3, one finds that) it leaves a remainder of 3.

Proof of the Claim. In the above cyclic sum, ym appears in precisely four
summands. Since the remaining summands are unchanged, it suffices to show
that the sum of those four summands (denoted by A), and the new sum
obtained by replacing ym by −ym in A (to be denoted by B), leave the same
remainder upon division by 4.

Some style files, prepared by Evan Chen, have been adapted here. 3

https://github.com/vEnhance/dotfiles/blob/main/texmf/tex/latex/evan/evan.sty
https://web.evanchen.cc/otis.html
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In fact, it reduces to showing that if A is a sum of four terms where each
term is equal to 1 or −1, then A and −A leave the same remainder upon
division by 4, or equivalently, their difference, which is 2A is a multiple of 4,
which is equivalent to saying A is even.

If all the terms of A are equal, then A is even. If three of the terms of A
are 1 and the remaining one is −1, then A is even. Moreover, if two of the
terms of A are 1 and the other twos are −1, then A is even. Further, if only
one term of A is 1 and the others are equal to −1, then A is also even. The
Claim follows.

In the given sum

a1a2a3a4 + a2a3a4a5 + · · ·+ ana1a2a3,

we continue to replace all the ai’s which are equal to −1 by 1’s. In the first
step, S is divisible by 4. By the above Claim, at the end of each step, the new
sum obtained is also divisible by 4. At the very last step, the sum will change
to n, and hence, n is divisible by 4. ■

For more exercises on the invariance principle, we refer to [Eng98, Chapter
1].
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4 The content posted here and at this blog by Evan Chen are quite useful.
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