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Introduction

Chapter 1. Sets

# Definition

A setis a well-defined collection of objects. The objects of a set are called its elements or members.

v Examples

« The set of vowels a, e, 1, 0, u.
+ The set consisting of 2, 4, 6, 8, 10.
» The set consisting of 3, 15, 35, 63, 99.

Here are further examples.

/" Examples

« The set of positive integers divisible by 3.

+ The set of prime numbers less than 100.

« The set of positive integers which can be expressed as the product of two distinct primes.

« The set of positive integers which can be expressed as the product of two or more distinct
primes.

+ The set of positive integers which are smaller than 100 and share no common factor with

100.

i Remark

Note that the first few sets are described by writing down all its elements, whereas in the latter
examples, the sets are described by the rules or properties which determine whether a particular
object is an element or not.

Y= Notation

A set is usually denoted by an uppercase letter, for example,
A BC, XY, Z,
whereas the lowercase letters are used to denote its elements. For instance, one may use
« a to denote an element of A,
« b to denote an element of B,
« ¢ to denote an element of C,
« z to denote an element of X,
+ gy to denote an element of Y,
+ z to denote an element of Z.

Several special sets are denoted by certain standard symbols. Here are some such examples.

N the set of positive integers

Z the set of integers
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If x is an element of a set X, then one says that « belongs to X, and writes
zeX.
Note that 2 belongs to N, but % does not belong to N. One writes

1
26N,§¢N.

v

v= Notation

There are two ways to write down a set. For example, consider the set of vowels, which is written
as

V ={a, e i, 0, u}.
Note that the elements are seperated by commas and enclosed in braces {}.

Another way to write down a set is by stating the rules or properties which determine whether a
particular object is an element or not. For example, the set of even positive integers is written as
E={x€Z:xiseven,z > 0}.

This reads
“F is the set of elements z in Z such that z is even and z > 0”.

v/ Example

Note that the set A = {3, 15,35, 63,99} is equal to
{z € Z: z is equal to n? — 1 for some n € {2,4,6,8, 10}}.
Since 1, 2 are the roots of the polynomial 2 — 3z + 2, it follows that
{reN:z?-3z+2=0}={1,2}.
Also note that
N=1{1,2,3.1,
z={0,1,-1,2,—-2,3,-3,...}.

One uses the symbol := to indicate that the symbol on the left is being defined by the symbol on
the right.

Q::{%:m,nEZandn#O}.

It is called the set of rational numbers.
If the number of elements of a set is finite, then it is called a finite set. If a set is not finite, it is called

an infinite set. A set containing exactly one element is called a singleton set.

" Example

The sets
{a, e, i, 0, u},{3,15,35,63,99},{r € N: 2? -3z + 2 =0}
are finite. The sets N, Z, Q are infinite.

Exercise 1.1. Determine the elements of the following sets.
« {zeN:z?—1=0}
« {z€Z:2>—-1=0}
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Solution. Note that 1 is the only element of N satisfying the equation z? — 1 = 0. This gives
{zreN:z?2—-1=0} = {1}

Since 1, —1 are precisely all the elements of Z satisfying x> — 1 = 0, it follows that

{zx€Z:2*>—1=0} ={1,-1}

§1.1 Basic terminologies

If A, B are sets, and every element of A also belongs to B, then we say that A is a subset of B, and write
ACB.

If A is not a subset of B, one writes
A ¢ B.

/" Example

 Note that every set is a subset of itself.
» Note that N is a subset of Z, and Z is a subset of Q. One writes
NCzZ, ZcCQ.
+ Also note that
ZIENQZLZ,QZN.

If A is a subset of B and A is not equal to B, then A is said to be a proper subset of B, and one writes
AC B.
Note that
NCZ,ZCQ.

Exercise 1.2. What does it mean to say that A is not a subset of B?

Solution. Note that A is a subset of B is equivalent to the statement that each element of A lies in B.
Hence, A is not a subset of B is equivalent to saying that some element of A does not belong to B. [0

Exercise 1.3. Show that if A is a subset of B and B is a subset of C, then A is a subset of C.

Solution. Let = be an element of A. Since A is a subset of B, it follows that = belongs to B. Using that
B is a subset of C, we obtain that x belongs to C'. Hence, the element z lies in C'. This shows that any
element x of A belongs to C'. This proves that A is a subset of C. O

Exercise 1.4. Show that no element n of N satisfies n* — 5n? + 6 = 0.
» Tip
Try to show that no natural number n satisfies any of the equations
n? =2,n?=3.
Solution. Note that the polynomial z* — 522 + 6 factorizes as

z* —5z2% + 6 = (22 — 2)(2? — 3).

Let n be a natural number. If n = 1, then n? # 2 and n? # 3 hold. If n > 2, then n? > 4, and hence,
n? # 2 and n? # 3 hold. This shows that no natural number n satisfies
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(n? —2)(n?—3) =0,
that is, the equation
n* —5n%4+6=0.

Consider the set
A={neN:n*—5n2+6=0}

Note that the set A has no elements. Any such set is called the empty set or null set, and is denoted
by the symbol

0.

Two sets, A and B, are said to be equal® if any element of A belongs to B, and any element of B also
belongs to A, or equivalently,
ACBand BCA

holds. If two sets A, B are not equal, one writes

A+ B.
Exercise 1.5. What does it mean to say that two sets A, B are not equal?
[, ] Tlp
Does Exercise 1.2 help?

Solution. Note that two sets A, B are equal is equivalent to saying that A is a subset of B, and B is a
subset of C. Hence, the statement A # B is equivalent to saying that A is not a subset of B, or B is
not a subset of A, which is equivalent to the statement that some element of A does not belong to B,
or some element of B does not belong to A. O

§1.2 Operations on sets

Exercise 1.6. Consider the sets
{1,2,3,4},{3,4,5,6}.

Determine the elements common to these sets.

Figure 1: Two sets A and B

‘It may appear obvious! The advantage of putting forth definitions is to set up notations and conventions, so that
these are not left to interpretations!
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# Definition

If A, B are sets, their union is denoted by A U B, which is defined as
AUB:={x:x € Aorx € B}.

See Figure 2.

Figure 2: The union of A and B

Exercise 1.7. Determine the union of the sets
{1,2,3,4},{1,3,5,7}.

!  Usage of “or” in the inclusive sense

The word “or” is used in the inclusive sense, allowing two or more of the conditions to be satisfied.
In common terminology, this inclusive sense is denoted by “and/or”.

Exercise 1.8. If A, B are sets, show that
ACAUB,BC AUB.

Solution. Let x be an element of A. Then note that z lies A U B. This shows that A is a subset of A U
B. Similarly, it follows that B is a subset of A U B. O

Exercise 1.9. If A, B are subsets of a set C, then A U B is a subset of C.

Solution. Let x be an element of A U B. It follows that « belongs to A or = belongs to B. If « belongs
to A, then using A is a subset of C, we obtain that x lies in C'. Further, if « belongs to B, then using
that B is a subset of C', we obtain that x lies in C. Combining the above cases, it follows that x lies in
C'. Consequently, any element of A U B is an element of C, or equivalently, A U B is a subset of C..J

Exercise 1.10. If A is a set, show that
AUA = A.

Solution. Note that any element z of A U A belongs to A or belongs to A, and hence it lies in A. This
shows that A U A is a subset of A. Further, for any element y of A, it belongs to A U A. Hence, A is a
subset of A U A. This proves that

AUA=A
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Exercise 1.11 (Commutative property). If A, B are sets, show that
AUB=BUA.

Solution. Let P, (@) be sets, and let z be an element of P U Q. It follows that x belongs to P or x belongs
to Q. This shows that x belongs to @ or x belongs to P. This implies that z is an element of @ U P.
Hence, P U @ is a subset of Q) U P for any two sets P, Q).

Consequently, the set A U B is a subset of BU A, and B U A is a subset of A U B. This shows that

AUB=BUA

# Definition

If A, B, C are sets, their union is denoted by A U B U C, which is defined as
AUBUC:={zx:zxz€Aorx € Borz € C}.

Exercise 1.12 (Associative property). If A, B, C are sets, show that
AUBUC =(AUB)UC =AU(BUQ).

Use Exercise 1.11 and Exercise 1.12, to show that for any three sets A, B, C, the following sets are equal
AUBUC,AUCUB,BUAUC,BUCUA,CUAUB,CUBUA.

# Definition

If A, B are sets, their intersection is denoted by A N B, which is defined as
ANB:={z:z € Aand z € B}.

See Figure 3.

Figure 3: The intersection of A and B
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ANB

AUB

Figure 4: The union and intersection of A and B

Exercise 1.13. Determine the intersection of the sets
{1,2,3,4},{1,3,5,7}.

Exercise 1.14. If A, B are sets, show that
ANBCA ANBCB.

Solution. For any element x of A N B, it belongs to A and it belongs to B. Hence, A N B is a subset of
A, and A N B is also a subset of B. O

Exercise 1.15. If A, B, C are sets satisfying
CCACCB,
then show that
CCANB
holds.

Exercise 1.16. Identify the integers among
1,2,3,4,...,20

which are divisible by at least one of 2 and 5.

Solution. In the following, the integers among 1, 2, ..., 20 divisible by 2 are marked.

17 ” 37 ’7 57 ‘7 77 ‘7 97 ‘7
o0 @) 5. @ @ @) @)

Note that there 10 integers among 1, 2, ..., 20, which are divisible by 2. The integers among 1, 2, ..., 20

divisible by 5 are marked below.
12,34, (5).6.7.8.9 ‘
,16,17,18,19, ‘

Note that there are 4 integers among 1,2, ..., 20, which are divisible by 5. O

11,12, 13, 14,

10
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i Remark

Note that some integers are counted/marked twice. This is an instance of double counting, which
refers to the counting of certain element twice. In the above, the integers 10 and 20 are “counted
twice”. Thus, the number of integers among 1, 2, ..., 20, divisible by 2 or 5, is equal to 10 + 4 —
2=|12

« Definition

Two sets A, B are said to be disjoint if
ANB=0.

Lemma 1.17 (Inclusion-exclusion principle). Let X be a set, and A, B be finite subsets of X. Then
|AUB| = |A| +|B| - |AN B|.
Proof. Note that the set A U B is equal to the union of the disjoint sets A and B \ A. This shows that
|AUB| = |A|+ |B\ 4|
Also note that the set B is equal to the union of the disjoint subsets A N B and B \ A. This gives
|B|=|ANB|+ |B\ A|.
It follows that

|AU B| = |A| + |B| — |AN B

O

Exercise 1.18 (Inclusion-exclusion principle). Using Lemma 1.17 or otherwise, show that for finite
subsets A, B, C of a set X,

JAUBUC| = |A|+ |B|+|C| - |ANB|— |[BNC|— |CNA|+|ANBNC.

Solution. Note that

IAUBUC]

=|(AUB)UC|

=|AUB|+|C|—[(AUB)NC| (by Lemma 1.17)
=|AUB|+|C|—[(ANnC)U(BNCQC)| (by Fact 1.23)
=|AUB|+|C|—(|ANnC|+|BNC|—=|(ANC)N(BNC)| (by Lemma 1.17)

=|AUB|+|C|—|ANC|—|BNC|+|(AnC)N(BNC)|
=|AUB|+|C|—|ANC|—|BNC|+|AnCNBNC|
=|AUB|+|C|—|ANC|—|BNC|+|ANBNC|
=|Al+|B|—|ANB|+|C|—|ANC|—|BNC|+|AnCNBNC| (by Lemma 1.17)
=|A|+|B|+|C|—|ANB|—|BNC|—|CNA|l+|AnBNC|.

Exercise 1.19. Determine the number of integers among
1,2,3,4,...,100,
which are divisible by at least one of 6, 10, 15.

11
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Solution. Let X denote the set
{1,2,3,...,100}.

Let A (resp. B, C) denote the set of elements X which are divisible by 6 (resp. 10, 15). Note that

|A| = 16,|B| = 10,|C| =6
hold. Observe that A N B consists of the elements of X which are divisible by 6 and by 10, that is,
divisible by their least common multiple, which is equal to 30. Similarly, B N C consists of the elements
of X which are divisible by the least common multiple of 10, 15, which is equal to 30. Further, it follows
that C'N A also consists of the multiples of 30 lying between 1 and 100. Moreover, the set AN BN
C consists of the integers between 1 and 100, which are divisible by the least common multiple of
6,10, 15, that is, the integer 30. By the inclusion-exclusion principle (Exercise 1.18), we obtain

|JAUBUC|=|A|+|B|+|C|—|ANnB|—|BNC|—|CNA|+|ANnBNC|
= |A|+|B|+|C| —3|ANB|+|ANBNC|
=|A|+ |B|+|C|—2|AN B
=16+10+6—2x3

= 26.
Note that the set A U B U C consists of the integers between 1 and 100 which are divisible by at least
one of 6,10, 15. This shows that there are precisely| 26 |such integers. O

Exercise 1.20. If A is a set, show that
ANA=A.

(@] Tlp

Does Exercise 1.10 help? If not, what about its solution?

Exercise 1.21 (Commutative property). If A, B are sets, show that
ANB=DBnNA.

(. ] Tlp

Does Exercise 1.11 help? If not, what about its solution?

# Definition

If A, B, C are sets, their intersection is denoted by A N B N C, which is defined as
ANBNC:={x:zx€ Aand z € Band z € C}.

Exercise 1.22 (Associative property). If A, B, C are sets, show that
ANBNC=(ANB)NC=AN(BNC).

(. ] Tlp

Does Exercise 1.12 help? If not, what about its solution?

Fact 1.23 (Distributive property). If A, B, C' are sets, show that

12
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AU(BNC)=(AUB)N(AUC),
AN(BUC)=(ANB)U(ANC).

A proof of the above is provided in Chapter 4.

i Remark

All sets under consideration in a given context, are assumed to be contained in a ‘large’ fixed set,
called the universal set. For example, while studying the positive integers (for instance, some sets
consisting of the positive integers), the set N can be taken as the universal set. While studying
the integers, the set Z can be taken as the universal set.

# Definition

Let A, B be subsets of a set X. The complement of A in B is denoted by B \ A, and is defined by
B\A:={zeX:zeBx ¢ A}
It is also called the difference of B and A.

The complement of A in X, is called the complement of A, and is denoted by A€, and is defined
to be

A= X\ A.

Exercise 1.24. Show that
Ac={ze X :z ¢ A},
where X denotes the underlying universal set.

Solution. Since X \ Aisequalto {z € X : = ¢ A}, it follows that
A={zeX:x ¢ A}

|

Exercise 1.25. Determine the complement of {1,2,3,4} in {1,3,5,7}, and the complement of
{1,3,5,7} in {1,2,3,4}.

Exercise 1.26. If A, B are subsets of a set X, show that
A°NB =B\ A.
Solution. Note that
A°NB=(X\A)NB
={rzreX:ze€ X\ Aand x € B}
={reX:x¢ Aand z € B}
={zeX:ze€Bandz ¢ A}
= B\ A.

Exercise 1.27. If A is a subset of a set X, then show that
AUAc =X, AN A =0, (A°)° = A.

13
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Fact 1.28. If A, B are subsets of a set X, then show that
(AUB) = A°NB° (AN B)¢ = A°U B°.
A proof of the above is provided in Chapter 4.
Exercise 1.29. Let A, B be subsets of a set X. Show that the following statements are equivalent.
A C B,
ANB=A,
AUB=B,
B¢ C A°.

Fact 1.30. If A, B, C are sets, show that
1. AN(BUC)=(A\B)N(A\C),
2. AN(BNC)=(A\B)U(A\ Q).

A proof of the above is provided in Chapter 4.

Exercise 1.31. Let A, B be subsets of a set X. Show that the sets
A\ B,B\ A

are disjoint.

« Definition

The symmetric difference of two sets A, B, denoted by AAB, is defined as
AAB:=(AUB)\ (AN B).

Exercise 1.32. Determine the symmetric difference of {1,2,3,4} and {1, 3,5, 7}.

Exercise 1.33. If A, B are sets, then show that
AAB = (A\B)U(B\ A),
AAB = BAA,
AUB=(AAB)U (AN B),
(AAB)N (AN B) = 0.

Solution. Note that

AAB = (AUB)\ (AN B)
=(AUB)N (AN B)°
=(AN(ANB))U (BN (AN B)) (by Fact 1.23)
=(AN(A°UB%))U (BN (A°UBY)) (by Fact 1.28)
=((ANA)U(ANB9))U((BNA°)U(BNB°)) (by Fact 1.23)
=(0U(A\B))U((B\ A)UD) (by Exercise 1.26)
= (

A\ B)U(B\ A).
Also note that

14
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AAB = (AUB)\ (AN B)
=(BUA)\ (BNA)
= BAA.
Since A N B is a subset of A U B, we obtain
AUB=((AUB)\(ANB))U(ANB)
= (AAB)U (AN B).
Using AAB = (AU B) \ (AN B), it follows that AAB contains no element of A N B. This implies
that
(AAB)N (AN B) = 0.

§1.3 Family of sets
« Definition

Let n > 2 be an integer, and let A, ..., A,, be sets. The union of A,, ..., A, is denoted by A; U
--U A,,, and is defined by

A, U--UA, :={z: z belongs to A, for some 1 <i < n}.
The intersection of A, ..., A, is denoted by A; N---N A,,, and is defined by
A, N--NA, :={z:z belongs to A, for all 1 <i < n}.

§1.4 Power set
/" Example

Note that the subsets of {1, 2,3} are
{1,2,3},
{1,2},{2,3},{3,1},
{1}, {2}, {3},
0.

« Definition

Let A be a set. The set of subsets of A is denoted by P(A). It is called the power set of A.

15
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/" Example

Note that
P{1}) ={0,{1}},
P({z}) = {0,{=}},
P{z,y}) =1{0,{z} {v} . {z,y}},
P(z,y,2}) ={0,{z}, {y}. {2}, {z, v} . {v, 2}, {z, 2} {=z, y, 2}},
P({1,2,3}) = {0, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1,2,3}},
P({1,2,3,4}) ={0, {1}, {2}, {3},{1,2},{2,3},{1,3},{1,2,3},
{4},{1,4},{2,4},{3,4},{1,2,4},{2,3,4},{1,3,4},{1,2,3,4}}.

i Remark

Convince yourself that for any integer n > 0, the power set of a set of size n has size 2.

Exercise 1.34. Write down the power set of each of the following sets:

{1,2},{1,2,3},{1,{2,3}},{1,2,3,4}.
§1.5 Cartesian product of sets
+ Definition

If A, B are sets, then the cartesian product A x B of A and B is the set of all ordered pairs of the
form (a,b) witha € A and b € B. That is,

A x B:={(a,b) :a € A,be B}.

If A={1,2} and B = {2, 3,4}, then
Ax B=1{(1,2),(1,3),(1,4),(2,2),(2,3),(2,4) }.

Exercise 1.35. If A, B are finite sets, then show that
|A x B = |A| x |B,

where for a set X, its number of elements is denoted by | X|.

§1.6 Sets and subsets of real and complex numbers

§1.6.1 Real numbers

N = the set of positive integers
=1{1,2,3,...},

Z = the set of integers
={0,1,-1,2,-2,3,-3, ...},
Q = the set of rational numbers
={E:m€Z,n€N},

n

R = the set of real numbers.

16
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i Remark

There are real numbers which are not rational. For instance, the number v/2 is not rational.

Lemma 1.36. No rational number z satisfies x> = 2.

Proof. On the contrary, let us assume that some rational number z satisfies 2 = 2. Replacing = by
—x if necessary, we may and do assume that z is positive. Write z = { for some positive integers a, b.
Let d denote the greates% common divisor of a,b. Write a = da,,b = db, where a,, b, are positive

integers. Note that (Z—s) =2.

Let us prove the two claims below. After establishing them, we will use them to complete the proof
of the lemma.

Claim

None of a, b, is divisible by 3.

Proof of the Claim

On the contrary, let us assume that 3 divides at least one of the integers a, b;.

If 3 divides a, then 3 divides ag. Using a% = 202, it follows that 3 divides by. Further, if 3 divides
by, then 3 divides 2b2, and hence 3 divides aZ. This shows that a, is divisible by 3.

In both the cases, it follows that the greatest common divisor of a, b, is larger than 1. This
shows that the greatest common divisor of da, db, is larger than d. Using a = da, b = db,,
we obtain that the greatest common divisor of a,b is larger than d, which is impossible. This
contradicts the assumption that some rational number z satisfies 22 = 2. This proves the claim.

Claim

If n is an integer not divisible by 3, then n? is equal to 3k + 1 for some integer k, depending on
n.

Proof of the Claim
Let q (resp. r) denote the quotient (resp. remainder) obtained upon dividing n by 3. This gives
n = 3q + r. Note that
n? = (3¢+r)?
= 9¢% + 6qr + r?
Since n = 3q 4 r and 3 does not divide n, it follows that r is equal to 1 or 2. If » = 1, then
n? = 3(3q2 + 2qr) + 1.
If r = 2, then
n? =3(3¢% +2qr) +4=3(3¢> + 2qr + 1) + 1.

This proves the claim.

Using the claims above, it follows that
a% =3c+1,
b2=3d+1

17
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for some integers c, d. This gives
3c+1=23d+1).
This yields 1 = 3(c — 2d), which is impossible.
This completes the proof of the lemma. O

# Definition

Let a, b be real numbers with a < b. Then the closed interval [a, b] is defined by
[a,b] :={z €R:a <z < b}

The open interval (a, b) is defined by
(a,b) ={z €eR:a < x <b}.

Exercise 1.37. Determine the cartesian product of [1, 2] and [3, 4] U [5, 6].
Exercise 1.38. Identify the set
1
{xER\{O}:x+—22}.
x

Solution. Let x be an element of R \ {0}. Note that

1 241-2
T T
_(z— 1)
o T
hold. This shows that the condition
1
T+ —>2
T
is equivalent to the condition
(z —1)°
= 7 >0. 1
> 1)

If x # 1, then we obtain (z — 1)2 > 0, and then, Equation 1 yields % > 0, or equivalently, z > 0. This
gives that

1
{xER\{O}:x+E22}\{1}Q{x€R:w>O},
which implies
1
{wER\{O}:x—i—E22}Q{x€R:m>0}.

Also note that if z > 0, then

or equivalently,

It follows that

{mER\{O}:x+%22}:{x6R2x>0}

18
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O
Exercise 1.39. Let A, B be subsets of R defined by
A:{wER:mQEO},
B={zeR:z’ >0}
Determine the sets AU B, AN B, A\ B, B\ A.

Exercise 1.40. For a positive integer k, let A, denote the set of integral multiples of k, that is,
A ={r €Z:r =kl for some ¢ € Z}.

Let m, n be positive integers. For each of the following statements, determine the equivalent condi-

tions on the integers m, n.

1A, CA,

2. A, CA,

3.4, ¢ A,

4 A, =A,

5. 4,,NA,=0

6. A, \NA, #0

7. AL NA, #F0or A, \NA,, #0
8. A, \NA, #0and A, \A,, #0

§1.6.2 Complex numbers

2

Note that no real number z satisfies z2 = —1. To “resolve” this, one “introduces”® an element i

satisfying

2 =—1.

The element ¢ can be multiplied by any real number, and the product can also be added to any real
number. This leads to the numbers of the form a + ¢b, where a, b are real numbers. Such numbers are
called the complex numbers, and the set of such numbers is denoted by C.

# Definition

The set of complex numbers, is denoted by C, and is defined by
C:={a+1ib:a,be R}

Exercise 1.41. Show that R is a subset of C.

« Definition

For a complex number z = a + b with a, b € R, the real part (resp. imaginary part) of z, denoted
by RR(z) (resp. J(z)), is defined by

J(z) =b.

*To introduce is to adjoin.
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# Definition

For complex numbers z = a + b, w = ¢ + id with a, b, ¢, d € R, the sum z + w and the product
z - w of z and w are defined by

z+w:=(a+c)+i(b+d),
z-w:= (ac — bd) +i(ad + be).

« Definition

For a complex number z = a + b with a, b € R, the conjugate of z, denoted by Z, is defined by
Z = a — ib.

« Definition

For a complex number z = a + ib with a,b € R, the absolute value of 2, also called the modulus
, and is defined by

z| == v a? + b2.
2] := v/

of z, is denoted by |z

Exercise 1.42. If z, w are complex numbers, then show that
L z+w=Z41,
2.z w=72-w,
3. |2] >0, and
4. |z-w| = |z| |w|.

z| = 0if and only if z = 0,

Exercise 1.43. If 2z is a complex number, then show that

z-Z=|z|%

Exercise 1.44. For any real number 6, show that
|cosf +isinf| = 1.

Fact 1.45. If z is a complex number satisfying |z| = 1, then there exists a real number 6 such that
z=cosfO+isinf.
Consequently, if z is a nonzero complex number, then for some real number 6,
z = |z| (cos@ + isin6)
holds.
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Chapter 2. Induction principles
v Example

Show that

1
1+2+3+m+n:ﬁ@;_2

holds for any positive integer n.

B¥  Solution

For any n € N, let P(n) denote the statement that
n(n+1)

——

Note that P(1) holds. Let k be an element of N, and assume that P(k) holds. Note that
k(k+1)
—

k
=(k+1) (5 + 1)
(k+1)(k+2)
B 2
This shows that if k is a positive integer and P (k) holds, then P(k + 1) also holds. By the principle
of induction, it follows that P(n) holds for any positive integer n.

14+2+3++n=

1+243+-+k+(k+1)= + (k+1) (using P(k))

« Definition

If A is a nonempty subset of N, then an element a of A is called a least element of A if ay < a
foralla € A.

Exercise 2.1. If A is a nonempty subset of N, and a;, a, are least elements of A, then show that
a/1 = a2.

Solution. Since a4, a, are least elements of A, they belong to A. Using that a, is a least element of A, we
obtain that a; < a,. Further, using that a, is a least element of A, we obtain that a5 < a;. Combining
these two inequalities, it follows that a; = a,. d

1 Remark

By Exercise 2.1, a nonempty subset of N has at most one least element, to be called the least
element, if it exists.

Well-ordering principle

Every nonempty subset of N has a least element.
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Principle of mathematical induction

For each n € N, let P(n) be a statement. Suppose P(1) is true, and that whenever P(n) holds
for some n > 1, the statement P(n + 1) holds. Then P(n) is true for all n > 1.

Principle of strong induction

For each n €N, let P(n) be a statement. Suppose P(1) is true, and that whenever
P(1),P(2),..., P(n) hold for some n > 1, the statement P(n + 1) holds. Then P(n) is true for
alln > 1.

i Remark

The above three principles are equivalent. A proof of this is provided in Chapter 5 (see
Theorem 5.1).

Exercise 2.2. Show that

1 I 1 P 1 _on
1-2 2-3 nn+1) n+1
foralln € N.
Solution. For a positive integer n, let P(n) denote the statement that
LR S SR
1-2 23 nn+1) n+1

Note that P(1) holds.
Let k be a positive integer such that P(k) holds. Note that

1 1 1 1
T2 23 " sy TR DR 2
k 1
S RRCERIET) (using P(k))
k(k+2)+1
(k+1)(k+2)
(k+1)?
T k+D(k+2)
E+1

=T
This shows that if k is a positive integer and P(k) holds, then P(k + 1) also holds. By the principle of
induction, it follows that P(n) holds for any positive integer n. O

Exercise 2.3. Show that

1 1 n
13 35 " T an—DEn+D  2nt1

foralln € N.

Solution. For a positive integer n, let P(n) denote the statement that

LRSS S 1 o n
1-3 35 (2n—1)2n+1) 2n+1
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Note that P(1) holds.
Let k be a positive integer such that P(k) holds. Note that

11 1 1
33 T T @ ) TR D —DRRF D+ D)
__k + = (using P(k))
T 2%k +1 " 2kt D)2k 3) 8
2k? + 3k +1

(2k + 1)(2k + 3)

_ (k+1)(2k+1)
~ (2k+1)(2k + 3)

_ E+1

C2(k+1)+ 1
This shows that if k is a positive integer and P(k) holds, then P(k + 1) also holds. By the principle of
induction, it follows that P(n) holds for any positive integer n. |

Exercise 2.4. Show that

1 N 1 ot 1 _ n(n+3)
1-2-3 2-3-4 nn+1)(n+2) 4(n+1)(n+2)

foralln € N.

Solution. For a positive integer n, let P(n) denote the statement that
1 1 1 +3
1-2-3 2-3-4 nn+1)(n+2) 4(n+1)(n+2)
Note that P(1) holds.

Let k be a positive integer such that P(k) holds. Note that
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1 1 1 1
123 232" k(k+1)(k+2) + (k+1)(k+2)(k+3)
 k(k+3) 1 _
T Ak+0)(k+2) " k+)(k+2)(k+3) (using P(k))
k(k+3)% + 4

4k + D) (k+2)(k+3)
(k+1)(k+3)2— ((k+3)>—4)
4(k+1)(k+2)(k+3)
(k+1)(k+3)*— ((k+3)% —2%)
4(k+1)(k+2)(k+3)
(k+1)(k+3)*>— (k+1)(k+5)
4k+1)(k+2)(k+3)
(k+1)((k+3)>— (k+5))
4k+1)(k+2)(k+3)
k> 4+6k+9—(k+5)
4k +2)(k+3)
k4 5k+4
4k +2)(k+3)
B (k+1)((k+1)+3)
4((k+1)+1D)((k+1)+2)
This shows that if k is a positive integer and P(k) holds, then P(k + 1) also holds. By the principle of
induction, it follows that P(n) holds for any positive integer n. |

Exercise 2.5. Show that
3+ 11+ -+ (8n—5)=4n%?—n
foralln € N.

Solution. For a positive integer n, let P(n) denote the statement that
34+ 11+ -+ (8n—5) =4n? —n.
Note that P(1) holds.
Let k be a positive integer such that P(k) holds. Note that
3+11+4--+ (8k—5)+ (8(k+1)—5)
= (4k* — k) + (8k + 3) (using P(k))
=4k* + Tk +3
=4k*+8k+4— (k+1)
=4(k+1)? — (k+1).
This shows that if & is a positive integer and P(k) holds, then P(k + 1) also holds. By the principle of
induction, it follows that P(n) holds for any positive integer n. O
Exercise 2.6. Show that

an® —n
3

12432+ 4+ (2n—1)2 =

foralln € N.
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Solution. For a positive integer n, let P(n) denote the statement that

4n3 —n

3

12432+ +(2n—1)2=

Note that P(1) holds.
Let k be a positive integer such that P(k) holds. Note that
124324+ 2k—1)2 4+ (2(k+1)—1)2
4k® — k
R
4k3 — k + 3(2k + 1)?
- 3
4k — k4 12k* + 12k + 3
- 3
4k° + 12> + 11k + 3
B 3
Ak +1)3—(k+1)
3

This shows that if k is a positive integer and P(k) holds, then P(k + 1) also holds. By the principle of
induction, it follows that P(n) holds for any positive integer n. |

+ (2k +1)2 (using P(k))

Exercise 2.7. Show that

n+1n(n +1)

12 . 22 + 32 . 42 1L ooo b (71)n+1n2 — (71) 5

foralln € N.

Solution. For a positive integer n, let P(n) denote the statement that

1
1292432 42 4o (—1)"Hp2 = (1)n+1”(”2+ )
Note that P(1) holds.
Let k be a positive integer such that P(k) holds. Note that
k(k
= (—1)kt ( + D + (=12 (k +1)? (using P(k))
k(k+1) k 1)
,m(k (k+1) —2(k + 1) )
it ( k + 2))
= (- 1)k+1+1(k7 )((k?"‘ )+1).
2
This shows that if k is a positive integer and P(k) holds, then P(k + 1) also holds. By the principle of
induction, it follows that P(n) holds for any positive integer n. O

Exercise 2.8. Show that
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nn+1)(2n+1)
6 Y

2
1
13_|_23+33_|_..._|_n3: (@)

124224324 +n? =

hold for any positive integer n.

Solution. For a positive integer n, let P(n) denote the statement that
n(n+1)(2n+1)

6 I

1 2
13422433 4+..4n3= (@) .

Note that P(1) holds. Let & be a positive integer such that P(k) holds. Note that
12422 432+ + K2+ (k+1)?
k(k+1)(2k+1)
N 6
k(k+1)(2k+1) +6(k+1)?
N 6
_(k+1)(k(2k+1)+6(k+1))
6
(k+1)(2k* + k + 6k + 6)
- 6
_ (k+1)(2k* + Tk +6)
6
 (E+1)(k+2)(2k+3)
6
_(k+1)(E+2)2(k+1)+1)
6

124224324 +n? =

+ (k+1)2 (using P(k))

Also note that
P4+23 433+ + B+ (k+1)°

= (M> + (k+1)° (using P(k))

N

k
~ +(k+1)
o+ (Rt )

(
ol

(k+1(k+1 )>.

N

This shows that if & is a positive integer and P(k) holds, then P(k + 1) also holds. By the principle of
induction, it follows that P(n) holds for any positive integer n.

|
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Exercise 2.9. Show that
1 N 1 et 1 . 1 N 1 1 ey 1 1
n+l n+2 om 2 3 4 n—1 2n

forall n € N.

Solution. For a positive integer n, let P(n) denote the statement that

1+1++1_11+11++1 1
n+1 n+2 on 2

3 4 m—1 2n
Note that P(1) holds.
Let k be a positive integer such that P(k) holds. Note that

1

GrD+1 T wmri okt

R WS SRS SO SRR SRR

k+1 (k+1)+1 9% 2%k +1 2k+1) k+1

1 1 1 1 1

“rri T il T T T 2k

:(1_14_1_14_...4_ 1 _i)+ 1 — 1
273 1 2%k—1 2k) 2%k+1 2(k+1)

(using P(k))

:(1_14_}_14_...4_ 1 —i)—F 1 — 1
2 3 4 2k—1 2k 2k+1 2k+2
:1_1_{_1_14_...4_ 1 — 1 .
273 1 2k+1)-1 2k+1)
This shows that if k is a positive integer and P (k) holds, then P(k + 1) also holds. By the principle of
induction, it follows that P(n) holds for any positive integer n. O

# Definition

An integer is called divisible by a nonzero integer m if it is equal to mk for some integer k.

Exercise 2.10. Show that n3 + 5n is divisible by 6 for all n € N.

Solution. For a positive integer n, let P(n) denote the statement that n® + 5n is divisible by 6.

Note that P(1) holds.

Let k be a positive integer such that P(k) holds. Note that

(k+1)2+5(k+1)=(k*+3k*+3k+1)+ (5k +5)
= (k® 4+ 5k) + (3k* + 3k +6).

By the induction hypothesis, the integer k3 + 5k is divisible by 6. Also note that 3k% + 3k + 6 =
3(192 +k+ 2) is divisible by 3. Further, one of the integers k, k + 1 is even, and hence k% + k is even.
This gives that k? + k + 2 is even, and hence 3(k? + k + 2) is divisible by 2. It follows that 3(k* +
k + 2) is divisible by 6. This shows that (k + 1)® + 5(k + 1) is divisible by 6. This proves that if k is
a positive integer and P (k) holds, then P(k + 1) also holds.

By the principle of induction, it follows that P(n) holds for any positive integer n. O

Exercise 2.11. Show that 52" — 1 is divisible by 8 for all n € N.

Solution. For a positive integer n, let P(n) denote the statement that 52 — 1 is divisible by 8.
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Note that P(1) holds.
Let k be a positive integer such that P(k) holds. Note that
52(k+1) —1= 52k+2 -1
=5%.5% —1
=25-5%—1
=(24+1)-5%k—1
=24-5% 4 (5% —1).
By the induction hypothesis, the integer 52* — 1 is divisible by 8. Also note that 24 - 52* is divisible

by 8. This shows that 52(*+1) — 1 is divisible by 8. This shows that if k is a positive integer and P (k)
holds, then P(k + 1) also holds.

By the principle of induction, it follows that P(n) holds for any positive integer n. O
Exercise 2.12. Show that 5™ — 4n — 1 is divisible by 16 for all n € N.

Solution. For a positive integer n, let P(n) denote the statement that 5™ — 4n — 1 is divisible by 16.
Note that P(1) holds.
Let k be a positive integer such that P(k) holds. Note that

551 —4(k+1)—1=5-5—4k—4—1
=5- (5" —4k—1)+5-(4k+1) —4k—5
=5- (5 —4k —1) + 16k.

By the induction hypothesis, the integer 5¥ — 4k — 1 is divisible by 16. Using the above, it follows that
5F+1 — 4(k + 1) — 1 is divisible by 16. This shows that if k is a positive integer and P(k) holds, then
P(k + 1) also holds.

By the principle of induction, it follows that P(n) holds for any positive integer n. O

Exercise 2.13. Show that 6™ — 5n — 1 is divisible by 25 for all n € N.

Exercise 2.14. Show that n3 + (n + 1) + (n + 2)3 is divisible by 9 for all n € N.
Solution. For a positive integer n, let P(n) denote the statement that n3 + (n + 1) + (n + 2)3 is
divisible by 9.

Note that P(1) holds.

Let k be a positive integer such that P(k) holds. Note that

(k+1)° + (k+2)° + (k +3)°

= (B + (k+1)° + (k+2)%) — k% + (k+ 3)°

= (K + (k+1)3 + (k+2)3) — k> + (k® + 9k* + 27k + 27)

= (K* + (k+1)% + (k+2)%) + (9k* + 27k + 27).
By the induction hypothesis, the integer k3 + (k + 1)® + (k + 2)? is divisible by 9. Also note that
9k? + 27k + 27 is divisible by 9. This shows that (k + 1) + (k + 2)3 + (k + 3)3 is divisible by 9. This
implies that if & is a positive integer and P(k) holds, then P(k + 1) also holds.

By the principle of induction, it follows that P(n) holds for any positive integer n. O

Exercise 2.15. Show that
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for all n € N satisfying n > 1.

Solution. For a positive integer n, let P(n) denote the statement that
1 1 1

=t —=>/n
Attt ET
holds.
Note that P(2) holds, since
11 V2
R PRIV
vVioV2 2
Let k be a positive integer such that k > 2 and P (k) holds. Note that
1 1 1 1

—+—=+t =+

Vi V2 vk VE+1

>V + \/;:—H (using P(k))
>VE+1,
where the last inequality follows since
1 )? 1
k— (M— _k+1> =k—(k+1)+2—
1
T k41

> 0.
This shows that if k is a positive integer satisfying k > 2 and P(k) holds, then P(k + 1) also holds.
By the principle of induction, it follows that P(n) holds for any positive integer n satisfying n > 2.

O
Exercise 2.16. Show that 3™ > n? foralln € N.

Solution. For any n € N, let P(n) denote the statement that 3" > n?. Note that P(1) holds. Let k be
a positive integer such that P(k) holds. Note that
(k+1)2 =k 4+2k+1
<384+ 2k+1 (using P(k))
<3F 3k 4+ 38 (using k>1)

=33k
:3k+1.

This shows that if k is a positive integer and P(k) holds, then P(k + 1) also holds. By the principle of
induction, it follows that P(n) holds for any positive integer n. O

Exercise 2.17. Show that n! > 2" for all n € N satisfying n > 4.

Solution. For a positive integer n, let P(n) denote the statement that n! > 2.
Note that P(4) holds, since 4! = 24 > 16 = 2%,
Let k be a positive integer such that k > 4 and P (k) holds. Note that
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(k+1)! = (k+ 1k!
> (k+1) 28 (using P(k))
> 2.2k (using k > 4)
— ok+1
This shows that if & is a positive integer satisfying k£ > 4 and P(k) holds, then P(k + 1) also holds.

By the principle of induction, it follows that P(n) holds for any positive integer n satisfying n > 4.
O

!  Warning

It is important to verify the base case, that is, verifying that P(1) holds, even if it is trivial. For
example, if we define P(n) to be the statement that

n=n+1,
then P(n) implies P(n + 1) for any n € N. However, P(1) does not hold. Another example is to
take Q(n) to be the statement that 2n + 1 is even, then Q(n) implies Q(n + 1) for any n € N.
However, (1) does not hold.

Here are a few exercises where strong induction is useful.

Exercise 2.18. Show that every positive integer greater than 1 is a prime or is a product of prime
numbers.

Solution. For any integer n > 2, let P(n) denote the statement that n is a prime or is a product of
prime numbers.

Note that P(2) holds, since 2 is a prime.

Let k£ > 2 be an integer such that P(m) holds for all integers m satisfying 2 <m < k.Ifk+ 1lisa
prime, then P(k + 1) holds. If & + 1 is not a prime, then there exist integers a, b such that k + 1 = ab
and 1 < a < b < k+ 1. This gives that 2 < a < k and 2 < b < k. By the induction hypothesis, both
a and b are either primes or products of primes. It follows that k¥ 4+ 1 = ab is a product of primes. This
shows that if £ > 2 is an integer such that P(m) holds for all integers m satisfying 2 < m < k, then
P(k + 1) also holds.

By the principle of strong induction, it follows that P(n) holds for any integer n > 2. O

Exercise 2.19. Let the integers z;, x,, ... be defined by
Ly = 1)

.'L'2 = 2,

Lpto = 5(‘1771 + xn+1)

foralln € N. Show that 1 <z, < 2foralln € N.
» Tip

For any n € N, let P(n) denote the statement that 1 < z,, < 2 for all m € N satisfying m < n.

Exercise 2.20. The Fibonacci sequence Ky, F}, F5, ... is defined by
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F6::07
F’I:: 1
F =1,

S CERET)

FP+F+F+-+F:=FF,,

Fog=F + Fopy
for all n € N. Show that

for alln € NU {0}.

Exercise 2.21. Show that

for alln € NU {0}.
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Linear algebra

Chapter 3. Matrices
§3.1 Vectors
§3.1.1 Definitions and examples

A vector is a column of numbers. The numbers in the vector are called its components or

coordinates.

1 Remark

Throughout this course, most of the vectors to be considered, will have real or complex compo-

nents.

Recall that for two sets A, B, their cartesian product A x B is defined as
A X B:={(a,b) | a € A,b € B}.
The cartesian product of R with itself is denoted by R?. In other words,

R? :={(z,y) | z € R,y € R}

Similarly, one defines R3 asR x R x R, that is,

R?:={(z,y,2) | t €R,y € R,z € R}

# Definition

If n > 2 is an integer and A, A,, ..., A,, are sets, then their cartesian product A; x A, X --- X
A,, is defined as
A x Ay x - x A, ={(ay,aq,...,a,) | a; € A, forall i =1,2,...,n}.

The n-fold cartesian product of R with itself, that is, the cartesian product of n copies of R, is denoted
by R™. In other words,

R™ := {(z1, %9, ...,x,) | z; ERforalli=1,2,...,n}

Similarly, one defines C™ as the n-fold cartesian product of C with itself, that is,

C™:={(z1,29,..,2,) | z,€Cloralli=1,2,...,n}
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/" Example

The elements

of R? are vectors. The elements

1 0 0 10
0,111,101, 20
0 0 1 —2025
of R3 are vectors too. The elements
1+ 0
2—1 1, T
—31 1+1
of C3 are vectors as well.
§3.1.2 Vector operations
+ Definition
T Y1
Two vectors | “? | and | ¥? | in R™ are added component-wise. That is, the sum of two elements
X yn
T Y1
“2 [and | ¥2 | in R™ is defined as
T Yn
Ty Y1 1t Y%
x Ty +
:2 + ?J:z — 2 ! Ya
L1
If c € R is a real number and v = | “? | is a vector in R”, then the scalar multiplication of ¢
xn
with the vector v is defined as
.’El C- l‘l
x c-x
e | 2] = T2
x, c-x,

Note that 1 - v is equal to v. Instead of (—1) - v, we write —v. Further, ¢ - v is often written as cv.
!  Warning
In the above definition, we have used the same notation “+” for addition of two vectors and

addition of two real numbers, and the same notation “-” for scalar multiplication of a vector by a
real number and multiplication of two real numbers. The meaning will be clear from the context.
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i Remark

Note that the sum of two vectors in R" is again a vector in R"™. Also, the scalar multiplication of
a vector in R" by a real number is again a vector in R"™.

1 Remark

Similar definitions work for vectors in C".

v Example

1 4
Consider the vectors © = <2> and v = (5) in R3. Note that

3 6
144 5
ut+v=|24+5|=|T7]|,
3+6 9
and if ¢ = 3, then

1 3-1 3
c-u=3 21 =13-21=16¢6
3 3-3 9

§3.2 Matrix
§3.2.1 Definitions and examples

# Definition

A matrix is a rectangular array of numbers arranged in rows and columns. A matrix with m rows
and n columns is called an m X n matrix. The numbers in the matrix are called its entries or
elements. A matrix is called a square matrix if its number of rows, and its number of columns
are equal.

# Definition

Two matrices are equal if they have the same size and their corresponding entries are equal.

1 Remark

»

The size of a matrix is always given in the form “(the number of rows) x (the number of columns)
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/" Example

The following is a 2 X 3 matrix:

The following is a 3 X 2 matrix:

/" Example
Here is an example of two matrices which are not equal.
(63763
If A is a matrix, its (7, j)-th entry, that is, the entry common to the i-th row and the j-th column is
denoted by a,;. Thus an m x n matrix A can be represented as

all (112 e aln
A _ a21 CL22 e a2n
A1 A oo Gn

One also writes 4 = (aij)lggm to denote the matrix A, or one writes A = (aij) if the size of A is
1<j<n
clear from the context.

1 Remark

Note that for an 17 X n matrix A, one writes A = (the (7, j)-th entry of A)1<i<y,.
1<j<n

If A= (aij) is an n X n matrix, then the entries a,;, aq,, ..., a,,, are called its diagonal entries. A

ey Unn

square matrix is called a diagonal matrix if its entries, other the diagonal entries, are equal to zero.
§3.2.2 Matrix times a vector
The product
(1 2 3) ;
456 9
is defined by “combining” each row of the matrix with the vector as follows:

123 ; (I xXT+2x8+3x9
456/ U T4+5x846x%x9)’

o 50
which is equal to the vector (122>.

As we see, for this to work, the number of columns of the matrix must be equal to the number of rows
of the vector. Thus, when the product of an m x n matrix with a vector in R is defined similarly, the
result is a vector in R™.
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# Definition

If
all a/12 cee aln
A — a21 a22 cee azn
Q1 Ao oo Qi
T

is an m X n matrix with entries in R and is a vector in R™, then one defines

an a12 cee aln .731 allxl + a/12x2 + + a].’I’L"L‘n
Qg1 gy - Qo || T2 | _ | G21%1 + Qg% + -+ + A9, T
A1 A2 - Cpp 2% Qpp1T1 + QppoTo + o0 + Ty

Note that the result is a vector in R™.

§3.2.3 Matrix times a matrix
Similar to the case of vectors, one defines addition, subtraction, and scalar multiplication of matrices
entry-wise. For addition and subtraction, the two matrices must be of the same size. Indeed, if

A= (aij)gigm,, B = (bij)lsiSm,

1<j<n 1<j<n
are two m X n matrices, then their sum A + B and difference A — B are defined as

A+ B = (a;; + b;j)1<i<m,,

1<j<n
and
A—B:= (aij - bij)1§i§m7

1<5<n

respectively. If ¢ is a real number and A = (aij)lgigm, is an m X mn matrix, then the scalar multipli-
1<j<n

cation of A with c is defined as

Note that 1 - A is equal to A. Instead of —1 - A, we write —A. Further, ¢ - A is often written as cA.

i Remark

Note that the sum of two matrices with entries in R is a matrix with entries in R. Also, the scalar
multiplication of a matrix with entries in R by a real number is again a matrix with entries in R.

i Remark

Similar definitions work for matrices with entries in C.

36



MTH102

" Example

If
123
A= (4 5 6)
and
7 8 9
B= (10 11 12)’
then

A+B=(1+7 248 3+9):<8 10 12)’

44+105+11 6412 14 16 18
and if ¢ = 3, then
c-A—3-123—3'13.23'3— 3 6 9
o 456) \3-43-53-6) \12 15 18)°

Exercise 3.1. If A, B, C' are matrices of the same size, show that
A+(B+C)=(A+B)+C.

Exercise 3.2. If A, B are matrices of the same size, show that
A+B=B+A.

Exercise 3.3. If A is an m X n matrix, show that

A+0 0 +A=A

mxn — YmXn

holds, where 0,,,,, denotes the m X n zero matrix, that is, the m X n matrix whose entries are
all zero.

Exercise 3.4. Show that if A is a matrix and c, d are real numbers, then
(c+d)A=cA+dA
and

c(dA) = (cd)A.
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« Definition
The transpose of an m X n matrix
A= (aij)lgiSTm
1<j<n
is the n X m matrix
T._
AT = (%i)lgign,-
1<j<m
That is, if
all a12 cee aln
a21 a22 cee a2
A= : : . :n ?
1 Qo o G,
then its transpose is the n x m matrix
A1y Qg1 Gy
AT — | 12 Q22 7 Gmo
A1p Q2 " Ay
v Example
If
A 123
- \456)

then its transpose is the 3 x 2 matrix

N
~
|
W N =
S U

i Remark

Note that the transpose of a matrix is obtained by interchanging its rows and columns.

. . . T
Exercise 3.5. If A is a matrix, what is (AT)" ?

Exercise 3.6. Show that if A, B are matrices of the same size, then
(A+B)" = AT + BT,
Solution. Write
A = (aij)1gigm,, B = (bij)lﬁiﬁm,-

1<j<n 1<j<n
Note that
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T
(A+ B)T = ((aij + bij)lsiSm,>

= (a‘n + bﬂ)lgzgn,
1<j<m

= (aji)lgign, + (bji) 1<i<n,
1<j<m 1<j<m

= AT + BT
Exercise 3.7. Show that if A denotes a matrix, then
(AT)" = A.

Solution. Write

Note that
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The product of an m X n matrix A with an n X p matrix B is defined as follows:

AB = (cij)lsism,y
1<j<p

where

= ailblj + ai2b2j + ot ainbnj

foralll <¢<mand1l < j < p.In other words, given an m X n matrix

ajp Q2

A= | %21 G2

A1 Qg oo

and an n X p matrix

we have

€11 Cr2

AB = Co1  Coo

Cmi Cma -

where

. oag
. Gy

b
by

= a;1by; + a;9by; +

n

n

amn

P

P
. )

b

np

et ainbnj

forall1 <¢ <mand1 < j < p. Note that the result is an m X p matrix.

In other words, the (%, j)-th entry of the product AB is obtained by “combining” the i-th row of A

with the j-th column of B.

1 Remark

Note that the product AB is defined only when the number of columns of A is equal to the

number of rows of B.
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/" Example

If
123
A_(456)
and
7 8
B=1]9 10|,
11 12

then the product AB is the 2 X 2 matrix

AB — IX7T4+2%x94+3x11 1 x8+2x10+3x12
T UXTHEIX9IH+6x11 Ax8+5x10+6x 12

(58 64
— \139 154)

? Question

Suppose A, B are matrices.
+ Under what conditions are the products AB and BA defined?
« Under what conditions is the product BT AT defined?

Exercise 3.8. Show that if A, B, C are matrices such that the products A(BC) and (AB)C are
defined, then
A(BC) = (AB)C.

Exercise 3.9. Provide examples to show that in general, matrix multiplication is not commutative,
that is, AB #+ BA for some matrices A, B.

Exercise 3.10 (**). Show that for any n € N with n > 2, there are n X n matrices A, B such that
AB # BA.

?  Question

Can induction be used for the above exercise?

Exercise 3.11. If A is an n X n matrix, show that

A, =1, A=A
holds, where I, denotes the n x n diagonal matrix, with all diagonal entries equal to 1, that is,
10..0
I, = ol
00 .. 1
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i Remark

The matrix I,, as above, is called the identity matrix of order n, or the n X n identity matrix.

Exercise 3.12. If A is an m X n matrix, show that
I A=AAI = A

where I, (resp. I,,) denote the m X m (resp. n X m) identity matrix.

Exercise 3.13. If A is an m X n matrix with entries in R and c is a real number, then
cA = (cl,)A = A(cl,),

where I, (resp. I,,,) denotes the n x n (resp. m x m) identity matrix.

Exercise 3.14. Show that if A, B are matrices, then
(AB)T = BTAT.

i Remark

Given a square matrix A, that is, a matrix with the same number of rows and columns, the product

AA is often denoted by A2. Similarly, one defines A3, A%, ....

« Definition

Let A be an n x n matrix, and k be a positive integer. The k-th power of A, denoted by AF s
defined as the product of k copies of A.

Exercise 3.15. Show that if
01
a=(11)

F F
A" = n—1 n )
( Fn Fn+1

for all n € N with n > 1, where F,, denotes the n-th Fibonacci number.

then

Exercise 3.16. Compute

001
0--10
1---00

Exercise 3.17. Show that if A, B,C are matrices such that the sum B + C, and the products
AB, AC, A(B + C) are defined, then
A(B+C)=AB+ AC.
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Exercise 3.18. Show that if A, B,C are matrices such that the sum B + C, and the products

AB, AC, A(B + C) are defined, then
(A+ B)C = AC + BC.

§3.2.4 Few to many more!
& Exercise

Suppose A is a 3 X 2 matrix, and

Determine
103 97
A (407) A (393) )

Solution. Observe that

This yields

200 —4
= | 800+8
1400 + 20

196
=] 808
1420

(30) = 0() - ()

Also note that

Using this we obtain
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() =400 () - ()

=100 8 | —| 8
14 20

200 + 4
=| 8008
1400 — 20

204
=| 792
1380

i Remark

The above exercise indicates that if we know how a matrix acts on a bunch of vectors, then we
can determine how it acts on any vector that can be expressed as a linear combination of those
vectors.

A linear combination of vectors vy, vy, ..., v}, is a vector of the form
cl'l)]_ + C2'U2 + + Ckvk,
where ¢, ¢y, ..., ¢;, are real numbers®.

Note that any vector in R? is a linear combination of the vectors

(o))

So, if A is a 3 X 2 matrix and we know how A acts on the vectors

1 0
0/)°\1)’
1 0
A()- ()
then we can determine how A acts on any vector in R?. Indeed, for any ( ) in R2, we have

ET .

A0 =4 C) + ()
—ea(2) +aa(9).

that is, we know the products

and hence we obtain

*One can also allow the ¢;’s to be complex numbers, depending on the situation.
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& Exercise

Show that every vector in R? can be expressed as a linear combination of the vectors

1 3
4)°\7)"
Solution. Note that for any ( ) in R?, we have

)

that is, (z) is a linear combination of the vectors

1 0
0/)°\1)"
1 0
0/’\1
can be expressed as linear combinations of the vectors

(&) ()

So, it suffices* to show that

(1)-1()- (7).

which yields 3(‘11) - 16) N (g !
()=-2()+:()
RO

MTH102

A careful reading of the above exercises and the remark indicates that if there are a few vectors
Uy, Vg, ..., U, in R™ such that every vector in R” can be expressed as a linear combination of those
vectors, then knowing how a matrix A acts on the vectors vy, vy, ..., v}, is sufficient to determine

how A acts on any vector in R"™.

*How does it suffice?
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/" Example

Note that
123 1 1
456 0l=14]1,
789 0 7
123 0 2
456 1]1=15],
789 0 8
123 0 3
456 0l =16
789 1 9

hold. The vectors
1 0 0

61 = O 762 = 1 763 = 0

0 0 1

are called the standard basis vectors of R3. The standard basis vectors of R? are

)

In general, the vectors

1 0 0 0
0 1 0 0
eg:=10],eq:=|0f,e5:=1]11],...,e,:=]0
0 0 0 1

lying in R™ are called the standard basis vectors of R™.

" Example

Note that
12 1
A=)
56 5
12 2
3 (‘f): 4
56 6

hold. The vectors

are called the standard basis vectors of R?.

Exercise 3.19. If A is an m X n matrix, then show that forall i = 1, 2, ..., n, the product Ae; is equal
to the i-th column of A, where e, denotes the i-th standard basis vector of R, that is,
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with 1 in the ¢-th position, and 0’s elsewhere.

1 Remark

linear combination of vy, ..., V.

§3.3 System of linear equations
S Exercise

Solve the system of equations in the variables x, y:
2z + 3y = 8§,
Sx + Ty = 19.

A acts on any vector v in R™. Note that this is achieved by determining the entries of A.

of the standard basis vectors, we can determine how A acts on any vector v in R"”.

MTH102

Exercise 3.19 shows that the columns of a matrix A can be obtained by multiplying A with the
standard basis vectors. Further, if A is an m X n matrix, and we know how A acts on the standard
basis vectors of R”, then we can determine all the entries of A, and hence we can determine how

Moreover, the first remark in Section 3.2.4 indicates that if we know how A acts on the standard
basis vectors of R™, then using that every element of R™ can be expressed as a linear combination

Furthermore, if v;,v,,...,v;, are elements of R", then knowing how a matrix A acts on
Uy, Vg, ..., Uy, is sufficient to determine how A acts on any vector which can be expressed as a

Solution. Multiplying the first equation by 7, and the second equation by 3, and taking the difference

of the equations obtained, we get
7-20—3-5x=7-8—3-19,
which yields
7-8—3-19
r=——"-"
7-2—3-5

Similarly, multiplying the first equation by 5, and the second equation by 2, and taking the difference

of the equations obtained, we get
5-3y—2-Ty=5-8—-2-19,
which yields
5-8—2-19
Yy=———"—
5:-3—-2-7

Alternate solution. Note that the given system of equations can be rewritten as

(6= ()

which can be thought as a concise way of putting the information
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(212 = () Q

+ to solve for z, the first equation was multiplied by 7, and the second equation by 3, and next, we
considered the difference of the equations obtained,

Recall that in the previous solution,

+ to solve for y, the first equation was multiplied by 5, and the second equation was multiplied by
2, and then, we considered the difference of the equations obtained.
The two steps can be put together in the matrix form as

() ()
() i) = (2 ()

The advantage of this process is that, first y gets eliminated in the first step and helps to find z, and in

Using Equation 3, it yields

the next step, = gets eliminated and leads to finding y. Stated in matrix form, we have that

7T =3\(2x+3y\ _((7T-2—-3-5)x
5 =2)\bzx+7y) \(5-3—2-T)y)
We could have also written

7 =3\ (2x+3y\ _((7-2—3-5)z
—5 2 )\bzx+T7y) \(-5-3+2-Ty)’
Thus, rewriting the given sysem of equations in the matrix form as in Equation 3, and multiplying it
from the left by the matrix
7T =3
-5 2 )

7T =3\ (2x+3y\ (7 —=3\(8
-5 2 Sr+T7y)  \-5 2 19)°
(7-2=3-5)xz\ (7 =3\(8
(=5-3+2-T)yy) \-5 2 19)°
x 7 =3\(8
resag) = (5 7))
and hence, the solution to the given system of equations is given by
z\ 1 7T —3\(38
y) 7-2-3-5\-5 2 )\19)°

Summarizing the above. The given system of equations can be rewritten as

(i) = () W

G96)- () ®
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Multiplying the above from the left by the matrix

ﬁ(fs _23)’ (6)

1 7 =3\ (2x+3y) _ 1 7 —3\/(8
7.-2—3.5\—5H 2 Sr+T7y) 7-2—3.-5\—H 2 19)’

which shows that the solution to the given system of equations is given by

() - == (5 ) (%)

we obtain

1 Remark

In the above, Equation 5 was multiplied by the matrix as in Equation 6, since multiplying the

23
57
as in Equation 5 from the left by the matrix

1 7 =3
7-2—-3.5\-5 2 )’
as in Equation 6 yields

1 7 =3\ (2 3\ _ 1 7-2—3.5 0
7-2—3-5\—5 2 57/ 7.-2-3.5 0 —5.34+2.7

()

matrix

which is the 2 x 2 identity matrix.

§3.4 Invertible matrices
« Definition

Let A be an n X n matrix. If there is an n X n matrix B such that
AB=BA=1,

then B is called an inverse of A. If A admits an inverse, then A is called invertible.

Fact 3.20. Show that if B, C' are inverses of an n X n matrix A, then B = C.
A proof of the above is provided in Chapter 6.

i Remark

If A is an n X n matrix, and A admits an inverse, then it is called the inverse of 4, and is denoted
by A~L.

Exercise 3.21. Let A, B be invertible n x n matrices. Show that AB is invertible, and that
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(AB)' = B1A1.

Compare the above exercise with Exercise 3.14.
Solution. Note that
(AB)(B'A™')=A(BB H)A!
= AILA7!

= AA™!

and
(B*A™')(AB)=B"'(A'A)B
=B 'l B
=B'B
=1,.
This shows that AB is invertible, and that
(AB)"'=B1tA"L

Lemma 3.22. Let

ab
A= (c d)
be a 2 x 2 matrix. The following statements are equivalent.

e A is invertible,

e ad — bc is nonzero,
e

f
Moreover, if A is invertible, then its inverse is equal to

1 d —b
ad —bc\—c a ]’

ab d —=b\ _(ad—bc 0
cd]\—=c a ) 0 ad —bc )’
d —bY(a b\ _ (ad—bc 0

—c a cd] 0 ad — be

hold. Assume that if A is invertible. It follows that

* every vector ( ) can be expressed as a linear combination of the columns of A.

Proof. Note that
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B _1_ (ad—bc 0 1
(ad —bc)A™ = ( 0 adbc)A
([ d =b\(a b\ ,_4
~\—c a J\cd
_ ( d —b) AA
—c a
d —b
B (—c a )IZ

Note that if ad — bc = 0, then a, b, ¢, d are equal to 0, which implies A = 0, which is impossible since
AA7L = I,. Hence, ad — bc is nonzero, and

1 d —b
Al = .
ad — bc (—c a )

Conversely, note that if ad — bc # 0, then it follows that the matrix
1 d —b
ad —bc\—c «a

) can be expressed as a linear combination of the columns of A, then

is the inverse® of A.

Also note that if every vector |

in particular, the vectors ((1)) , (15 can be expressed as a linear combination of the columns of A. This

implies that there are real numbers z,, y;, Z,, Y, such that

A() = (o)
A(2)=()

A(ml 332> _7
Y1 Yo >

implying that A is invertible®. Further, if ad — bc is nonzero, then as observed above, it follows that

A (a\, _—c (B _[1
ad —bec \ ¢ ad —bc\d) \0)’
—b a n a by (0
ad —bc\c ad —bc\d) \1

hold, which shows that every vector (e

and

This shows that

f) can be expressed as a linear combination of the columns of
A. O

*Why?
‘How?
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# Definition

IfA= (Z Z) is a 2 X 2 matrix, then its determinant is denoted by det A, and is defined as
det A := ad — be.

i Remark

The determinant of a 2 X 2 matrix can be used to determine whether the matrix is invertible or
not. Indeed, by Lemma 3.22, the following statements are equivalent.

o The matrix (Z Z) is invertible.

o The determinant det ( (CCL Z)) is nonzero.
Moreover, if (Z Z) is invertible, then its inverse is given by
1

det( (2 1)) (—dc _ab)

c d

Exercise 3.23. If A, B are 2 X 2 matrices, then show that
det(AB) = det(A) det(B).

Solution. Let

and

be 2 x 2 matrices. Note that

ce+dg cf +dh
Using the definition of determinant, we obtain
det(AB) = (ae + bg)(cf + dh) — (af + bh)(ce + dg)
= acef + adeh + bcfg + bdgh — acef — adfg — bceh — bdgh
= adeh —adfg+ bcfg — bceh
— (ad — be)(eh — fg)

AB — (ae+bg af+bh)

= det(A) det(B).
|
Exercise 3.24. Solve the system of equations in the variables z, y:
5 + 2y = 11,
3z + 4y = 8.

Solution. Note that the given system of equations can be rewritten as

GG - () @

Note that
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aer
(

which is nonzero. Hence, the matrix

5 2

(3 4)> =5-4—-2-3=14,
2
4

g )is invertible, and
52\ 1[4 —2
34)  14\-3 5 )
5 2

Multiplying Equation 7 from the left by the inverse of the matrix (3 4), we obtain

() =ul5 7))
() -ti(%) - ()

Exercise 3.25. Solve the system of equations in the variables z, y:
122 — 25y = —A47,
—7x 4+ 30y = 51.

which yields

Solution. The given system of equations can be put in the matrix form as
12 —25\ (=x —47
(5 0)6)= () ®

det((12 25)) =12-30 — (—25) - (—7) = 360 — 175 = 185,

Note that

-7 30

12 —25
-7 30

12 =25\ _ 1 (3025
—7 30 185\ 7 12)
Multiplying Equation 8 from the left by the inverse of the matrix (ﬁ ;?)5>, we obtain

z\ 1 (30 25) (—47
y) 185\ 7 12\ 51 )’
(x> 1 (-1410+1275> _ (—%) _ (-%)
= Tor - - 283 - 283 :
Y 185 329 + 612 I T

Exercise 3.26. Solve the system of equations in the variables z, y, 2:
20 + 3y + 2z =1,
dr +y+ 22 =2,
3T + 2y + 3z = 3.

which is nonzero. It follows that the matrix ( ) is invertible, and

which yields

Solution. The given system of equations can be rewritten as

T 1
Aly|=1|2] 9)
z 3
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where

Note that A~ is equal to’

1 1 7 =5
5 6 -3 0
-5 —5 10
Indeed, observe that
1 1 7 =5 1 231 1 7 -5
Axﬁ 6 -3 0 :E412 6 -3 0
-5 —5 10 323 -5 —5 10
1 15 0 0
=1 0 15 0
0 0 15
:I37
and
1 1 7 =5 1 1 7 -5 231
-5 —5 10 -5 —5 10 323
1 15 0 0
=—| 015 0
15l 0 15
:I3.
Multiplying Equation 9 from the left by A~1, we obtain
T 1
y|=A"2],
z 3
which yields
T 1 1 7 =5 1 1+14—-15 0
Y =1 6 -3 0 2 =1 6—-6+4+0 =10
z -5 =5 10 3 —5—10+30 1

|

Exercise 3.27. Let A, B be 2 x 2 matrices. Show that if AB is invertible, then both A and B are
invertible.

Compare the above with Exercise 3.70, Exercise 3.71, Exercise 3.87.

Exercise 3.28. Let A be an n X n matrix. If P is an invertible n X n matrix, then show that
(PAP1)* = pAkp-1

holds for any positive integer k.

"One may wonder how to find the inverse of an invertible 3 x 3 matrix. One way is to use the Gaussian elimination
method, to be discussed in Section 3.7. Can one also have a formula for the inverse of an invertible 3 X 3 matrix, similar
to the formula for the inverse of a 2 X 2 matrix as in Lemma 3.22? See Lemma 3.96 for the details.
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Solution. We prove the statement by induction. Let P be an invertible n X n matrix. For a positive
integer k, let P(k) denote the statement

(PAPY)* = pAkp-1,
Note that P(1) holds. Assume that P(k) holds for some positive integer k. Then, using the induction
hypothesis, we obtain

(PAPV! = (AP (PAPY)
— (PA*P1)(PAP™)
= PA*(P71P)AP!

= PA*I AP~}

=P Ak+1 Pl
This shows that P(k + 1) holds. Hence, by the principle of mathematical induction, P(k) holds for all
positive integers k. |

§3.5 Systems of linear equations again

§3.5.1 Linear combination of the columns of a matrix

Here are further examples of systems of linear equations.

System of linear equations Matrix form Solution(s)  Associated matrix
r+2y=1, 1 2 T 1 Unique Invertible
3r— b5y =—7 (3 _5> (y) N <_7)
x+2y=1, 12\ [z 1 Infinitely many® Not invertible
i (3)0)=()
z+2y=1, 12\ /z 1 None Not invertible
32+ 6y = 2 (3 6) <y> - (2)
? Question

Which of such systems of equations can be solved?

*Why?
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i Remark

Consider the following system of linear equations.
12345z + 67890y = 11111,
54321x + 9876y = 22222.

To solve it, we need to find a vector (Z) in R? satisfying

12345 67890\ (z) _ (11111
54321 9876 y)  \22222)°
In other words, we need to find real numbers x, y such that

12345 67890\ (z\ (12345 67890 (we; + yey)
54321 9876 ) \y)  \ 54321 9876 1T Ye

. 12345 67890 . 12345 67890 .
~ T\ 54321 9876 )1 T Y\ 54321 9876 )2

_ o[ 12345) (67890
~ \54321) T Y\ 9876
11111), where e, e, are the standard basis vectors of R.

22222

It is left to determining whether some linear combination of the columns of the matrix

12345 67890 . 11111 . — . .
(5 1391 9876 ) is equal to (22222> .If such a linear combination exists, then the system of equations

is equal to (

has a solution, and if such a linear combination does not exist, then the system of equations
does not have a solution. If there is more than one such linear combination, then the system of
equations has more than one solution, etc.

i Remark

The above discussion shows that solving a system of linear equations is equivalent to determining
whether some linear combination of the columns of a matrix is equal to the given vector. This is
the reason why the notions’ of column space and linear span of vectors are important in the study
of systems of linear equations.

1 Remark
Consider a matrix (Z Z), and a vector (a> where a, b, ¢, d, «, 8 are real numbers. If (g) is not
a linear combination of the columns of (z Z), that is, if g is not a linear combination of the

vectors (Z) and (Z), then the system of equations
ab)(z o
(2)() - ()

Lemma 3.29. Let A be a2 x 2 matrix, and let (g) be a vector of R?. Show that the following statements

admits no solution.

are equivalent.

e The vector (‘;) is a linear combination of the columns of the matrix A.

* The system of equations

°The notions of column space and linear span of vectors will be introduced formally at a later stage.
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admits at least one solution.

o

Proof. Assume that ( 8

are real numbers z, y, such that

) is a linear combination of the columns of the matrix A. This shows that there
A% = O‘) .
()=
4(%) = a)
(y> (ﬂ

Conversely, assume that the system of equations
x o
A =
()= ()
admits at least one solution, say (zj) It follows that
x o
A()-G)
(3/1 B

This shows that (g) is a linear combination of the columns of the matrix A. O

Hence, the system of equations

admits at least one solution.

§3.5.2 Homogeneous system of linear equations

Let us first consider the solutions to the system of equations
a b\ (x 0
(2)G) =) o
Note that (8) is a linear combination of the columns of (Z Z), since
0 a b
(o) =0(c) +o(a)
This shows that (8) is a solution to Equation 10. It is called the trivial solution to Equation 10.

Case 1

Let us first consider the case that the matrix A is invertible.
Note that under this hypothesis, Equation 10 has no solution other than (8) Indeed, if ( ) is

Zy
Y1

another solution to Equation 10, then

CE)-()
(0) (0= (6)
(o) =)

Hence, if A is invertible, then the only solution to Equation 10 is (8)

This shows that

which yields
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Observation

If Equation 10 has at least one solution other than (8) then Equation 10 has infinitely many
solutions. Indeed, if <22) is a solution to Equation 10 other than ( ) then for any real number
2
t, the vector ¢ @2) is also a solution to Equation 10, and hence, Equation 10 has infinitely many
2

solutions.

Case 2

Now let us consider the case that the matrix A is not invertible. By Lemma 3.22, we have ad —

be = O, this mpliesthat () =(3) = (") = (5):
/(0 =8) =) = (o)
£0(4)-()

(£9)(%)-()

This shows that if A is not invertible, then the vectors ( d ) and (_ ) are solutions to Equation 10.

and consequently,

(SIS

o

Subcase 2a

If the vectors (i) and (i) are equal to the zero vector, equivalently, if a, b, ¢, d are all equal

to 0, then any vector (2) of R? is a solution to Equation 10.

Subcase 2b

If not both of the vectors ( d ) and ( ) are equal to the zero vector (equivalently, at least one of
them is nonzero) and A is not invertible, then Equation 10 admits a solution other than <8), and
moreover, not all vectors of R? are solutions to Equation 10 since not all of (é) , (?) are solutions

to Equation 10.

Lemma 3.30. Consider the system of linear equations

46) =) )

where A is a 2 X 2 matrix. The following statements are equivalent.
* The matrix A is invertible.
* The system of equations as in Equation 11 admits a unique solution, that is, it admits no solution
other than the trivial solution 8 .
e The trivial linear combination (that is, the linear combination using zeroes as the coefficients) of
the columns of the matrix A is the only linear combination of the columns of A that is equal to

(o)
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Furthermore, the following statements are equivalent.
* Any element of R? is a solution to Equation 11.
* The matrix A is the zero matrix.
Moreover, the following statements are equivalent too.
* The system of equations as in Equation 11 admits a solution other than the trivial solution (8),

and not all elements of R? are solutions to Equation 11.
 The matrix A is not invertible and nonzero.

A proof of the above is provided in Chapter 6.

Exercise 3.31. Let A be a 2 x 2 matrix. Let V' be the set of solutions to the system of equations

()=o)
r=1(6) =) =)}

Show that for any u,v € V and ¢ € R, the element u + v of R? lies in V, and the element cu also

that is,

liesin V.

Solution. Let u, v be elements of V, and let ¢ be a real number. Note that

At +v) = Au+ Av = (8) + (8) - (8)

and
0 0
A(cu) = c(Au) = c<0> = (0)
This shows that both u + v and cu liein V. O
1 Remark

What about the difference of two elements of V? If u,v are elements of V' and ¢, d are real
numbers, then what can be said about the element cu + dv of R2?

Exercise 3.32. Let A be a2 x 2 matrix. Let V' be the set of vectors which can be expressed as a linear
combination of the columns of A, that is*°,

V= {(y) ER?: (y) :A(j) fom e GR}.

Show that for any u,v € V and ¢ € R, the element u + v of R? lies in V, and the element cu also
liesin V.

Solution. Let u, v be elements of V, and let ¢ be a real number. By the definition of V, there exist real
numbers s;, ¢, Sy, t5 such that

*Observe that
A(‘Z) = 5C) + tC,,

where C}, C, denote the first and second columns of A respectively.
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Note that
_ 51 Sa) _ 81 Sg _ s1+ 89
v = A(tl) +A<t2) - A((tl) + (t)) _ A(tl +t2),
and
_ S1 _ S1 _ €S
u=e(a(in)) =a(e()) =)
This shows that both u + v and cu liein V. O

Exercise 3.33. Let A be an m x n matrix. Let V' be the set of solutions to the system of equations
Au =0,
that is,
V={veR": Av=0}.

Show that for any u,v € V and ¢, d € R, the element cu + dv of R liesin V.

Solution. Let u, v be elements of V, and let ¢, d be real numbers. Note that
A(cu + dv) = c(Au) + d(Av) =c-0+d-0=0.

This shows that cu + dv lies in V. O

Compare the following exercise with Exercise 3.62.

Exercise 3.34. Let A be an m X n matrix. Let V be the set of vectors which can be expressed as a
linear combination of the columns of A4, that is,

V ={veR™:v= Au for some u € R"}.
Show that for any u,v € V and ¢, d € R, the element cu + dv of R lies in V.

Solution. Let u,v be elements of V, and let ¢, d be real numbers. By the definition of V, there exist
vectors uq, uy € R™ such that

u = Auy,
v = Au,.
Note that
cu+ dv = c(Auy) + d(Auy) = A(cuy) + A(duy) = A(cuy + duy).
This shows that cu + dv liesin V. O

§3.5.3 General system of linear equations
If (g) is a linear combination of the columns of the matrix (Z Z) , then there exist real numbers z, y,

c = .

This shows that the system of equations
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has at least one solution, namely (22) If (21) is another solution to the above system of equations,
then
() =)
¢ d)\n B)
ab\(zy) (a b)\[z
cd)\y,) \ecd)\wy )
) (G)-())=0)
cd Y1 Yo 0

holds. This shows that the difference of any two solutions to the system of equations

a bz [«
cd)\y) \p
is a solution to the system of equations

(£ 0)() - 6)

Conversely, if (zz) is a solution to the system of equations
2

£2)6)=6)
)

This shows that

Hence,

then

T2
Y2

This shows that if ( ) is a solution to the system of equations

(£ 2)(2) - )

then (I(’) + <zz> is also a solution to the system of equations
2

y” () -(2)

In summary, if <g) is a linear combination of the columns of <Z Z), then the solutions to the system

(2)()-)

are in one-to-one correspondence with the solutions to the system of equations

(£ 0)(2) - 6)

of equations
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(6% a
C
the solutions to the system of equations
ab)(z) [«
cd)\y) \B
are in one-to-one correspondence with the solutions to the system of equations
ab)(z\ (0
cd)\y) \oJ)
Hence, to determine the number of solutions to the system of equations
ab)(z) [«
cd)\y) \p

it suffices to determine the number of solutions to the system of equations

(£ 0)(2) = G)

(07
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The above discussion shows that if ( B) is a linear combination of the columns of ( Z), then

Lemma 3.35. Let A be a 2 x 2 matrix, and let (g) be a vector ofR2. Assume that (B) is a linear

combination of the columns of the matrix A. Then the solutions to the system of equations

1(;)=(3)

are in one-to-one correspondence with the solutions to the system of equations

T 0
A= o)
More specifically, for any fixed solution ( ) to the system of equations

Zo
Yo

a(5)=(3)
()= (G- ()

is a bijection from the set of solutions to the system of equations

()= (3)

to the set of solutions to the system of equations

4(3) = (o)

the map

having the following map as its inverse:

Proof. Deferred.
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i Remark

The terms “one-to-one correspondence” and “bijection” will be introduced formally at a later
stage. The proof of the above lemma is deferred until then.

§3.6 Special types of matrices

§3.6.1 Diagonal, scalar, and triangular matrices
Recall that a matrix is called a square matrix if it has the same number of rows and columns.

# Definition

A square matrix A is called diagonal if all its non-diagonal entries are equal to zero.

/" Example

The following matrices are diagonal.

100 i 00
020,(8}0,000
003 00m

Some non-diagonal matrices are as follows.
12 01 10
03)°\00)"\—-11)°
+ Definition

A square matrix A is called scalar if it is a diagonal matrix and all its diagonal entries are equal.
In other words, an n X n matrix A is called scalar if

A=,

for some scalar .

" Example

The following matrices are scalar.

20 —3 0.0 00
02) |0 =30 (0]
0 0 -3

Some non-scalar matrices are as follows.

(o2)
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# Definition

A square matrix A is called triangular if all its entries below the main diagonal are equal to zero,
or if all its entries above the main diagonal are equal to zero.
A triangular matrix A is called upper-triangular if all its entries below the main diagonal are

equal to zero.
A triangular matrix A is called lower-triangular if all its entries above the main diagonal are

equal to zero.

v Example

The following matrices are upper-triangular.

Some non-triangular matrices are as follows.
12
34)

§3.6.2 Symmetric, and skew-symmetric matrices

« Definition

A square matrix A is called symmetric if

AT = A,

v Example

The following matrices are symmetric.

Some non-symmetric matrices are as follows.

(33 (6o) (50)
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+ Definition
A square matrix A is called skew-symmetric if
AT = — A
" Example
The following matrices are skew-symmetric.
0 23 0 8 00
_205’—80’00'
-3 50
Here are some matrices that are not skew-symmetric.

(33) (0 0) (4 2)

Exercise 3.36. Let A be a square matrix. Show that if A is symmetric and skew-symmetric, then A
is the zero matrix.

Solution. Assume that A is symmetric and skew-symmetric. It follows that

AT = A,
AT = A,
This shows that
A=—A,
which yields
2A =0,
and hence, A is the zero matrix. O

Fact 3.37. Any square matrix can be uniquely expressed as the sum of a symmetric matrix and a
skew-symmetric matrix.

A proof of the above is provided in Chapter 6.

§3.6.3 Orthogonal matrices
+ Definition

An n x n matrix A with real entries is called orthogonal if
AAT = ATA =1 .
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/" Example

The following matrices are orthogonal.

00625 8
) _ 1) 1 1 .
10 0 -1 5 75

Some non-orthogonal matrices are as follows.
12 01 10
34)°\00)°\—-11)°
1 Remark

There are infinitely many orthogonal matrices. For instance, for any real number 6, the matrix
cosf —sinf
sinf cosf

cosf sin 9) (cos f —sin 9)

—sin@ cos@) \sinf cos@

cos? @ + sin2 6 0 )

is an orthogonal matrix since
. T .

cosf —sinf cosf —sinf)

sinf cos6 sinf cosf )

0 cos2 6 + sin?2 6

and

cos@ —sin@\ (cosf —sinf T_ cosf —sinf cosf siné
sinf cosf sinf cosf o

sinf cos@ —sin6 cos6
_ (cos? 0+ sin?6 0
o 0 cos2 @ + sin2 @

Exercise 3.38. Show that for any n > 2, there are infinitely many n x n orthogonal matrices.

Exercise 3.39. Let A be an orthogonal matrix. Show that A is invertible and that
A7l = AT,
Solution. Let A be an n x n orthogonal matrix. It follows that
AAT = ATA =1,
which shows that A is invertible and that
A7l = AT,
O

Exercise 3.40. Let A, B be orthogonal matrices of the same size. Show that the matrix product AB
is also an orthogonal matrix.

Solution. Let A, B be n x n orthogonal matrices. Note that
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(AB)(AB)T = ABBTAT = AI AT = AAT =1,

and similarly,
(AB)T(AB) = BT ATAB=BTI,B=BTB=1,.

This shows that the matrix product AB is also an orthogonal matrix. O

§3.6.4 Hermitian and skew-hermitian matrices

« Definition

If A is a matrix with complex entries, then the complex conjugate of A, denoted by A, is defined
as the matrix of the same size, obtained by taking the complex conjugate of each entry of A.

" Example

The complex conjugate of the matrix

1+2¢ 3—4s
—1 )

1—-2¢ 3+44
1 ) '

Exercise 3.41. Let A, B be square matrices with complex entries. Show that

AB = AB.

is the matrix

Exercise 3.42. Let A be a square matrix with complex entries. Show that

AT — (A)".

« Definition

If A is a matrix with complex entries, then the conjugate transpose of A, denoted by A*, is defined
as the transpose of the matrix obtained by taking the complex conjugate of each entry of A, that

A* is equal to AT

" Example

The conjugate transpose of the matrix

1+2¢ 343
—1 )

1—2¢ 1
3+4i5)

Compare the following exercises with Exercise 3.6, Exercise 3.7, Exercise 3.14.

is the matrix

Exercise 3.43. Let A, B be square matrices of the same size with complex entries. Show that
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(A+ B)* = A* 4+ B*.

Solution. Note that

(A+ B)* = (A+B)T = (Z+§)T — AT + BT = A* + B*.

Exercise 3.44. Let A be a matrix with complex entries. Show that

(A%)* = A.

Solution. Note that

(A7) = (A7) = (A7) =TT = (") = A

Exercise 3.45. Let A, B be matrices with complex entries. Show that
(AB)* = B*A*.

Solution. Note that

(AB)* = (4B)' = (AB)' =BT 4T = B' A",

# Definition

A square matrix A with complex entries is called hermitian if
A*=A,

where A* denotes the conjugate transpose of A.

" Example

The following matrices are hermitian.

Lh ) () )

Some non-hermitian matrices are as follows.

(33) (00) (4 2)

MTH102

Exercise 3.46. Let A be an n X n hermitian matrix. Show that all the diagonal entries of A are real
numbers. More generally, show that for any 1 < 4, j < n, the (4, j)-entry and the (j,7)-entry of A

are complex conjugates of each other.

Exercise 3.47. Let A, B be hermitian matrices of the same size. Show that the matrix A + B is also

a hermitian matrix. Is the matrix AB also a hermitian matrix?

Solution. Let A, B be n x n hermitian matrices. Note that
(A+B)*=A*+B*=A+B.

This shows that the matrix A + B is also a hermitian matrix.

68



MTH102

The matrix product AB is not necessarily a hermitian matrix. For instance, let

1 4
a= (%)
20
5-(29)
Note that both A and B are hermitian matrices. Also note that
2 3
AB = (—21’ 3 ) ’
and hence, the product AB is not a hermitian matrix. O

# Definition

A square matrix A with complex entries is called skew-hermitian if
A*=—A,

where A* denotes the conjugate transpose of A.

" Example

The following matrices are skew-hermitian.

0 24 0 ¢ 00
—24¢ 0 J’\—0)’\00)"

Some non-skew-hermitian matrices are as follows.
12 01 10
34)°\00/)’\—-11)°
Exercise 3.48. State and prove an analogue of Exercise 3.46 for skew-hermitian matrices.
Exercise 3.49. Let A, B be skew-hermitian matrices of the same size. Show that the matrix A + B
is also a skew-hermitian matrix. Is the matrix AB also a skew-hermitian matrix?

Solution. Let A, B be n X n skew-hermitian matrices. Note that
(A+ B)*=A*+B*=—A—B=—(A+B).
This shows that the matrix A + B is also a skew-hermitian matrix.

The matrix product AB is not necessarily a skew-hermitian matrix. For instance, let

(0 244
A_<2+i 0 )

0 1
B (_1 0) .
Note that both A and B are skew-hermitian matrices. Also note that
—2—1 0
AB = ( 0 —24+ z) ’

which is not a skew-hermitian matrix. |

Exercise 3.50. Let A be a square matrix with complex entries. Show that if A is hermitian and skew-
hermitian, then A is the zero matrix.
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Solution. Assume that A is hermitian and skew-hermitian. It follows that

A* = A,
A= —A.
This shows that
A=—-A,
which yields
2A=0,
and hence, A is the zero matrix. O

Fact 3.51. Let A be a square matrix with complex entries. Show that A can be uniquely expressed
as the sum of a hermitian matrix and a skew-hermitian matrix.

A proof of the above is provided in Chapter 6.

§3.6.5 Unitary and normal matrices

# Definition

Ann x n matrix A with complex entries is called unitary if

AA* = A*A=1,.

v Example

The following matrices are unitary.
1 .
) _ Y i 1 *
10 0 —1 _\/Li 7
Some non-unitary matrices are as follows.

(33 (60) (5113)

Exercise 3.52. Let A be a unitary matrix. Show that A is invertible and that
A7l = A%
Solution. Let A be a unitary matrix. It follows that
AA*=A*A=1,
which shows that A is invertible and that
A7l = A%
O

Exercise 3.53. Let A, B be unitary matrices of the same size. Show that the matrix product AB is

also a unitary matrix.

Solution. Let A, B be n X n unitary matrices. Note that
(AB)(AB)* = ABB*A* = AL A* = AA* =1,

and similarly,
(AB)'(AB) = B'A*AB= B'[,B= B'B=1I,.
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This shows that the matrix product AB is also a unitary matrix. a
Exercise 3.54. Show that any orthogonal matrix is a unitary matrix. Is the converse true?

Solution. Let A be an orthogonal matrix. It follows that
ATA=1,
which shows that A is invertible and that
A7t = AT,
Since A has real entries, we have A* = AT, and hence,
A*A=ATA=1,.
Similarly, we have
AA* = AAT =T
This shows that any orthogonal matrix is a unitary matrix.

The converse is not true in general. For instance, the matrix

1 e
V2 V2
i 1
V2 V2
is a unitary matrix but not an orthogonal matrix. O

Exercise 3.55. Determine whether the following matrices are unitary, hermitian, both, or neither.
01 0 — 10
10/)°\¢ 0 /)2\0 —1)°
Exercise 3.56. Let z, w be complex numbers such that |2|? + |w|? = 1. Show that
zZ —w
w z

Solution. Let z,w be complex numbers such that |2|? + |w|? = 1. Note that

G -CET

2z +ww 2w — wz)

is a unitary matrix.

WZ — ZW wWW + 2z

(
- (W o 22 ; rw2>
(o1)

hold. Also note that
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hold. This shows that

is a unitary matrix. O
Exercise 3.57. Let A be a diagonal matrix with complex entries. Show that A is a unitary matrix if

and only if all the diagonal entries of A have absolute value equal to 1.

« Definition

A square matrix A with complex entries is called normal if
AA* = A*A,

where A* denotes the conjugate transpose of A.

/" Example

The following matrices are normal.

) (G0 6) o)

Some non-normal matrices are as follows.
12 10
34)°\-11)

Exercise 3.58. Show that any unitary matrix is a normal matrix. Is the converse true?
Exercise 3.59. Show that any hermitian matrix is a normal matrix. Is the converse true?

Exercise 3.60. Show that any skew-hermitian matrix is a normal matrix. Is the converse true?

Here is a summary of some properties of some of the special types of matrices introduced above.
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Matrix Some property
Diagonal Entries outside the main diagonal are zero
Scalar Diagonal matrix with all diagonal entries equal
Triangular Entries below or above the main diagonal are zero
Upper-triangular Entries below the main diagonal are zero
Lower-triangular Entries above the main diagonal are zero
Symmetric AT = A
Skew-symmetric AT = —A
Orthogonal AAT = ATA =1,
Hermitian A*=A
Skew-hermitian A*=-A
Unitary AA* =A*A =1,
Normal AA* = A*A

§3.7 Row reduction
§3.7.1 Matrix units

« Definition

MTH102

The matrix unit e;; is the n X n matrix whose (i, j)-entry is equal to 1 and all other entries are

equal to 0.

" Example

The matrix unit ey5 for n = 4 is the matrix

o O O O
o O OO
S O = O
O O OO

1 Remark

For a2 x 2 matrix A = (z Z), we have
A=

(o) #2(00) +<(10) +(a7)
= aeq; + bejy + ceyy + dey,.
More generally, if A = (aij) is an n X n matrix, then
A=aye +apep+-+apen,
T Gg1€21 + Gg€9p + + + Aoy,
_|_ ves
+a,1€,1 + 0,00+ -+ a, 6.,

holds.
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/" Example

Let
123
A= (4 5 6)'
Note that
A (01)(123)_ (456
2= \po)las6) " \000)
o (00Y(123)_(000
219= {1 0/\a56) " \123)
A (1O0)(123)_(123
fnt=\ooj/lase) " \ooo)
o (00Y(123)_(000
28= o1 )las6) " \a56)
i Remark

More generally, if A is a matrix with n rows, then multiplying A from the left by the matrix unit
e,; produces the matrix whose i-th row is equal to the j-th row of A4, and all other rows are equal
to zero.

Exercise 3.61. Let e,

unit e;; if j = k, and is equal to the zero matrix if j # k, that is,

€ijCkl = {eil Hg=k

ey, be matrix units of the same size. Show that e, ey, is equal to the matrix

0 if j+k.

§3.7.2 Matrix multiplication and linear combinations of rows
i Remark

If Aisanm x n matrix and B is an n X p matrix, then the matrix product AB is an m X p matrix.
Recall that the i-th column of AB is a linear combination of the columns of A with coefficients
from the i-th column of B.
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i Remark

Consider the matrices

123
A_(456)’
78
B=1]9 10
11 12

Note that

AB_(1><7+2><9+3><11 1><8+2><10+3><12)_<58 64)

4XT7T+5x94+6x11 4x8+5x10+6x12) (139 154

Note that first row of AB is a linear combination of the rows of B with coefficients from the first
row of A, and the second row of AB is a linear combination of the rows of B with coefficients
from the second row of A. Indeed,

(IXT7T4+2x94+3x11, 1 x8+4+2x10+3 x 12)
=1x(7, 8)+2x (9, 10)+ 3 x (11, 12),
(Ax7T4+5x94+6x11, 4x8+5x10+6 x 12)
=4x (7, 8)+5x (9, 10)+6 x (11, 12).

1 Remark

If Aisanm X m matrix and B is ann X p matrix, then the matrix product AB is an m X p matrix,
and the i-th row of AB is a linear combination of the rows of B with coefficients from the -
th row of A. Thus, left multiplication by a matrix A (in particular, by a square matrix A) can be
viewed as a transformation that transforms each row of B into a linear combination of the rows
of B, and is often called a row operation.

Denote the set of m x n matrices with entries from R by M,,, ,,(R).

Compare the following exercise with Exercise 3.34.

Exercise 3.62. Let A be an m X n matrix. Let V' be the set of row vectors which can be expressed as
a linear combination of the rows of A, that is,

V={ve M, ,(R) : v =u"A for some u € R™}.
Show that for any u,v € V and ¢, d € R, the element cu + dv of M, ,,(R) lies in V.

Solution. Let u,v € V and ¢, d € R. By the definition of V, there exist z,y € R™ such that

u=2zTA,
v=yT A
Note that
cu+dv=czTA+dy" A= (cz” + dy")A = (cx + dy)T A.
Since cx + dy € R™, it follows that cu + dv € V. O
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§3.7.3 Elementary row operations and elementary matrices

# Definition

An elementary row operation on a matrix is one of the following operations:
1. Interchanging two rows.
2. Multiplying a row by a nonzero scalar.
3. Adding a scalar multiple of one row to another row.

To study matrices that perform elementary row operations, we introduce the following special types
of matrices, called elementary matrices.

# Definition

The elementary matrices are of three types, and these are obtained by performing the elementary
row operations on the identity matrix.
1. The matrix obtained by interchanging the i-th row and the j-th row of the identity matrix,
that is, it is given by
I, —e; —ej;+e;; + e with i # j,
2. The matrix obtained by multiplying the i-th row of the identity matrix by a nonzero scalar,
that is, it is given by
I, + (A —1)e,; with A # 0,
3. The matrix obtained by adding a scalar multiple of the j-th row of the identity matrix to its
i-th row, that is, it is given by
I, + Xe;; with i # j.

v Example

The elementary 2 X 2 matrices are as follows.
01 A0 10 10 1A
(10)- (1) (05) (1) (67 merer 0

v Example

The elementary 3 x 3 matrices are as follows.
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Lemma 3.63. Left multiplication by an elementary matrix on a matrix A performs the corresponding
elementary row operation on the matrix A. More precisely, if E is an elementary matrix obtained by
performing an elementary row operation on the identity matrix, then the matrix product EA is the
matrix obtained by performing the same elementary row operation on the matrix A.

A proof of the above is provided in Chapter 6.
Lemma 3.64. Any elementary matrix is invertible, and its inverse is also an elementary matrix.
A proof of the above is provided in Chapter 6.

i Remark

Note that the elementary row operations on a matrix A are precisely the operations of left
multiplying A by the elementary matrices. Thus, if £, E,, ..., E}, are elementary matrices, then
the matrix

E,..E,E A

is obtained by performing a sequence of elementary row operations on the matrix A. Moreover,
any matrix that can be obtained from A by performing a sequence of elementary row operations
can be expressed in the form

EA,

where F is an invertible matrix which is a product of elementary matrices.

§3.7.4 Row reduction of a matrix
« Definition

Multiplying a matrix A by a matrix E from the left is called row reduction of the matrix A if E
is a product of elementary matrices. In other words, row reduction of a matrix A is the process
of performing a sequence of elementary row operations on the matrix A. It is also known as
Gaussian elimination.
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/" Example

Consider the matrix

1 2-1 -4
A=1]12 3 -1 —-11
—20 -3 22

We perform row reduction on the matrix A as follows.

1. First, we add —2 times the first row to the second row, and add 2 times the first row to the
third row, to obtain the matrix

1 2 —1 —4
0-11 -3
0 4 —5 14
2. Next, we add 4 times the second row to the third row, to obtain the matrix
1 2 -1 -4
0-1 1 -3
00 —1 2
3. Finally, we multiply the second row by —1, and multiply the third row by —1, to obtain the
matrix
12 -1 -4
01 -1
00 1 —2

We now illustrate how row reduction can be used to solve a system of linear equations.
Exercise 3.65. Solve the system of linear equations in five variables x|, z4, x5, 4, T5:
.T]_ +2x2 —x3+4x4+x5 = 7,
—CEl + 4:52 - 2%3 - 3%4 + $5 = _10

Solution. The above system of equations can be expressed in matrix form as

1
1 2 -1 4 1\, 7
231 5 2||zz3]| =] 14
—14-2-31)|zy —10
Ts

We perform row reduction on the augmented matrix

1 2-1 4 1| 7
(Alb)=| 2 3 1 5 2|14
—-14 -2 -3 1|-10
1. First, we add —2 times the first row to the second row, and add 1 times the first row to the third
row, to obtain the matrix

12 -1 4 1|7
0-1 3 =300
06 -3 1 2|-3

2. Next, we add 6 times the second row to the third row, to obtain the matrix

78



MTH102

12 -1 4 1|7
0-1 3 -3 00
0 0 15 —17 2|3

3. Finally, we multiply the second row by —1, and multiply the third row by % to obtain the matrix

12 -1 4 1|7
01-3 3 00
2

17 1
The solutions to the system of equations Equation 12 are precisely the solutions to the system of
equations
Ty
12-1 4 1 T, 7
01-3 3 0 zy [ =1 0
17 2 1
Zs

T1
T2
Hence, the solutions of the given system of equations are precisely the elements | =5 | of R® satisfying

Ty
T5
Ty + 2wy —x3 + 4wy +25 =17,
Ty — 323+ 324 =0,
17 2 1
xg—ﬁx4+ﬁx5 :—g,
or equivalently,
T, =17—229+ 25 — 4z, — 5,
Ty = 3T3 — 34,
1 17 2
T3 =~ T 5% 5%
which is equivalent to
1 17 2
T3 = 5 + 1—58 15t,
1 17
Ty = <_5+1_55_Bt> —3s
3 51 2
_—g+1—58—5t—33
3 2 2
_—g—i-gs—gt
T —7—2<—§+§s—§t> + (—;4—1—;8—%15) —4s—1
:7+§—és+4—1t—1+£s—3t—4s—t
5 5 5 5 15 15
11 1
=8—§s—§t

In other words, the set of solutions of the given system of equations is equal to
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s, 1, 3,.2,2, 1 112, ) .ter
5° 3 B 5 370 3 3 oY) o

O

Theorem 3.66. Let b denote the vector | "2 |, and let A be an m x n matrix. Let E be a product of
b

m

il
elementary matrices. Write X = | “2 |. The solutions to the system of equations
Ty
AX =0
are precisely the solutions to the system of equations
AX=V,

where
b =FEb, A =FEA.

A proof of the above is provided in Chapter 6.
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i Remark

Note that while solving Equation 12, we performed row reduction on the augmented matrix

1 2-14 1|7
(Alp)y=| 2 3 1 5 2|14 |,
—14 -2 =3 1|-10

and obtained the matrix

12-1 4 1|7
01-3 3 0|0
17 2 1

Note that one can perform further row reductions. Adding the third row to the first row, and
adding 3 times the third row to the second row, we obtain the matrix

120 2 #|%
010 -2 712
001~} |-
Next, we add —2 times the second row to the first row, to obtain the matrix
100 & 1|8
010 -2 F|-2
001 —1f 2|1

This shows that the augmented matrix corresponding to the system of equations Equation 12 can

be row reduced to the matrix

11 1
100 5 83
Cot i)

1
001 —% 5/—5

which shows that the solutions of the system of equations Equation 12 are precisely the elements

of the set

8—113—1t—3+2s—2t—1+17s—2tstT'stGR
3 37 5 5 5’ 5 15 1577 o

Exercise 3.67. Solve the system of equations in the variables z, 5, z5:
T, +2z9 — x5 =1,
2z, +3z5 + 5 =2,
—x, +4xy — 2z5 = —3,
3, —xy + 4z =4,
9T, + 2x4 + 35 = 5.

Solution. The above system of equations can be expressed in matrix form as
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1 2 -1 1
2 3 1 T 2
-1 4 2|z =1]-3
3 -1 4 T3 4
5 2 3 5

We perform row reduction on the augmented matrix

1 2 —1]1
2 3 1]2
(Alb)=|-1 4 —2|-3
3 -1 4|4
5 2 3|5

1. First, we add —2 times the first row to the second row, add 1 times the first row to the third row,
add —3 times the first row to the fourth row, and add —5 times the first row to the fifth row, to
obtain the matrix

1 2 —1|1
0-1 3]0
0 6 —3|—2
0-7 711
0-8 8]0

2. Next, we add 6 times the second row to the third row, add —7 times the second row to the fourth
row, and add —8 times the second row to the fifth row, to obtain the matrix

1 2 —-1]1
0-1 3 |0
0 0 15 (-2
0 0 —14|1
0 0 —16]0

3. Finally, we multiply the second row by —1, multiply the third row by 1—15 multiply the fourth row

1 1

by —1;, and multiply the fifth row by —;, to obtain the matrix

12 -1 1
01 -3 0

2
00 1|-2

1
00 1 |—%
00 1]0

Note that the above matrix corresponds to the system of equations

12 -1 1
01 3| [z 0
001 ||la|=|—-%],
00 1 T L
00 1 0
which has no solutions. Hence, the given system of equations has no solutions. O

Exercise 3.68. Solve the system of equations in the variables x,, 5, T3, 24:
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T, + 229 — x5 + 4z, =5,
2x; + 3xy + T3 + 574 = 8§,
—z; +4xy — 2z5 — 3z, = —4,
3T, —xy +4x5 + 224 =T.

Solution. The above system of equations can be expressed in matrix form as

1 2 -1 4 z 5
2 3 1 5 zo| | 8
-1 4 -2 -3||z3| |4
3 -1 4 2 Ty 7

We perform row reduction on the augmented matrix

1 2 -1 4|5
2 3 1 5|8
-1 4 -2 -3|—4
3 -1 4 2|7

(A]b)=

1. First, we add —2 times the first row to the second row, add 1 times the first row to the third row,
and add —3 times the first row to the fourth row, to obtain the matrix

12 -1 415
0-1 3 —-3|-2
06 -3 1|1
0-7 7 —10|-8

2. Next, we add 6 times the second row to the third row, and add —7 times the second row to the
fourth row, to obtain the matrix

12 -1 4 5
0-1 3 —=3|-2
00 15 —-17|-11
0 0 —14 11| 6

3. Multiplying the second row by —1, the third row by % and the fourth row by —1—14, we obtain

the matrix
12 -1 4 5
01 -3 3 2

7|1
00 1 —5|—%

11 3
00 1 3

T4

4. Adding —1 times the third row to the fourth row (that is, subtracting the third row from the
fourth row), we obtain the matrix

121 415
01 -3 3|2
00 1 -4

15 15
73 32
00 0 355 108

210

5. Multiplying the fourth row by %3, we obtain the matrix
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12 -1 415
01-3 3|2

17|11
00 1 —5|—%

64
000 1|8

6. Adding —4 times the fourth row to the first row, and adding —3 times the fourth row to the

second row, and adding % times the fourth row to the third row, we obtain the matrix

12 —10]%
01-30[—2
00 1 03
000 1 4

7. Adding 3 times the third row to the second row, and adding 1 times the third row to the first row,
we obtain the matrix

128
12002

11
0100

0010[4

64
0001|

8. Adding —2 times the second row to the first row, we obtain the matrix

100 0/%

11
0100

0010]|:3

64
0001|8

Hence, the given system of equations admits the unique solution

Exercise 3.69. Solve the system of equations in the variables z;, 5, Z5:
z, + 229 — 5z5 = 20,
2z, + dxy — Tx5 = 33,
—x, — 2z + 4z = —17.

Solution. The above system of equations can be expressed in matrix form as

1 2 =5\ [z 20
2 5 =T|lzy| =1 33
-1 -2 4 Z3 —17
We perform row reduction on the augmented matrix
1 2 —=5|20
(Alb)=]| 2 5 —7|33
-1 -2 4 |-17
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1. First, we add —2 times the first row to the second row, to obtain the matrix

1 2 —5|20
0 1 3|7
-1 -2 4 |-17
2. Adding 1 times the first row to the third row, we obtain the matrix
12 -5|20
01 3|7
00 —-1|3
3. Next, we multiply the third row by —1, to obtain the matrix
12 -5(20
01 3 |-7
00 1|3

4. Adding —3 times the third row to the second row, we obtain the matrix

12 5|20
01 012
00 1|3

5. Adding 5 times the third row to the first row, we obtain the matrix

120]5
010| 2
001|-3

6. Finally, adding —2 times the second row to the first row, we obtain the matrix

100|1
0102
001|-3

Hence, the given system of equations admits the unique solution

1
2
-3

O
Exercise 3.70. Let A, B be square matrices of the same size. Suppose that A is invertible and AB =
I holds. Show that B is invertible and B = A~
Exercise 3.71. Let A, B be square matrices of the same size. Suppose that A is invertible and BA =
I holds. Show that B is invertible and B = A1,

Compare the above two exercises with Exercise 3.27, Exercise 3.87.

Exercise 3.72. Let A, B be matrices, suppose that the number of columns of A is equal to the number
of rows of B. Suppose AB has at least two columns. Let C be the matrix obtained from AB by
removing the last column of AB. Show that there exists a matrix B” such that C' = AB’.

Exercise 3.73. Let A, B be matrices, suppose that the number of columns of A is equal to the number

of rows of B. Suppose AB has at least two rows. Let C be the matrix obtained from AB by removing
the last row of AB. Show that there exists a matrix A" such that C' = A’B.
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Remark 3.74. Note that while solving the above system of equations, we performed row reduction
on the augmented matrix

1 2 —5| 20
Alb)=1| 2 5 =733 [,
-1 -2 4 |—-17
and obtained the matrix
100|1
010]| 2
001|-3
This shows that multiplying the matrix
1 2 -5
A=12 5 -7
—1 -2 4

from the left by the product of some elementary matrices yields the identity matrix I;, which implies
that the matrix A is invertible. Indeed, if EA = I; where E is the product of some elementary
matrices, then using that E is invertible, it follows that A = E1EA = E‘1[3 = E~! and hence
AE = I, which shows that A is invertible, and A 1lis equal to F.

The elementary matrices used to row reduce the matrix A to I; are

100 100 100
E,=|-—210|,E,=|010]|,E5=]01 0 |,
001 101 00 —1
10 0 105 1-20
E,=|01-3|,E;=|010]|,Es=]0 1 0
00 001 001

Note that EA = I holds for
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1-20\/105 100 10 0 100 1 00
=0 1 ofJo10|f0O1-3|]01 O 010f]—-210
0 0 1 001 00 1 00 —1 101 0 01
1 -20 105 10 0 10 0 1 00
=101 0 010 01 -3 01 0 —210
0 01/\001/\0O0 1 00 —1 1 01
1-20\/105 100 100
=0 1 0of]J]Oo10(f|01-3]]-210
0 01/\0O1/\0O 1 —-10 -1
1-20\/105 100
=101 0 010 1 1 3
0 1 001 —10 —1
1 -20 —4 0 =5
=0 1 0 11
0 0 1/\—-10 -1
—6 —2 —11
= 1 1 3
-1 0 -1
This yields
—6 —2 —11
A'=E=]1 1 3
-1 0 -1

Exercise 3.75. Solve the system of equations in the variables z;, z5:
2£U1 - 3£C2 = 7,

Solution. The above system of equations can be expressed in matrix form as

() E)- ()

We perform row reduction on the augmented matrix

- (4210

1. First, we add 2 times the first row to the second row, to obtain the matrix

2 =3|7
0—-1(3)"

2. Next, we multiply the second row by —1, to obtain the matrix
2 3|7
0 1 (|-3/)
3. Add 3 times the second row to the first row to obtain the matrix

20|-2
01/-3/)"
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4. Finally, we multiply the first row by %, to obtain the matrix

10/—-1
01|-3)

Hence, the given system of equations admits the unique solution

&)

i Remark

Let A denote the matrix

(%)

Note that EA = I, holds where FE is the product of some elementary matrices. More specifically,
EA = I, holds for

E=EFE3EyE,,

10 10 13 10
By = (2 1)’E2: (0 —1)’E3: (0 1>’E4: (8 1)'

One can argue that A is invertible, and that
Al=E

HICHICRAIEH

where

[e>R NI

|
O Nl
— Nl
N—
VRS
| =
[\
=
p—
N~

§3.7.5 Row echelon form
« Definition

A matrix is said to be in row echelon form if the following conditions hold.
1. The first nonzero entry in each nonzero row is 1 (called a leading 1 or a pivot).
2. Theleading 1 in each nonzero row is to the right of the leading 1 in the previous row (if any).
3. All zero rows (if any) are at the bottom of the matrix.
4. If a column contains a pivot, then all its entries above the pivot are zero.
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" Example

The following matrices are in row echelon form:

01-50000014
00 0 100010 01
000001000,(00)
00 0 000120
00 0 0O0OOO0OOO

Fact 3.76. Through a sequence of elementary row operations, any matrix can be transformed into a
matrix in row echelon form.

Exercise 3.77. Transform the matrix

02 -3 0 O
1-14 0 5
00 0 1 -2
03 -5 0 1
03 =5 -1 2

into a matrix in row echelon form using elementary row operations.

Solution. We perform row reduction on the matrix

02 =300
1-1 40 5
A=]0 0 0 1 -2
0 3 =501
00 0O0O

1. Interchanging the first row and the second row, we obtain the matrix

1-1 405
02 =300
00 0 1-2
03 501
00 00O

2. Next, multiplying the second row by % we obtain the matrix

1-1 405
01 -200
00 0 1-2
03 —50 1
00 000

3. Adding —3 times the second row to the fourth row, we obtain the matrix
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1-1 405
01 =300
00 0 1-2
00 —%201
00 000

4. Interchanging the third row and the fourth row, we obtain the matrix

1-1 405
01 -200
00 —301
00 0 1-2
00 00

1-1 405
01 =300
00 1 0-2
00 0 1-2
00 000

6. Adding —4 times the third row to the first row, and adding % times the third row to the second

row, we obtain the matrix

1-100 13
01 003
0 0 10-2
0 0 01 -2
0 0 00O

7. Finally, adding the second row to the first row, we obtain the matrix

1000 10

OO OO
O O O
O O = O
O = O O

&

which is in row echelon form.

Exercise 3.78. Solve the system of equations in the variables z,, 5, T3, 4:
2x9 — 3253 =0,
T, — Ty +4x5 =5,
Ty = —2,
3zy —bx53 =1,

33;‘2—53;3—3;4 = 2.

Solution. The above system of equations can be expressed in matrix form as
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02 =30 0
1-1 4 0 |[™ 5
00 0 1 ||%2f=]-2
03 =50 || 1
0 3 =5 —1 4 2
We perform row reduction on the augmented matrix. Adding the third row to the fifth row, we obtain
the matrix
0 2 =30[/0
1 -1 4 0|5
00 0 1]—2
0 3 =50|1
0 3 =50[|0

0 2 -30|0
1 -1 4 0|5
00 0 1|-2
0 3 -50|1
0 0 0 0]-1

Multiplying the fifth row by —1, we obtain the matrix

0 2 -30|0
1 -1 4 0|5
00 0 1]-2
03 -50|1
00 0 01

Performing several more elementary row operations, as done in the previous exercise, yields the matrix

100010
0100|-3
0010|-2
000 1|-2
0000]1

The corresponding system of equations has no solution, since the last column of the above matrix
contains a pivot. O

Fact 3.79. Let
M = (A[b)

be the matrix obtained by augmenting a matrix A with a column vector b. If M is in its row echelon
form, then the following statements are equivalent.

1. The system of equations AX = b admits a solution.

2. The last column of the augmented matrix M contains no pivot.
If one (and hence, both) of the above statements holds, then the solutions to the system of equations
AX = b can be obtained by assigning arbitrary values to the variables corresponding to the non-
pivot columns of the augmented matrix M, and then solving for the variables corresponding to the
pivot columns of M.

A pivot column of a matrix in row echelon form is a column that contains a pivot.
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# Definition

If M = (A | b) denotes the augmented matrix of a system of equations AX = b, and M’ =
(A" | b") is the matrix in row echelon form obtained by performing a sequence of elementary
row operations on M, then a variable corresponding to a non-pivot column of A’ is called a free
variable.

Recall that we obtained the following matrices earlier while reducing some augmented matrices. The
first and the third matrices are in row echelon form. The second matrix is not in row echelon form.

12 -1 1

100%%8 01 -3 0 100/ 1

010 -2 2|2, o0 1|-%]|, fo10]2

1 —

001 —7 2|—1 00 1|—% 001[-3
00 1]0

Fact 3.80. Every homogeneous system of linear equations with more variables than equations has at
least one free variable, and hence, admits infinitely many solutions. That is, if A is an m X n matrix
with m < n, then the homogeneous system of equations AX = 0 admits a nonzero solution, and
hence, infinitely many solutions.

A proof of the above is provided in Chapter 6.

Fact 3.81. Let A be an n X n matrix. The following statements are equivalent.
1. The matrix A can be transformed into the identity matrix I, by performing a sequence of
elementary row operations.
2. The matrix A is a product of elementary matrices.
3. The matrix A is invertible.
4. The system of equations AX = b admits a unique solution for every column vector b having
n entries.

A proof of the above is provided in Chapter 6.

Exercise 3.82. Let A be a square matrix. If a sequence of elementary row operations can be performed
on A to obtain the identity matrix, then A is invertible, and the same sequence of elementary row
operations, when performed on the identity matrix, yields the inverse of A. Indeed, if there exists a
sequence of elementary matrices

E, E,,.. E,
such that
E,..EqE A =1,
then show that A is invertible, and that
Al =E, . .E,E I

# Definition

The rank of a matrix A is the number of pivots in the row echelon form of A. The rank of a matrix
A is denoted by rk(A).

Exercise 3.83. Find the rank of the matrix
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12 -1 1
01-3 0

2
00 1 —2

1
00 1 —&
001 0

Exercise 3.84. If A is an m X n matrix, then show that
rk(A) < min{m,n}.

Exercise 3.85. If A is an n X n matrix, then show that the following statements are equivalent.
1. The matrix A is invertible.
2. The rank of A is n.

Solution. Using Fact 3.81, it follows that following statements are equivalent.
1. The matrix A is invertible.
2. The matrix A can be transformed into the identity matrix by performing a sequence of elementary
row operations.
3. The row echelon form of A has n pivots.
4. The rank of A is equal to n.

O
Exercise 3.86. If A is an invertible square matrix, then show that A~ is also invertible, and that
(A=A
Solution. Suppose A is an invertible square matrix. We have
AA1 =A1A=1T.
This shows that A1 is also invertible, and that
(A=A
O
" Example
The matrix
100
000
001

is not in row echelon form, since the second row is a zero row, but is not at the bottom of the
matrix. The rank of this matrix is 2, since its row echelon form is

100
001
000

Exercise 3.87. If A, B are square matrices of the same size satisfying BA = I, then show that the
matrices A, B are invertible, and are the inverses of each other.

Compare the above with Exercise 3.70, Exercise 3.71, Exercise 3.27.
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i Remark
Does considering the row echelon form of B help?

Solution. Let E be a product of elementary matrices such that E'B is in row echelon form. Note that
(EB)A=F
holds. Since E B is in row echelon form, it has a pivot in every nonzero row. If £ B has a zero row, then
the corresponding row of F is also zero, which is a contradiction. This shows that £ B has no zero
row, and hence, has a pivot in every row. This implies that EB is the identity matrix*'. This shows
that B is invertible, and that B! = E. Moreover, we obtain A = E, which shows that A is invertible,
and that
A'=E'=(BY"'=B
holds. O

§3.8 Systems of linear equations in three variables and determinants of 3 x 3 matri-
ces

Exercise 3.88. Solve the system of equations in the variables z, y, 2:
z+2y+3z=1,
4z + by + 62 = 2,
Tz 4+ 8y + 10z = 3.

“Why?
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i Remark

If the matrix

3
6
0

A=

EN QTS
co Ot N
—_

is invertible, then the above system of equations admits a unique solution, which can be found by
multiplying A~! from the left to the matrix form of the system of equations, that is, multiplying
T 1

Aly |l =12

z 3

from the left by AL provided A1 exists. Note that

-2 —4 3 -2 —4 3 12 3
-1-2 11 -6 A:§ -2 11 —6 45 6 | =1,
3 —6 3 3 —6 3 7 8 10
and
1—2—43 1123 -2 —4 3
A‘g -2 11 —6 =3 45 6 211 6| =1
3 —6 3 7 8 10 3 —6 3
This shows that A is invertible, and that
-2 —4 3
Al=-1-211 —6
3 —6 3
# Definition
a; by ¢
Let A be a 3 x 3 matrix. Write A = | a> b, ¢, |. The determinant of A is denoted by det(A),
az by c3

and is defined to be
det(A) := a;(bycg — bycy) — by (ages — agey) + c1(agbs — agby).
The adjoint of A is denoted by adj(A), and is defined to be the matrix

‘ bocg —bzcy  —(bycg —bzey)  bycy —bycy
adj(A) := —(c3a2 —Cpa3) c3a; —cjaz  —(cpaq —cray)
agby —azby  —(ajby —azby) ayby —ayby

Exercise 3.89. Show that the determinant of the identity matrix I5 is 1, and that

adj(l3) = I.
Exercise 3.90. Let
a 00
A=100b0],
00 c

where a, b, c are scalars. Show that det(A) = abc, and that
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adj(A) =10 ca 0
0 0 ab
Exercise 3.91. Let
1 -5 6
A=1]1—-4 8 —9
7 2 10
Find det(A) and adj(A).
Exercise 3.92. Let
21 —1
A=132 1
41 2

Find det(A) and adj(A).
« Definition
For a 2 X 2 matrix
A= (i Z>,
its adjoint is denoted by adj(A), and is defined to be

a@my:(d‘*)

—C a

Exercise 3.93. Let

()

where a, b are scalars. Show that det(A) = ab, and that
o (DO
adj(A) = (0 a) .
Prove that for a 2 x 2 matrix A, the equalities
A-adj(A) =adj(A) - A =det(A)L
hold (cf. Lemma 3.22). Moreover, if A, B are 2 x 2 matrices, then
det(AB) = det(A) det(B)

holds, as shown in Exercise 3.23.

Fact 3.94. For any 3 x 3 matrix A, the following holds.

A-adj(A) = adj(A) - A = det(A)I;.

Fact 3.95. If A, B are 3 x 3 matrices, then
det(AB) = det(A) det(B).

The following is an analogue of Lemma 3.22 for 3 x 3 matrices.
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Lemma 3.96. Let A be a 3 x 3 matrix. The following statements are equivalent.
1. The matrix A is invertible.
2. The determinant det(A) of A is nonzero.
3. Every vector

e

f
g

can be expressed as a linear combination of the columns of A. Moreover, if A is invertible, then

Al = dj(A
det(a) 24 (4)
holds.
A proof of the above is provided in Chapter 6.
Exercise 3.97. Determine whether the matrix
1 =5 6
A=12 0 9
-1 2 —1

is invertible. If A is invertible, then find its inverse.

Solution. Note that
det(A) =1x (—18) — (—5) x 74+ 6 x 4 = —18 + 35 4+ 24 = 41.

Since det(A) is nonzero, it follows that the matrix A is invertible.

Note that
—18 —7 —45
adj(A) = 7 5 3
4 3 10
Hence, we obtain
—18 —7 —45
Al = dj(A)=—1| -7 5 3
det(a) A = L 3 10

Exercise 3.98. Use Gaussian elimination to determine the row echelon form of the matrix

1 -5 6
A=12 0 9
-1 2 -1

Use the row echelon form to determine whether A is invertible. If A is invertible, then find its inverse
using elementary matrices, corresponding to the elementary row operations used to transform A
into its row echelon form.

Solution. Adding —2 times the first row to the second row, we obtain the matrix

1 -5 6
0 10 =3
-1 2 -1

Adding the first row to the third row, we obtain the matrix
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1 -5 6
0 10 -3
0-3 5
Next, multiplying the second row by %, we obtain the matrix
1 -5 6
3
0 1 —55
0-3 5
Adding 3 times the second row to the third row, we obtain the matrix
1 -5 6
01 —%
00 H

10

Multiplying the third row by %, we obtain the matrix

1 -5 6
01 —2|,
00 1

Adding % times the third row to the second row, we obtain the matrix

1-56
010
0 01

Adding —6 times the third row to the first row, we obtain the matrix

150
010
0 01

Finally, adding 5 times the second row to the first row, we obtain the matrix

100
010]|=1I,.
001

The above is the row echelon form of A. Since the row echelon form of A is the identity matrix I, it
follows that A is invertible.

The elementary matrices corresponding to the above elementary row operations are

1 00 100 100 100
E,=(-210(,E,=[010|,E35=(0+50[,E,=]010],
0 01 101 001 031
100 100 10 —6 150
E;=|010|,Eg=(012]|,E,=|01 0 [,Eg=]010
00 001 00 1 001

It follows that
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150 10 —6 100 100 100 100 1 00 100
=l010]|01 0 o132 florojforo|foLo|]-210|[010
001/ \oo0o 1 /\oo1/)\o0o2/\o31/\oo1/\001/\101
15—6)\(100)\(100\/1 00
1
=101 0 01% 0§0 210
1
00 1 00)lo 31 1 01
4

15— 12(1)0

00% mml

L (187 —45
=—| -75 3

a4 3 10

Exercise 3.99. Solve the following system of equations in the variables x, y, 2.
z+2y+3z2=1,
dx — by + 62z = 2,
Tz —y+ 10z = 3.
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Appendix

The content of the appendix is supplementary and not required for the main course. However, it may
be useful for further studies.

Chapter 4. Sets

Proof of Fact 1.23. Note that if P is a subset of ), then we claim that A U P is a subset of A U Q. Indeed,
for an element x of A U P, note that x lies in A, or it lies in P. If x lies in A, then itliesin AU Q.If z
lies in P, it also lies in @, and hence it lies in A U Q. This proves the claim. Consequently, A U (B N
C) is a subset of both of the sets

AUB,AUC,

and hence, we obtain

AU(BNC)C (AUB)N(AUC)

Let y be an element of (A U B) N (AU C). Note that y liesin AU B and y also liesin AUC.If y
lies in A, then it also lies in A U (B N C). Thus, it remains to consider the case that y does not lie in
A, which we assume from now on. Since y lies in A U B and y does not lie in A, it follows that y lies
in B. Similarly, it also follows that y lies in C. This shows that y lies in B N C, and hence it lies in A U
(BN C). This proves that

(AUB)N(AUC)C AU (BNCQO)

This establishes that

AU(BNC)=(AUB)N(AUC)

Let us now establish that
AN(BUC)=(ANB)U(ANCO).
Let = be an element of A N (B U C). Note that z lies in A and also lies in B U C. If z lies in B, then x
lies in A N B, and hence z belongs to (A N B) U (AN C). It remains to consider the case that z does
not lie in B, which we assume from now on. Since z lies in B U C and x does not lie in B, it follows
that z lies in C. Using that x lies in A, we obtain that z lies in A N C, and hence, z lies in (AN B) U
(AN C). Combining these cases, we obtain

AN(BUC)C(ANB)U(ANC)

Note that if P is a subset of @, then AN P is contained in A N Q. It follows that A N B is a subset
of AN (BUC),and AN C is also a subset of AN (B U C). This shows that

(ANB)U(ANC)C AN (BUC)

This proves that

AN(BUC) = (ANB)U(ANC)

Proof of Fact 1.28. Note that
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(AUB)* =X\ (AUB)

={zeX:z¢(AUB)}
={reX:x¢ Aand x ¢ B}
={r e X :z€ A° and z € B}
={reX:zeA°NB°}
= A°NB°

holds for any subsets A, B of X.

As a consequence, we obtain

(A°U B)® = ((A49)° N (B°)°),
which yields
(A°UB®)°=ANB.
This implies
((A° U B*)*)° = (AN B,

or equivalently,

(AN B)¢ = A°U B°

Proof of Fact 1.30. Let X denote the underlying universal set. Note that
X\ (BUC)=(BUC)*°
=B°NC*
=(X\B)Nn(X\C).
This shows that
AN(X\N(BUQO)=ANn((X\B)Nn(X\(0)),
which implies that
AN(X\N(BUQ))=(AN(X\B))N(ANn(X\C)).
Note that for any subset Y of X, we have
AN(X\Y)={zeX:z€Aandz e X \Y}
={zeX:zcAandz ¢Y}
=A\Y.

Consequently, we obtain

AN (BUC) = (A\ B)N (A\ C)

Similarly, we obtain
X\ (BNnC)=(BnQC)°

=B°UC*

=(X\B)U((X\O).
This shows that

AN(XN\N(BNC))=An((X\B)U(X\C)).
Using the distributive property of intersection over union (see Fact 1.23), we obtain
AN(X\N(BNC))=(AN(X\B)U(AN(X\C)).

Since for any subset Y of X, the equality
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AN(X\Y)=A\Y

holds, we conclude that

AN (BNC) = (A\ B)U (A\C)

Exercise 4.1 (*). Do there exist three finite sets A, B, C satisfying
|AAB| =1,|BAC| =2,|CAA| = 47

Solution. Note that for any three sets A, B, C,
C\NA=(C\NA)N(BUB°

(C\NA)NB)U((C\ A)N B°)

C(A°NB)U(CnNB°

=(B\A)U(C\ B)

C (AAB) U (BAC)
hold. Hence, for any three sets A, B, C, we also obtain

A\NC C (CAB)U (BAA)

= (AAB) U (BAQ).

This shows that for any three sets A, B, C, the union of A\ C, C \ Aisa subset of (AAB) U (BAC),
that is, CAA is a subset of (AAB) U (BAC).If A, B, C are finite sets, it follows that

ICAA| < |(AAB) U (BAC)| < |AAB| + |BAC|

This shows that there are no three finite sets A, B, C satisfying the given conditions. O

Exercise 4.2. If z, w are complex numbers, then show that
1. |z 4+ w| < |z| + |w] (triangle inequality).

1 Remark (**)

More formally, one defines C, as the following set
{(a,b) : a,b € R},
equipped with addition and multiplication defined by
(a,b) + (¢,d) :== (a+ ¢, b+ d),
(a,b) - (¢,d) := (ac — bd, ad + bc),
for any (a,b), (¢,d) with a,b,c,d € R.
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Chapter 5. Induction principles

Theorem 5.1. The well-ordering principle, the principle of mathematical induction, and the principle
of strong induction are equivalent.

Proof.
O

Exercise 5.2 (Infinitude of primes, by Saidak). Let a; = 2, and a,,,; = a,,(a,, + 1) for any positive
integer n. For any n € N, show that a,, has at least n distinct prime divisors.

Solution. For a positive integer n, let P(n) denote the statement that a,, > 1 and a,, has at least n
distinct prime divisors.

Since a; = 2, it follows that P(1) is true.

Let n be a positive integer such that P(n) holds. This gives that a,, > 1, and hence a,, + 1 > 2. Also
note that the integers a,,, a,, + 1 have no common prime divisor, since any of their common divisors
divides their difference, which is equal to 1. Hence, no prime divisor of a,, is a prime divisor of a,, +
1. By the induction hypothesis, a,, has at least n distinct prime divisors. Since a,, + 1 > 2, it admits
at least one prime divisor. It follows that the product a,,(a, + 1) has at least n 4 1 distinct prime
divisors. Also note that a,,(a,, + 1) > 2 holds. This shows that P(n + 1) holds.

By induction, the statement P(n) holds for all n € N. In particular, a,, has at least n distinct prime
divisors. O

Exercise 5.3 (*). Show that there are infinitely many prime numbers of the form 4m + 3, where m
is a nonnegative integer.

Solution. Le aq, a,, ... be a sequence of positive integers defined by
a, =1,
Uy = 0y (4a, +3)
for all n € N. For any n € N, let P(n) denote the statement that a,, is a positive integer, 3 does not
divide a,,, and a,, has at least n distinct prime divisors of the form 4m + 3.

Since a; = 7, it follows that P(1) holds.

Let k be a positive integer such that P(k) holds. Since a,, is a positive integer, it follows that 4a,, +
3 is an odd positive integer > 3. Hence it has'? a prime divisor of the form 4m + 3. Since 3 does not
divide ay, it follows™ that 3 does not divide 4a;, + 3. Also note that any common factor of the integers
a;, and 4a;, 4+ 3 divides

(4ay, + 3) — 4ay,
which is equal to 3. Since 3 does not divide a;, we obtain that the integers a, and 4a;, + 3 have no
common prime divisor. Hence, any prime divisor of 4a;, + 3 of the form 4m + 3 is different from the
prime divisors of a;. This shows that a,_ ; is a positive integer, 3 does not divide a;_ ;, and a;_, has
at least k£ + 1 distinct prime divisors of the form 4m + 3. By induction, it follows that for any n € N,
the integer a,, has n distinct prime divisors of the form 4m + 3.

This shows that there are infinitely many prime numbers of the form 4m + 3. O

Exercise 5.4. Show that

?How does it follow? Prove it by induction that for any positive integer n, the product of any integers of the form
4m + 1 is also of the form 4m + 1.
BWhy?
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22" _1

has at least n distinct prime divisors for all n € N.

Solution. For a positive integer n, let P(n) denote the statement that 22" — 1 has at least n distinct
prime divisors.

Since 22' — 1 = 3, it follows that P(1) holds.

Let k be a positive integer such that P(k) holds. Note that

22" = (22’“ _ 1) (22’“ T 1).

Also note that the integers 22" — 1 and 22" + 1 have no common prime divisors, since these are odd
integers, and any of their common divisors divides their difference, which is equal to 2. By the induction
hypothesis, the integer 22" _ 1 has at least k distinct prime divisors. Since 22" 41 > 5, it admits at
least one prime divisor. It follows that the product (22k — 1) (22k + 1) has at least k + 1 distinct prime
divisors. This shows that P(k + 1) holds.

By induction, the statement P(n) holds for all n € N. O

1 Remark
Note that it is false that

22" 4+ 1

has at least n distinct prime divisors for all n € N. Indeed, the integer 22 t1=17isa prime.

Exercise 5.5. Let S be a finite set of size n. Show that the number of subsets of S is 2.

Solution. For a nonnegative integer n, let P(n) denote the statement that if A is a set with n elements,
then the number of subsets of A is 2.

Since the empty set has exactly one subset, namely itself, it follows that P(0) holds.

Let k be a nonnegative integer such that P(k) holds, that is, for any set with k elements, the number
of its subsets is 2%. We show that P(k + 1) holds.

Let A be a set with k + 1 elements. Choose an element a € A, and let B = A\ {a}. Note that B has
exactly k elements. By the induction hypothesis, the number of subsets of B is 2F. Any subset of A
either contains a or does not contain a. The number of subsets of A that do not contain a is equal to
the number of subsets of B, which is 2*.

Note that any subset of A that contains a is of the form C' U {a}, where C is a subset of B. Further,
different subsets of B give rise to different subsets of A that contain a. That is, if C}, C, are different
subsets of B, then C; U {a} # C, U {a}. This shows that the number of subsets of A that contain a is
also equal to the number of subsets of B, which is again 2*. It follows that the total number of subsets
of A is equal to

ok | gk — ok+1
This shows that P(k + 1) holds.

By induction, it follows that for any nonnegative integer n, if A is a set of size n, then the number of

subsets of A is 2™. O

Exercise 5.6 (*). Show that

(e 8) ()0 - ) <

holds for all n € N.
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i Remark (%)

Does taking P(n) to be the statement that

<1+1—13) (1+213><1+33> --(1-!—%) <3

Solution. For any n € N, let P(n) denote the statement that

<1+1)<1+1>(1+1> (1+1><3 !
13 23 33 nd3) — n’

Note that P(1) holds. Let & be a positive integer such that P(k) holds. Note that

e 1) (10 1) (10 1) (1 2) (14 )
<(-2) ()

help?

s 1+ 3 1

Tk (B+1)3 0 k(k+1)3

s 1 N 1 _1+ 3 1

- k+1 k+1 k (k+13 k(k+1)3
1 1 1

=3 - 3

K+l Rk+1) TP RkE1)P
1 (k+1)2—3k+1

TRl kDS
.1 B —k+2
7 k+1 0 k(k+1)3
1 k(k—1)+2
k+1  k(k+ 1)
1
<3t

holds. This proves that if k is a positive integer and P(k) holds, then P(k + 1) also holds. By the
principle of induction, it follows that P(n) holds for any positive integer n. This implies the given

inequality for all n» € N.
O

Exercise 5.7 (*). Show that

1+i+i+ +i<§
B2 2
foralln € N.
Solution. For any n € N, let P(n) denote the statement that
AR S R S
23 33 nd ~ 2 2n?

Note that P(1) holds. Let k be a positive integer such that P (k) holds. Note that
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LI R
23 ' 33 k3 (k+1)3
<(5-50)+ Gy +11>s (using P(k))
3 1 1
2w Ty
3 1 1 1 1
T2 T2k 12 2kt 12 22 Ryl
3 1 (k+1)3 —Kk*(k+1) — 2k?
2 2k+1)2 2k2(k + 1)3
3 1 k3 +3k% + 3k +1— k3 — k? — 2k?
T2 2k+1)2 2k2(k + 1)3
3 1 3k +1
2 2(k+1)2 2k2(k+1)3
3 1

<3 T okt e
This proves that if k is a positive integer and P (k) holds, then P(k + 1) also holds. By the principle
of induction, it follows that P(n) holds for any positive integer n. This implies the given inequality
foralln € N.
O

EXerCise 5.8( ). ShOW that

Solution. For any n € N, let P(n) denote the statement that

1 1 1 1 5 2
Z — — ... <1 —=2 ).
(1+2)<1+22)<1+23> (1+2n> —2<1 2n+1+1>

Note that P(1) holds. Let k be a positive integer such that P(k) holds. Note that
1 1 1 1 1
(1 + 5) <1 + 2—2> (1 + 2—3)<1 + ﬁ) (1 + W)

5 2 1
_<1_ 9k+1 +1><1+ 2k+1>

2k+1 -1

holds for all n € N.

IA
SN

IN
X

9k+1

1
© 9k+1

1
(1_ 2k+2+1>'

This proves that if k is a positive integer and P (k) holds, then P(k + 1) also holds. By the principle
of induction, it follows that P(n) holds for any positive integer n. This implies the given inequality
forallm € N. O

IN IA
N Ot N Ot N
VR
—
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Chapter 6. Matrices

Let us revisit Exercise 3.16, in the light of Exercise 3.19.

Exercise 6.1. Compute B2 where B is the following n x n matrix

0...01
p=|% 10
1--00

Solution. Let eq,e,,...,e, denote the standard basis vectors of R™. Note that B sends

. €p
€1, €9, .-, €,_1, €, to the vectorse, e, 1, ..., e, €, respectively. That is,

Be, =e€,.1_;
holds for all 1 < ¢ < n. Hence, for any integer 1 < ¢ < n, it follows that

= Blepy14)
= €nt1—(n+1—i)
=e;.
This shows that'*
B?=1,.
O
Proof of Fact 3.20. Using AB = I,,, we obtain
CAB=CI,=C.
Using CA = 1, we get
CAB=1B=B.
This shows that B = C. |

i Remark

Note that if A is a matrix and P is an invertible matrix such that PAP~! is a diagonal matrix,
then using Exercise 3.28, the powers of A can be computed. Indeed, if

A0 0
papti=| 0 22 O
0 0 X\,
then
Moo 0
4k = PI(PARPYP = P (PAP ) P —p1| 0 O lp
0 0 - Ak

holds for any positive integer k. Thus, Exercise 3.28 can be used to compute powers of matrices
which are similar to diagonal matrices.

Exercise 6.2. Does the following hold?

“How does it follow? Does Exercise 3.19 help?
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_ 51 v51\ /g 1) [y V51 B
2 2 2 2 = 2
1 1 (1 1) 1 1 0 1+2ﬁ

? Question

What can be said about the Fibonacci numbers using Exercise 3.15 and Exercise 3.28?

Proof of Lemma 3.30. In the following, the first and the second column of A are denoted by C; and C,
respectively. Write
ab
A= (7).

Let us first show that the first three statements are equivalent. Assume that A is invertible. If (‘Zl> is
1

0

A=)
(91 0

0

()= o)
% 0

1\ _ (O
()= 6)
This implies that the solution <8> is the only solution to Equation 11. This shows that the first
statement implies the second sta})tement. Assume that the second statement holds, that is, Equation 11
0

a solution to Equation 11, then
This shows that

which yields

). If s, t are real numbers such that

sCy + 10, = (8)

0
A(i) = sCy + tC, = (0)

This shows that <f) is a solution to Equation 11, and hence, s =t = 0. This shows that the second

admits no solution other than (

then

statement implies the third statement. Assume that the third statement holds, that is, the trivial linear
combination of the columns of A is the only linear combination of the columns of A that is equal to
<8>. If A is not invertible, then by Lemma 3.22, we have ad — bc = 0, which implies that

dC, — cCy = (adabc) _ (8>’
0 0
—bC; +aC; = (ad—bc) = (0)’

and consequently, a, b, ¢, d are equal to 0, and hence, any linear combination of the columns of A is
equal to (8), contradicting the third statement. This shows that if the third statement holds, then A
is invertible, and hence, the third statement implies the first statement. This proves the equivalence of
the first three statements.
For the equivalence of the next two statements, note that the following statements are equivalent.
« any element of R? is a solution to Equation 11
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. (é) and (?) are solutions to Equation 11

« the matrix A is the zero matrix.

Proof of Fact 3.37. Let A be a square matrix. Note that
1 1
A= §(A + AT) + §(A — AT).
Note that the matrix 1(A + A”) is symmetric, and that the matrix (A — AT) is skew-symmetric.
This shows that A can be expressed as the sum of a symmetric matrix and a skew-symmetric matrix.
Assume that
A251+K1 :SQ+K27
where S, S, are symmetric matrices, and K, K, are skew-symmetric matrices. It follows that
Sl _S2 =K2_K1.
Note that the left-hand side of the above equality is a symmetric matrix, and that the right-hand side
of the above equality is a skew-symmetric matrix. This shows that each of S; — S5, K, — K is both
symmetric and skew-symmetric. Since the only matrix that is both symmetric and skew-symmetric is
the zero matrix, we have S; — Sy = Ky, — K; = 0. This yields
S]. - SQ,
Kl - KQ.
This implies that any square matrix A can be uniquely expressed as the sum of a symmetric matrix
and a skew-symmetric matrix. O
Proof of Fact 3.51. Note that

1 1
A=A+ A) +5(A-4).

Note that the matrix 5(A + A*) is hermitian, and that the matrix (A — A*) is skew-hermitian. This
shows that A can be expressed as the sum of a hermitian matrix and a skew-hermitian matrix.
Assume that
A=H + K, =H, + K,
where H,, H, are hermitian matrices, and K, K, are skew-hermitian matrices. It follows that
H, —H,=K,—K,.
Note that the left-hand side of the above equality is a hermitian matrix, and that the right-hand side
of the above equality is a skew-hermitian matrix. This shows that each of H; — H,, K, — K] is both
hermitian and skew-hermitian. Since the only matrix that is both hermitian and skew-hermitian is the
zero matrix, we have H; — H, = K, — K; = 0. This yields
H, = H,,
K, = K,.
This implies that any square matrix A with complex entries can be uniquely expressed as the sum of
a hermitian matrix and a skew-hermitian matrix. O
Proof of Lemma 3.63. Let A be an n X m matrix. If
E =1, + \e;; with i # 7,
then
EA= (I, + Xe;;) A=A+ de; ;A
holds, and hence, the k-th row of E'A is equal to the k-th row of A if k # ¢, and is equal to the sum of
the i-th row of A and the row vector obtained by multiplying the j-th row of A by A if & = .

109



MTH102

Moreover, if
E=1,—e; —ej+e;+e; withi#j,
then
FEA = (In —e; —ej; et eji)A =A—e;A— ejjA + eijA + ejiA

holds, and hence, the k-th row of E'A is equal to the k-th row of A if k # 14, j, and the i-th row of EA
is equal to the j-th row of A, and the j-th row of E'A is equal to the i-th row of A.

Finally, if

E=1+(A—1)e; with A # 0,
then
EA=(I,+(A—1)e;;) A=A+ (A—1);A

holds, and hence, the k-th row of E A is equal to the k-th row of A if k£ # 4, and is equal to the vector
obtained by multiplying the i-th row of A by the scalar \ if k = 1.

This shows that left multiplication by an elementary matrix on a matrix A performs the corresponding
elementary row operation on the matrix A. O

Proof of Lemma 3.64. Let E be an elementary matrix. We consider the three types of elementary
matrices separately.

Suppose E is the elementary matrix obtained by interchanging the i-th row and the j-th row of the
identity matrix. Since multiplying any matrix by E from the left interchanges its ¢-th and j-th rows,
we obtain

E?=EE=1,.
This shows that E is invertible and that E~! = E.
Now consider the case that F is the elementary matrix obtained by multiplying the i-th row of the

identity matrix by a nonzero scalar A. Since multiplying any matrix A by E from the left has the same
effect of multiplying the i-th row of A by the same nonzero scalar ), it follows that

B+ (1)) =1
(I + (1 1) )E—f
n )\_ €4 — 4n-

This shows that E is invertible and that
1
E_l = In + (X — 1>€“~.

Finally, consider the case that E is the elementary matrix obtained by adding a scalar multiple of the

Similarly, it follows that

j-th row of the identity matrix to its i-th row, that is,
E =1, + Xe;; with i # j,

where ) is a scalar. Using Exercise 3.61, it follows that

E(L, = Xeij) = (L, + Aeyy) (I, — Aeyj) = I,
and

(In — )\eij)E = (In — )\eij) (In + )\eij) =1,
which shows that F is invertible and that

El=1 — A€,

This shows that any elementary matrix is invertible, and its inverse is also an elementary matrix. O
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Proof of Theorem 3.66. Let X, be a solution to the system of equations AX = b, thatis, AX, = b holds.
It follows that
A'Xy=FEAX,=Eb=1"¥
holds, which shows that X, is a solution to the system of equations A’ X = b’".
Conversely, let Y} be a solution to the system of equations A’ X = b’, that is, A’Y; = b’ holds. Since

the elementary matrices are invertible, and F is a product of elementary matrices, it follows that F is
invertible. This yields
AYy = E'AYy, = B~ =,
which shows that Y[ is a solution to the system of equations AX = b. |
Proof of Fact 3.80. Let M = (A | 0) denote the augmented matrix corresponding to the homogeneous
system of equations AX = 0. Performing row reduction on M, we obtain a matrix M’ = (A’ | 0) in
row echelon form. Since A has more columns than rows, the matrix A’ has more columns than rows.
Hence, the matrix A" has at least one non-pivot column, which implies that the system of equations
A’X = 0 has at least one free variable. Assigning an arbitrary nonzero value to this free variable, and
then solving for the other variables, we obtain a nonzero solution to the system of equations A’ X =
0. Since M’ is obtained from M by performing a sequence of elementary row operations, it follows
that the system of equations AX = 0 also admits a nonzero solution. Considering the scalar multiples
of any such nonzero solution (cf. Exercise 3.33), we see that the homogeneous system of equations
AX = 0 admits infinitely many solutions. O
Proof of Fact 3.81. Note that if A can be transformed into the identity matrix by performing a sequence
of elementary row operations, then there are elementary matrices E, E,, ..., E;, such that
E,.E;EA=1,
which implies that
A= (BE,..E,E)) " = E{'E; . B,
and consequently, A is a product of elementary matrices.

If A is a product of elementary matrices, then using the fact that every elementary matrix is invertible,
it follows that A is invertible.

Note that the vector A™1b is a solution to the AX = b If A is invertible, then for any solution X,
to the system of equations AX = b, we have AX, = b, which implies that A*1AX0 = A~1b, which
yields X, = A~1b. This shows that the system of equations AX = b admits a unique solution if A is
invertible.

Finally, let us assume that the system of equations AX = b admits a unique solution for every column
vector b having n entries. In particular, the homogeneous system of equations AX = 0 admits only the
zero solution. Performing row reduction on the augmented matrix (A | 0), we obtain a matrix (A’ | 0)
in row echelon form. Since the homogeneous system of equations AX = 0 admits only one solution,
each column of A" must contain a pivot of A”. This implies that the matrix A’ has no non-pivot column,
and hence, A’ has n pivots. In other words, A’ is equal to the identity matrix I,. Since (A’ | 0) is
obtained from (A | 0) by performing a sequence of elementary row operations, it follows that A can
be transformed into the identity matrix by performing a sequence of elementary row operations.

This proves the equivalence of the four statements. d

§6.1 Systems of linear equations in three variables and determinants of 3 x 3 matri-
ces

Let us revisit the solution to Exercise 3.88.
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? Question

Can one come up with a formula for the inverse of an invertible 3 x 3 matrix? Can one also have
a notion of determinant of a 3 x 3 matrix, and use it to determine whether a 3 x 3 matrix is
invertible or not? Can one have an analogue of Lemma 3.22 and Exercise 3.23 for 3 x 3 matrices?

Consider the system of linear equations in three variables z, y, z:

a1z + by + ¢z =dy, (13)
Ay + byy + coz = dy, (14)
ast + bgy + c3z = dg, (15)

where a;, b;, c;, d; are real numbers for ¢ = 1, 2, 3. This system of equations can be expressed in matrix

79 Y9 “io

form as

a; by ¢ x d,
ay by ¢y yl=1dy
as by c3 z ds
The matrix
a; by ¢
A - a2 b2 C2
as by c3

is called the coefficient matrix of the system of equations, and the vector

dy
dy
d3
is called the constant vector of the system of equations. The system of equations is said to be homoge-
neous if
d2 = 0
ds 0

Otherwise, the system of equations is said to be non-homogeneous.

i Remark

The discussion in Section 3.3 and Section 3.5 can be adapted to the case of systems of linear

dl
equations in three variables. In particular, if | d, | is a linear combination of the columns of the
d3
coefficient matrix A, then the solutions to the system of equations
x d,
z ds
are in one-to-one correspondence with the solutions to the system of equations
T 0
Aly|l =10
z 0

Multiplying Equation 14 by ¢4 and Equation 15 by —c,, and adding the results, we obtain the equation
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(agcs — agcy)x + (bycz — bycy)y = dycg — dgcy. (16)
Similarly, multiplying Equation 14 by —bs and Equation 15 by by, and adding the results, we obtain
the equation

(agbs — agby)x + (cabs — c3by)z = dyby — d3by. (17)
Multiplying Equation 13 by byc3 — bycy and Equation 16 by —b;, and adding the results, we obtain the
equation

(al(b203 - b302) —by (‘1203 - 0302))1' (! (b203 - b302))z

= dy(bycg — bgcy) — by (dyeg — dgcy). 18)
Multiplying Equation 17 by ¢; and adding to Equation 18, we obtain the equation
(a1(byeg — bgcy) — by(ages — agey) + ¢q(aghs — aghy))x (19)
= dy (byeg — bycy) — by (dycs — d3cy) + ¢1(dabs — dsby),
or equivalently, we obtain
(a1(byeg — bgcy) — by(ages — agey) + ¢q(aghs — aghy))x (20)
= dy (byeg — bycy) — dy(bycz — byey) + dg(bycy — byey).
Similarly??, it follows that
(ba(csay — crag) — ca(bgay — byag) + as(bge; — bycy))y (21)
= dy(csay — cra3) — dg(cza; — c1a5) + dy(coa3 — c3a,),
and
(cg(arby — agby) — ag(eby — cby) + bg(crag — czaq))2 (22)

= d3(a1b2 —aghy) — d1<a3b2 - a2b3) + dz(a3b1 - a1b3).

This may indicate that it could be useful to consider the product of the matrix

bycg —bzcy  —(bjeg —bzeq) by —bycy
Cal3 — C3a9 czay; —crag  —(cpa; —cqay)
—(azby —asbs) azb; —aqbg aby —azby
bycs —bscy  —(byes —bseq)  byey —bycy
= | —(c3a3 —cya3) c3a; —cja3  —(cpa; —cqay)
asbs —azby  —(ajbs —agby) a;by —azb;

with the matrix A. Consider the product

bycg — bgcy —(bycs —bgcy)  byey — by a; by ¢
M = _(03‘12 - 02‘13) C3a1 — €103 —(cqa; —cray) as by ¢y
asby —agzby  —(ajby —agb;) ayby —ash; as by c3

? Question

Does it follow that if one of m4, M43, m4; is identically zero, then the remaining two are also
identically zero. Does it also follow that if one of m;3, mq;, M4y is identically zero, then the
remaining two are also identically zero. Does it follow that M is a diagonal matrix? Does it also
follow that M is a scalar matrix, that is, its diagonal entries are equal?

Fact 6.3. The product M is a diagonal matrix whose diagonal entries are equal to each other, and is

equal to

“How does it follow? What would be a useful similarity to consider?
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det(A) I,
where
det(A) := a;(bycs — bycy) — by (ages — agey) + c1(azbs — agby).

Moreover, it follows that

bycs —bzcy  —(bycg —bzey)  bycy —bycy a; by ¢
—(cgay —cpa3)  cza; —cqag —(cya; — cya5) ag by ¢y
agby —azby  —(ajby —azb;) ayby —ayby as by c3
a; by ¢ bocz —bgcy  —(bjez —bgey)  bicg — by
= |ay by ¢ —(c3ay — caa3) c3a; —cray  —(cya; —cqay)
as by c3 asbs —azb, —(a1b3 - a3b1) a;by —asby
« Definition
a; by ¢
Let A be a 3 x 3 matrix. Write A = | a2 b, ¢, |. The determinant of A is denoted by det(A),
as bz cj

and is defined to be
det(A) := a;(bycg — byey) — by (ages — agey) + c1(agbs — agby).
The adjoint of A is denoted by adj(A), and is defined to be the matrix

bocz —bgcy  —(bjez —bgey)  bicg — by
adj(A) := [ —(czay —caa3) c3a; —cray  —(cya; —cqay)
asby —azby  —(ajby —azby) ayby —ayby

Using the fact above, the following analogue of Lemma 3.22 for 3 x 3 matrices can be established*®.

Lemma 6.4. Let A be a 3 X 3 matrix. The following statements are equivalent.
1. The matrix A is invertible.
2. The determinant det(A) of A is nonzero.
3. Every vector

e

f
g

can be expressed as a linear combination of the columns of A. Moreover, if A is invertible, then

Al = adj(A)

det(A)
holds.
Note that the above lemma is same as Lemma 3.96.
Proof of Lemma 3.96. If det(A) is nonzero, then using
A-adj(A) =adj(A) - A =det(A)IL,
it follows that A is invertible.

If A is invertible, then every vector

**In fact, the first few steps of the proof of Lemma 3.22 is precisely the analogue of Fact 3.94 for 2 x 2 matrices.
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e

f
g

can be expressed as a linear combination of the columns of A, since the standard basis vectors can be
expressed as a linear combination of the columns of A.

Moreover, if every vector can be expressed as a linear combination of the columns of A, then in
particular, the standard basis vectors can be expressed as a linear combination of the columns of A.
This shows that there are real numbers z,y;, 21, T4, Y5, 29, T3, Y3, 23 such that

Ty Ty T3
Alyr vo y3 | =I5
%1 % Z3
This implies that A has nonzero determinant by Fact 3.95. a
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