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https://web.evanchen.cc/handouts/english/english.pdf.

Notes on proofs by Evan Chen from OTIS Excerpts [Che25, Chapter 1].

Tips for writing up solutions by Edward Barbeau, available at https:
//www.math.utoronto.ca/barbeau/writingup.pdf.

Evan Chen discusses why math olympiads are a valuable experience for
high schoolers in the post on Lessons from math olympiads, available at
https://blog.evanchen.cc/2018/01/05/1essons-from-math-olympiads/.
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§1 Binomial theorem

Example 1.1 (India RMO 1996 P6). Given any positive integer n, show that
there are two positive rational numbers a and b, a # b, which are not integers
and which are such that a — b,a? — b%,a® — b3,...,a™ — b" are all integers.

Walkthrough —

(a) We may expect that a = ¢+ % and b=d+ % would work where ¢, d are
suitable integers. We need to see for what choices of ¢, d, the difference
a™ —b"™ is an integer for all 1 < m < n.

(b) By the binomial theorem ¢,
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(c) It follows that a™ — b™ would be an integer if we could ensure that
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are all integers.

(d) Note that ¢™ ' —d™ ', ¢™ 2 —d™ 2 ..., c—d are all divisible by ¢ — d.
So it would be enough to find suitable integers ¢, d such that ¢ — d is
divisible by 2,22,...,2™ ! for all 1 < m < n.

(e) For instance, if we take ¢ = 2"~' d = 0, that is,
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then a —b,a? —b2,a® —b3,...,a™ —b"™ are all integers and a, b are positive
rationals and not integers.

“The binomial theorem says that
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where (7;) is a positive integer and is equal to i!(s

ii)! for 1 <4 <n—1. Indeed, if
we expand (z + y)™, then it becomes immediately clear that there exist integers
Cl,...,Cn—1 such that
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holds, and moreover, the integers c1,...,c,—1 do not depend on x and y, they
depend only on n. A careful inspection of the above equality shows that for any
1 < i < n, the integer c¢; is equal to the number of ways of selecting a set of ¢
elements from a set of n elements, which is denoted by (TZ) by convention. This
essentially proves (combined with the details to be filled in) the binomial theorem,
which states that for any positive integer n,
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holds. However, it is not immediate that (7) is equal to Z,(n"ilz), But we do not

require it in this problem.

Solution 1. Take a = 2™ + % and b = %, where m is a suitable positive integer
to be determined later. Using the binomial theorem, we obtain
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for any integer k > 1. We would like to have that a—b, a2—b2, a3 =13, ..., a" —b"
are all integers. Note that it suffices to make sure that m > k — 1 for k =
1,2,...,n. Let us take
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a=2"+—-,b=—.

+ 2 2
Note that the positive rational numbers a, b are not integers, and a — b, a? —
b2, a3 —b%,...,a" — b" are all integers. |

Example 1.2 (Putnam 2004 B2). Let m and n be positive integers. Show
that
(m 4+ n)! mln!
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Solution 2. Applying the binomial theorem, we observe that m+") mmn"

is one of the terms of the binomial expansion of (m + n)™™". Noting that
(ern)mmnn _ (m+n)!

o - m'n™, the result follows. [ |

Some style files, prepared by Evan Chen, have been adapted here. 3
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4 The content posted here and at this blog by Evan Chen are quite useful.
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