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Introduction

Chapter 1. Sets

Definition

A set is a well-defined collection of objects. The objects of a set are called its elements or members.

Examples

• The set of vowels a, e, i, o, u.
• The set consisting of 2, 4, 6, 8, 10.
• The set consisting of 3, 15, 35, 63, 99.

Here are further examples.

Examples

• The set of positive integers divisible by 3.
• The set of prime numbers less than 100.
• The set of positive integers which can be expressed as the product of two distinct primes.
• The set of positive integers which can be expressed as the product of two or more distinct

primes.
• The set of positive integers which are smaller than 100 and share no common factor with

100.

Remark

Note that the first few sets are described by writing down all its elements, whereas in the latter
examples, the sets are described by the rules or properties which determine whether a particular
object is an element or not.

Notation

A set is usually denoted by an uppercase letter, for example,
𝐴, 𝐵, 𝐶, 𝑋, 𝑌 , 𝑍,

whereas the lowercase letters are used to denote its elements. For instance, one may use
• 𝑎 to denote an element of 𝐴,
• 𝑏 to denote an element of 𝐵,
• 𝑐 to denote an element of 𝐶 ,
• 𝑥 to denote an element of 𝑋,
• 𝑦 to denote an element of 𝑌 ,
• 𝑧 to denote an element of 𝑍 .

Several special sets are denoted by certain standard symbols. Here are some such examples.

ℕ the set of positive integers
ℤ the set of integers

4
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If 𝑥 is an element of a set 𝑋, then one says that 𝑥 belongs to 𝑋, and writes
𝑥 ∈ 𝑋.

Note that 2 belongs to ℕ, but 12  does not belong to ℕ. One writes

2 ∈ ℕ, 1
2

∉ ℕ.

Notation

There are two ways to write down a set. For example, consider the set of vowels, which is written
as

𝑉 = {a, e, i, o, u}.
Note that the elements are seperated by commas and enclosed in braces {}.
Another way to write down a set is by stating the rules or properties which determine whether a

particular object is an element or not. For example, the set of even positive integers is written as
𝐸 = {𝑥 ∈ ℤ : 𝑥 is even, 𝑥 > 0}.

This reads
“𝐸 is the set of elements 𝑥 in ℤ such that 𝑥 is even and 𝑥 > 0”.

Example

Note that the set 𝐴 = {3, 15, 35, 63, 99} is equal to
{𝑥 ∈ ℤ : 𝑥 is equal to 𝑛2 − 1 for some 𝑛 ∈ {2, 4, 6, 8, 10}}.

Since 1, 2 are the roots of the polynomial 𝑥2 − 3𝑥 + 2, it follows that
{𝑥 ∈ ℕ : 𝑥2 − 3𝑥 + 2 = 0} = {1, 2}.

Also note that
ℕ = {1, 2, 3, …},
ℤ = {0, 1, −1, 2, −2, 3, −3, …}.

One uses the symbol ≔ to indicate that the symbol on the left is being defined by the symbol on
the right.

ℚ ≔ {𝑚
𝑛

: 𝑚, 𝑛 ∈ ℤ and 𝑛 ≠ 0}.

It is called the set of rational numbers.
If the number of elements of a set is finite, then it is called a finite set. If a set is not finite, it is called

an infinite set. A set containing exactly one element is called a singleton set.

Example

The sets
{a, e, i, o, u}, {3, 15, 35, 63, 99}, {𝑥 ∈ ℕ : 𝑥2 − 3𝑥 + 2 = 0}

are finite. The sets ℕ, ℤ, ℚ are infinite.

Exercise 1.1.  Determine the elements of the following sets.
• {𝑥 ∈ ℕ : 𝑥2 − 1 = 0}.
• {𝑥 ∈ ℤ : 𝑥2 − 1 = 0}.

5
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Solution.  Note that 1 is the only element of ℕ satisfying the equation 𝑥2 − 1 = 0. This gives

{𝑥 ∈ ℕ : 𝑥2 − 1 = 0} = {1} .

Since 1, −1 are precisely all the elements of ℤ satisfying 𝑥2 − 1 = 0, it follows that

{𝑥 ∈ ℤ : 𝑥2 − 1 = 0} = {1, −1} .

□

§1.1 Basic terminologies

If 𝐴, 𝐵 are sets, and every element of 𝐴 also belongs to 𝐵, then we say that 𝐴 is a subset of 𝐵, and write
𝐴 ⊆ 𝐵.

If 𝐴 is not a subset of 𝐵, one writes
𝐴 ⊈ 𝐵.

Example

• Note that every set is a subset of itself.
• Note that ℕ is a subset of ℤ, and ℤ is a subset of ℚ. One writes

ℕ ⊆ ℤ, ℤ ⊆ ℚ.
• Also note that

ℤ ⊈ ℕ, ℚ ⊈ ℤ, ℚ ⊈ ℕ.

If 𝐴 is a subset of 𝐵 and 𝐴 is not equal to 𝐵, then 𝐴 is said to be a proper subset of 𝐵, and one writes
𝐴 ⊊ 𝐵.

Note that
ℕ ⊊ ℤ, ℤ ⊊ ℚ.

Exercise 1.2.  What does it mean to say that 𝐴 is not a subset of 𝐵?

Solution.  Note that 𝐴 is a subset of 𝐵 is equivalent to the statement that each element of 𝐴 lies in 𝐵.
Hence, 𝐴 is not a subset of 𝐵 is equivalent to saying that some element of 𝐴 does not belong to 𝐵. □

Exercise 1.3.  Show that if 𝐴 is a subset of 𝐵 and 𝐵 is a subset of 𝐶 , then 𝐴 is a subset of 𝐶 .

Solution.  Let 𝑥 be an element of 𝐴. Since 𝐴 is a subset of 𝐵, it follows that 𝑥 belongs to 𝐵. Using that
𝐵 is a subset of 𝐶 , we obtain that 𝑥 belongs to 𝐶 . Hence, the element 𝑥 lies in 𝐶 . This shows that any
element 𝑥 of 𝐴 belongs to 𝐶 . This proves that 𝐴 is a subset of 𝐶 . □

Exercise 1.4.  Show that no element 𝑛 of ℕ satisfies 𝑛4 − 5𝑛2 + 6 = 0.

Tip

Try to show that no natural number 𝑛 satisfies any of the equations
𝑛2 = 2, 𝑛2 = 3.

Solution.  Note that the polynomial 𝑥4 − 5𝑥2 + 6 factorizes as
𝑥4 − 5𝑥2 + 6 = (𝑥2 − 2)(𝑥2 − 3).

Let 𝑛 be a natural number. If 𝑛 = 1, then 𝑛2 ≠ 2 and 𝑛2 ≠ 3 hold. If 𝑛 ≥ 2, then 𝑛2 ≥ 4, and hence,
𝑛2 ≠ 2 and 𝑛2 ≠ 3 hold. This shows that no natural number 𝑛 satisfies

6
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(𝑛2 − 2)(𝑛2 − 3) = 0,
that is, the equation

𝑛4 − 5𝑛2 + 6 = 0.
□

Consider the set
𝐴 = {𝑛 ∈ ℕ : 𝑛4 − 5𝑛2 + 6 = 0}.

Note that the set 𝐴 has no elements. Any such set is called the empty set or null set, and is denoted
by the symbol

∅.
Two sets, 𝐴 and 𝐵, are said to be equal¹ if any element of 𝐴 belongs to 𝐵, and any element of 𝐵 also
belongs to 𝐴, or equivalently,

𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴
holds. If two sets 𝐴, 𝐵 are not equal, one writes

𝐴 ≠ 𝐵.

Exercise 1.5.  What does it mean to say that two sets 𝐴, 𝐵 are not equal?

Tip

Does Exercise 1.2 help?

Solution.  Note that two sets 𝐴, 𝐵 are equal is equivalent to saying that 𝐴 is a subset of 𝐵, and 𝐵 is a
subset of 𝐶 . Hence, the statement 𝐴 ≠ 𝐵 is equivalent to saying that 𝐴 is not a subset of 𝐵, or 𝐵 is
not a subset of 𝐴, which is equivalent to the statement that some element of 𝐴 does not belong to 𝐵,
or some element of 𝐵 does not belong to 𝐴. □

§1.2 Operations on sets

Exercise 1.6.  Consider the sets
{1, 2, 3, 4}, {3, 4, 5, 6}.

Determine the elements common to these sets.

Figure 1: Two sets 𝐴 and 𝐵

¹It may appear obvious! The advantage of putting forth definitions is to set up notations and conventions, so that
these are not left to interpretations!
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Definition

If 𝐴, 𝐵 are sets, their union is denoted by 𝐴 ∪ 𝐵, which is defined as
𝐴 ∪ 𝐵 ≔ {𝑥 : 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵}.

See Figure 2.

Figure 2: The union of 𝐴 and 𝐵

Exercise 1.7.  Determine the union of the sets
{1, 2, 3, 4}, {1, 3, 5, 7}.

Usage of “or” in the inclusive sense

The word “or” is used in the inclusive sense, allowing two or more of the conditions to be satisfied.
In common terminology, this inclusive sense is denoted by “and/or”.

Exercise 1.8.  If 𝐴, 𝐵 are sets, show that
𝐴 ⊆ 𝐴 ∪ 𝐵, 𝐵 ⊆ 𝐴 ∪ 𝐵.

Solution.  Let 𝑥 be an element of 𝐴. Then note that 𝑥 lies 𝐴 ∪ 𝐵. This shows that 𝐴 is a subset of 𝐴 ∪
𝐵. Similarly, it follows that 𝐵 is a subset of 𝐴 ∪ 𝐵. □

Exercise 1.9.  If 𝐴, 𝐵 are subsets of a set 𝐶 , then 𝐴 ∪ 𝐵 is a subset of 𝐶 .

Solution.  Let 𝑥 be an element of 𝐴 ∪ 𝐵. It follows that 𝑥 belongs to 𝐴 or 𝑥 belongs to 𝐵. If 𝑥 belongs
to 𝐴, then using 𝐴 is a subset of 𝐶 , we obtain that 𝑥 lies in 𝐶 . Further, if 𝑥 belongs to 𝐵, then using
that 𝐵 is a subset of 𝐶 , we obtain that 𝑥 lies in 𝐶 . Combining the above cases, it follows that 𝑥 lies in
𝐶 . Consequently, any element of 𝐴 ∪ 𝐵 is an element of 𝐶 , or equivalently, 𝐴 ∪ 𝐵 is a subset of 𝐶 .□

Exercise 1.10.  If 𝐴 is a set, show that
𝐴 ∪ 𝐴 = 𝐴.

Solution.  Note that any element 𝑥 of 𝐴 ∪ 𝐴 belongs to 𝐴 or belongs to 𝐴, and hence it lies in 𝐴. This
shows that 𝐴 ∪ 𝐴 is a subset of 𝐴. Further, for any element 𝑦 of 𝐴, it belongs to 𝐴 ∪ 𝐴. Hence, 𝐴 is a
subset of 𝐴 ∪ 𝐴. This proves that

𝐴 ∪ 𝐴 = 𝐴 .

□
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Exercise 1.11 (Commutative property).  If 𝐴, 𝐵 are sets, show that
𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴.

Solution.  Let 𝑃 , 𝑄 be sets, and let 𝑥 be an element of 𝑃 ∪ 𝑄. It follows that 𝑥 belongs to 𝑃  or 𝑥 belongs
to 𝑄. This shows that 𝑥 belongs to 𝑄 or 𝑥 belongs to 𝑃 . This implies that 𝑥 is an element of 𝑄 ∪ 𝑃 .
Hence, 𝑃 ∪ 𝑄 is a subset of 𝑄 ∪ 𝑃  for any two sets 𝑃 , 𝑄.
Consequently, the set 𝐴 ∪ 𝐵 is a subset of 𝐵 ∪ 𝐴, and 𝐵 ∪ 𝐴 is a subset of 𝐴 ∪ 𝐵. This shows that

𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴 .

□

Definition

If 𝐴, 𝐵, 𝐶 are sets, their union is denoted by 𝐴 ∪ 𝐵 ∪ 𝐶 , which is defined as
𝐴 ∪ 𝐵 ∪ 𝐶 ≔ {𝑥 : 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵 or 𝑥 ∈ 𝐶}.

Exercise 1.12 (Associative property).  If 𝐴, 𝐵, 𝐶 are sets, show that
𝐴 ∪ 𝐵 ∪ 𝐶 = (𝐴 ∪ 𝐵) ∪ 𝐶 = 𝐴 ∪ (𝐵 ∪ 𝐶).

Use Exercise 1.11 and Exercise 1.12, to show that for any three sets 𝐴, 𝐵, 𝐶 , the following sets are equal
𝐴 ∪ 𝐵 ∪ 𝐶, 𝐴 ∪ 𝐶 ∪ 𝐵, 𝐵 ∪ 𝐴 ∪ 𝐶, 𝐵 ∪ 𝐶 ∪ 𝐴, 𝐶 ∪ 𝐴 ∪ 𝐵, 𝐶 ∪ 𝐵 ∪ 𝐴.

Definition

If 𝐴, 𝐵 are sets, their intersection is denoted by 𝐴 ∩ 𝐵, which is defined as
𝐴 ∩ 𝐵 ≔ {𝑥 : 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵}.

See Figure 3.

Figure 3: The intersection of 𝐴 and 𝐵
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Figure 4: The union and intersection of 𝐴 and 𝐵

Exercise 1.13.  Determine the intersection of the sets
{1, 2, 3, 4}, {1, 3, 5, 7}.

Exercise 1.14.  If 𝐴, 𝐵 are sets, show that
𝐴 ∩ 𝐵 ⊆ 𝐴, 𝐴 ∩ 𝐵 ⊆ 𝐵.

Solution.  For any element 𝑥 of 𝐴 ∩ 𝐵, it belongs to 𝐴 and it belongs to 𝐵. Hence, 𝐴 ∩ 𝐵 is a subset of
𝐴, and 𝐴 ∩ 𝐵 is also a subset of 𝐵. □

Exercise 1.15.  If 𝐴, 𝐵, 𝐶 are sets satisfying
𝐶 ⊆ 𝐴, 𝐶 ⊆ 𝐵,

then show that
𝐶 ⊆ 𝐴 ∩ 𝐵

holds.

Exercise 1.16.  Identify the integers among
1, 2, 3, 4, …, 20

which are divisible by at least one of 2 and 5.

Solution.  In the following, the integers among 1, 2, …, 20 divisible by 2 are marked.

1, 2 , 3, 4 , 5, 6 , 7, 8 , 9, 10 ,

11, 12 , 13, 14 , 15, 16 , 17, 18 , 19, 20 .

Note that there 10 integers among 1, 2, …, 20, which are divisible by 2. The integers among 1, 2, …, 20
divisible by 5 are marked below.

1, 2, 3, 4, 5 , 6, 7, 8, 9, 10 ,

11, 12, 13, 14, 15 , 16, 17, 18, 19, 20 .

Note that there are 4 integers among 1, 2, …, 20, which are divisible by 5. □

10
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Remark

Note that some integers are counted/marked twice. This is an instance of double counting, which
refers to the counting of certain element twice. In the above, the integers 10 and 20 are “counted
twice”. Thus, the number of integers among 1, 2, …, 20, divisible by 2 or 5, is equal to 10 + 4 −
2 = 12 .

Definition

Two sets 𝐴, 𝐵 are said to be disjoint if
𝐴 ∩ 𝐵 = ∅.

Lemma 1.17 (Inclusion-exclusion principle).  Let 𝑋 be a set, and 𝐴, 𝐵 be finite subsets of 𝑋. Then
|𝐴 ∪ 𝐵| = |𝐴| + |𝐵| − |𝐴 ∩ 𝐵|.

Proof.  Note that the set 𝐴 ∪ 𝐵 is equal to the union of the disjoint sets 𝐴 and 𝐵 ∖ 𝐴. This shows that
|𝐴 ∪ 𝐵| = |𝐴| + |𝐵 ∖ 𝐴|.

Also note that the set 𝐵 is equal to the union of the disjoint subsets 𝐴 ∩ 𝐵 and 𝐵 ∖ 𝐴. This gives
|𝐵| = |𝐴 ∩ 𝐵| + |𝐵 ∖ 𝐴|.

It follows that

|𝐴 ∪ 𝐵| = |𝐴| + |𝐵| − |𝐴 ∩ 𝐵| .

□

Exercise 1.18 (Inclusion-exclusion principle).  Using Lemma 1.17 or otherwise, show that for finite
subsets 𝐴, 𝐵, 𝐶 of a set 𝑋,

|𝐴 ∪ 𝐵 ∪ 𝐶| = |𝐴| + |𝐵| + |𝐶| − |𝐴 ∩ 𝐵| − |𝐵 ∩ 𝐶| − |𝐶 ∩ 𝐴| + |𝐴 ∩ 𝐵 ∩ 𝐶|.

Solution.  Note that
|𝐴 ∪ 𝐵 ∪ 𝐶|
= |(𝐴 ∪ 𝐵) ∪ 𝐶|
= |𝐴 ∪ 𝐵| + |𝐶| − |(𝐴 ∪ 𝐵) ∩ 𝐶| (by Lemma 1.17)
= |𝐴 ∪ 𝐵| + |𝐶| − |(𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)| (by Fact 1.23)
= |𝐴 ∪ 𝐵| + |𝐶| − (|𝐴 ∩ 𝐶| + |𝐵 ∩ 𝐶| − |(𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)| (by Lemma 1.17)
= |𝐴 ∪ 𝐵| + |𝐶| − |𝐴 ∩ 𝐶| − |𝐵 ∩ 𝐶| + |(𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)|
= |𝐴 ∪ 𝐵| + |𝐶| − |𝐴 ∩ 𝐶| − |𝐵 ∩ 𝐶| + |𝐴 ∩ 𝐶 ∩ 𝐵 ∩ 𝐶|
= |𝐴 ∪ 𝐵| + |𝐶| − |𝐴 ∩ 𝐶| − |𝐵 ∩ 𝐶| + |𝐴 ∩ 𝐵 ∩ 𝐶|
= |𝐴| + |𝐵| − |𝐴 ∩ 𝐵| + |𝐶| − |𝐴 ∩ 𝐶| − |𝐵 ∩ 𝐶| + |𝐴 ∩ 𝐶 ∩ 𝐵 ∩ 𝐶| (by Lemma 1.17)
= |𝐴| + |𝐵| + |𝐶| − |𝐴 ∩ 𝐵| − |𝐵 ∩ 𝐶| − |𝐶 ∩ 𝐴| + |𝐴 ∩ 𝐵 ∩ 𝐶|.

□

Exercise 1.19.  Determine the number of integers among
1, 2, 3, 4, …, 100,

which are divisible by at least one of 6, 10, 15.

11
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Solution.  Let 𝑋 denote the set
{1, 2, 3, …, 100}.

Let 𝐴 (resp. 𝐵, 𝐶) denote the set of elements 𝑋 which are divisible by 6 (resp. 10, 15). Note that
|𝐴| = 16, |𝐵| = 10, |𝐶| = 6

hold. Observe that 𝐴 ∩ 𝐵 consists of the elements of 𝑋 which are divisible by 6 and by 10, that is,
divisible by their least common multiple, which is equal to 30. Similarly, 𝐵 ∩ 𝐶 consists of the elements
of 𝑋 which are divisible by the least common multiple of 10, 15, which is equal to 30. Further, it follows
that 𝐶 ∩ 𝐴 also consists of the multiples of 30 lying between 1 and 100. Moreover, the set 𝐴 ∩ 𝐵 ∩
𝐶 consists of the integers between 1 and 100, which are divisible by the least common multiple of
6, 10, 15, that is, the integer 30. By the inclusion-exclusion principle (Exercise 1.18), we obtain

|𝐴 ∪ 𝐵 ∪ 𝐶| = |𝐴| + |𝐵| + |𝐶| − |𝐴 ∩ 𝐵| − |𝐵 ∩ 𝐶| − |𝐶 ∩ 𝐴| + |𝐴 ∩ 𝐵 ∩ 𝐶|
= |𝐴| + |𝐵| + |𝐶| − 3|𝐴 ∩ 𝐵| + |𝐴 ∩ 𝐵 ∩ 𝐶|
= |𝐴| + |𝐵| + |𝐶| − 2|𝐴 ∩ 𝐵|
= 16 + 10 + 6 − 2 × 3
= 26.

Note that the set 𝐴 ∪ 𝐵 ∪ 𝐶 consists of the integers between 1 and 100 which are divisible by at least
one of 6, 10, 15. This shows that there are precisely 26  such integers. □

Exercise 1.20.  If 𝐴 is a set, show that
𝐴 ∩ 𝐴 = 𝐴.

Tip

Does Exercise 1.10 help? If not, what about its solution?

Exercise 1.21 (Commutative property).  If 𝐴, 𝐵 are sets, show that
𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴.

Tip

Does Exercise 1.11 help? If not, what about its solution?

Definition

If 𝐴, 𝐵, 𝐶 are sets, their intersection is denoted by 𝐴 ∩ 𝐵 ∩ 𝐶 , which is defined as
𝐴 ∩ 𝐵 ∩ 𝐶 ≔ {𝑥 : 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵 and 𝑥 ∈ 𝐶}.

Exercise 1.22 (Associative property).  If 𝐴, 𝐵, 𝐶 are sets, show that
𝐴 ∩ 𝐵 ∩ 𝐶 = (𝐴 ∩ 𝐵) ∩ 𝐶 = 𝐴 ∩ (𝐵 ∩ 𝐶).

Tip

Does Exercise 1.12 help? If not, what about its solution?

Fact 1.23 (Distributive property).  If 𝐴, 𝐵, 𝐶 are sets, show that

12
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𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶),
𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶).

A proof of the above is provided in Chapter 4.

Remark

All sets under consideration in a given context, are assumed to be contained in a ‘large’ fixed set,
called the universal set. For example, while studying the positive integers (for instance, some sets
consisting of the positive integers), the set ℕ can be taken as the universal set. While studying
the integers, the set ℤ can be taken as the universal set.

Definition

Let 𝐴, 𝐵 be subsets of a set 𝑋. The complement of 𝐴 in 𝐵 is denoted by 𝐵 ∖ 𝐴, and is defined by
𝐵 ∖ 𝐴 ≔ {𝑥 ∈ 𝑋 : 𝑥 ∈ 𝐵, 𝑥 ∉ 𝐴}

It is also called the difference of 𝐵 and 𝐴.
The complement of 𝐴 in 𝑋, is called the complement of 𝐴, and is denoted by 𝐴𝑐, and is defined

to be
𝐴𝑐 ≔ 𝑋 ∖ 𝐴.

Exercise 1.24.  Show that
𝐴𝑐 = {𝑥 ∈ 𝑋 : 𝑥 ∉ 𝐴},

where 𝑋 denotes the underlying universal set.

Solution.  Since 𝑋 ∖ 𝐴 is equal to {𝑥 ∈ 𝑋 : 𝑥 ∉ 𝐴}, it follows that

𝐴𝑐 = {𝑥 ∈ 𝑋 : 𝑥 ∉ 𝐴} .

□

Exercise 1.25.  Determine the complement of {1, 2, 3, 4} in {1, 3, 5, 7}, and the complement of
{1, 3, 5, 7} in {1, 2, 3, 4}.

Exercise 1.26.  If 𝐴, 𝐵 are subsets of a set 𝑋, show that
𝐴𝑐 ∩ 𝐵 = 𝐵 ∖ 𝐴.

Solution.  Note that
𝐴𝑐 ∩ 𝐵 = (𝑋 ∖ 𝐴) ∩ 𝐵

= {𝑥 ∈ 𝑋 : 𝑥 ∈ 𝑋 ∖ 𝐴 and 𝑥 ∈ 𝐵}
= {𝑥 ∈ 𝑋 : 𝑥 ∉ 𝐴 and 𝑥 ∈ 𝐵}
= {𝑥 ∈ 𝑋 : 𝑥 ∈ 𝐵 and 𝑥 ∉ 𝐴}
= 𝐵 ∖ 𝐴.

□

Exercise 1.27.  If 𝐴 is a subset of a set 𝑋, then show that
𝐴 ∪ 𝐴𝑐 = 𝑋, 𝐴 ∩ 𝐴𝑐 = ∅, (𝐴𝑐)𝑐 = 𝐴.
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Fact 1.28.  If 𝐴, 𝐵 are subsets of a set 𝑋, then show that
(𝐴 ∪ 𝐵)𝑐 = 𝐴𝑐 ∩ 𝐵𝑐, (𝐴 ∩ 𝐵)𝑐 = 𝐴𝑐 ∪ 𝐵𝑐.

A proof of the above is provided in Chapter 4.

Exercise 1.29.  Let 𝐴, 𝐵 be subsets of a set 𝑋. Show that the following statements are equivalent.
𝐴 ⊆ 𝐵,

𝐴 ∩ 𝐵 = 𝐴,
𝐴 ∪ 𝐵 = 𝐵,
𝐵𝑐 ⊆ 𝐴𝑐.

Fact 1.30.  If 𝐴, 𝐵, 𝐶 are sets, show that
1. 𝐴 ∖ (𝐵 ∪ 𝐶) = (𝐴 ∖ 𝐵) ∩ (𝐴 ∖ 𝐶),
2. 𝐴 ∖ (𝐵 ∩ 𝐶) = (𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶).

A proof of the above is provided in Chapter 4.

Exercise 1.31.  Let 𝐴, 𝐵 be subsets of a set 𝑋. Show that the sets
𝐴 ∖ 𝐵, 𝐵 ∖ 𝐴

are disjoint.

Definition

The symmetric difference of two sets 𝐴, 𝐵, denoted by 𝐴Δ𝐵, is defined as
𝐴Δ𝐵 ≔ (𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵).

Exercise 1.32.  Determine the symmetric difference of {1, 2, 3, 4} and {1, 3, 5, 7}.

Exercise 1.33.  If 𝐴, 𝐵 are sets, then show that
𝐴Δ𝐵 = (𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴),
𝐴Δ𝐵 = 𝐵Δ𝐴,
𝐴 ∪ 𝐵 = (𝐴Δ𝐵) ∪ (𝐴 ∩ 𝐵),

(𝐴Δ𝐵) ∩ (𝐴 ∩ 𝐵) = ∅.

Solution.  Note that
𝐴Δ𝐵 = (𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵)

= (𝐴 ∪ 𝐵) ∩ (𝐴 ∩ 𝐵)𝑐

= (𝐴 ∩ (𝐴 ∩ 𝐵)𝑐) ∪ (𝐵 ∩ (𝐴 ∩ 𝐵)𝑐) (by Fact 1.23)
= (𝐴 ∩ (𝐴𝑐 ∪ 𝐵𝑐)) ∪ (𝐵 ∩ (𝐴𝑐 ∪ 𝐵𝑐)) (by Fact 1.28)
= ((𝐴 ∩ 𝐴𝑐) ∪ (𝐴 ∩ 𝐵𝑐)) ∪ ((𝐵 ∩ 𝐴𝑐) ∪ (𝐵 ∩ 𝐵𝑐)) (by Fact 1.23)
= (∅ ∪ (𝐴 ∖ 𝐵)) ∪ ((𝐵 ∖ 𝐴) ∪ ∅) (by Exercise 1.26)
= (𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴).

Also note that
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𝐴Δ𝐵 = (𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵)
= (𝐵 ∪ 𝐴) ∖ (𝐵 ∩ 𝐴)
= 𝐵Δ𝐴.

Since 𝐴 ∩ 𝐵 is a subset of 𝐴 ∪ 𝐵, we obtain
𝐴 ∪ 𝐵 = ((𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵)) ∪ (𝐴 ∩ 𝐵)

= (𝐴Δ𝐵) ∪ (𝐴 ∩ 𝐵).
Using 𝐴Δ𝐵 = (𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵), it follows that 𝐴Δ𝐵 contains no element of 𝐴 ∩ 𝐵. This implies
that

(𝐴Δ𝐵) ∩ (𝐴 ∩ 𝐵) = ∅.
□

§1.3 Family of sets

Definition

Let 𝑛 ≥ 2 be an integer, and let 𝐴1, …, 𝐴𝑛 be sets. The union of 𝐴1, …, 𝐴𝑛 is denoted by 𝐴1 ∪
⋯ ∪ 𝐴𝑛, and is defined by

𝐴1 ∪ ⋯ ∪ 𝐴𝑛 ≔ {𝑥 : 𝑥 belongs to 𝐴𝑖 for some 1 ≤ 𝑖 ≤ 𝑛}.
The intersection of 𝐴1, …, 𝐴𝑛 is denoted by 𝐴1 ∩ ⋯ ∩ 𝐴𝑛, and is defined by

𝐴1 ∩ ⋯ ∩ 𝐴𝑛 ≔ {𝑥 : 𝑥 belongs to 𝐴𝑖 for all 1 ≤ 𝑖 ≤ 𝑛}.

§1.4 Power set

Example

Note that the subsets of {1, 2, 3} are
{1, 2, 3},
{1, 2}, {2, 3}, {3, 1},
{1}, {2}, {3},
∅.

Definition

Let 𝐴 be a set. The set of subsets of 𝐴 is denoted by 𝒫(𝐴). It is called the power set of 𝐴.

15
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Example

Note that
𝒫({1}) = {∅, {1}},
𝒫({𝑥}) = {∅, {𝑥}},

𝒫({𝑥, 𝑦}) = {∅, {𝑥}, {𝑦}, {𝑥, 𝑦}},
𝒫({𝑥, 𝑦, 𝑧}) = {∅, {𝑥}, {𝑦}, {𝑧}, {𝑥, 𝑦}, {𝑦, 𝑧}, {𝑧, 𝑥}, {𝑥, 𝑦, 𝑧}},
𝒫({1, 2, 3}) = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}},

𝒫({1, 2, 3, 4}) = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3},
{4}, {1, 4}, {2, 4}, {3, 4}, {1, 2, 4}, {2, 3, 4}, {1, 3, 4}, {1, 2, 3, 4}}.

Remark

Convince yourself that for any integer 𝑛 ≥ 0, the power set of a set of size 𝑛 has size 2𝑛.

Exercise 1.34.  Write down the power set of each of the following sets:
{1, 2}, {1, 2, 3}, {1, {2, 3}}, {1, 2, 3, 4}.

§1.5 Cartesian product of sets

Definition

If 𝐴, 𝐵 are sets, then the cartesian product 𝐴 × 𝐵 of 𝐴 and 𝐵 is the set of all ordered pairs of the
form (𝑎, 𝑏) with 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. That is,

𝐴 × 𝐵 ≔ {(𝑎, 𝑏) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

If 𝐴 = {1, 2} and 𝐵 = {2, 3, 4}, then
𝐴 × 𝐵 = {(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4)}.

Exercise 1.35.  If 𝐴, 𝐵 are finite sets, then show that
|𝐴 × 𝐵| = |𝐴| × |𝐵|,

where for a set 𝑋, its number of elements is denoted by |𝑋|.

§1.6 Sets and subsets of real and complex numbers

§1.6.1 Real numbers

ℕ = the set of positive integers
= {1, 2, 3, …},

ℤ = the set of integers
= {0, 1, −1, 2, −2, 3, −3, …},

ℚ = the set of rational numbers

= {𝑚
𝑛

: 𝑚 ∈ ℤ, 𝑛 ∈ ℕ},

ℝ = the set of real numbers.

16
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Remark

There are real numbers which are not rational. For instance, the number 
√

2 is not rational.

Lemma 1.36.  No rational number 𝑥 satisfies 𝑥2 = 2.

Proof.  On the contrary, let us assume that some rational number 𝑥 satisfies 𝑥2 = 2. Replacing 𝑥 by
−𝑥 if necessary, we may and do assume that 𝑥 is positive. Write 𝑥 = 𝑎

𝑏  for some positive integers 𝑎, 𝑏.
Let 𝑑 denote the greatest common divisor of 𝑎, 𝑏. Write 𝑎 = 𝑑𝑎0, 𝑏 = 𝑑𝑏0 where 𝑎0, 𝑏0 are positive
integers. Note that (𝑎0

𝑏0
)

2
= 2.

Let us prove the two claims below. After establishing them, we will use them to complete the proof
of the lemma.

Claim

None of 𝑎0, 𝑏0 is divisible by 3.

Proof of the Claim

On the contrary, let us assume that 3 divides at least one of the integers 𝑎0, 𝑏0.
If 3 divides 𝑎0, then 3 divides 𝑎2

0. Using 𝑎2
0 = 2𝑏2

0 , it follows that 3 divides 𝑏0. Further, if 3 divides
𝑏0, then 3 divides 2𝑏2

0 , and hence 3 divides 𝑎2
0. This shows that 𝑎0 is divisible by 3.

In both the cases, it follows that the greatest common divisor of 𝑎0, 𝑏0 is larger than 1. This
shows that the greatest common divisor of 𝑑𝑎0, 𝑑𝑏0 is larger than 𝑑. Using 𝑎 = 𝑑𝑎0, 𝑏 = 𝑑𝑏0,
we obtain that the greatest common divisor of 𝑎, 𝑏 is larger than 𝑑, which is impossible. This
contradicts the assumption that some rational number 𝑥 satisfies 𝑥2 = 2. This proves the claim.

Claim

If 𝑛 is an integer not divisible by 3, then 𝑛2 is equal to 3𝑘 + 1 for some integer 𝑘, depending on
𝑛.

Proof of the Claim

Let 𝑞 (resp. 𝑟) denote the quotient (resp. remainder) obtained upon dividing 𝑛 by 3. This gives
𝑛 = 3𝑞 + 𝑟. Note that

𝑛2 = (3𝑞 + 𝑟)2

= 9𝑞2 + 6𝑞𝑟 + 𝑟2

Since 𝑛 = 3𝑞 + 𝑟 and 3 does not divide 𝑛, it follows that 𝑟 is equal to 1 or 2. If 𝑟 = 1, then
𝑛2 = 3(3𝑞2 + 2𝑞𝑟) + 1.

If 𝑟 = 2, then
𝑛2 = 3(3𝑞2 + 2𝑞𝑟) + 4 = 3(3𝑞2 + 2𝑞𝑟 + 1) + 1.

This proves the claim.

Using the claims above, it follows that
𝑎2

0 = 3𝑐 + 1,

𝑏2
0 = 3𝑑 + 1
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for some integers 𝑐, 𝑑. This gives
3𝑐 + 1 = 2(3𝑑 + 1).

This yields 1 = 3(𝑐 − 2𝑑), which is impossible.
This completes the proof of the lemma. □

Definition

Let 𝑎, 𝑏 be real numbers with 𝑎 ≤ 𝑏. Then the closed interval [𝑎, 𝑏] is defined by
[𝑎, 𝑏] ≔ {𝑥 ∈ ℝ : 𝑎 ≤ 𝑥 ≤ 𝑏}.

The open interval (𝑎, 𝑏) is defined by
(𝑎, 𝑏) ≔ {𝑥 ∈ ℝ : 𝑎 < 𝑥 < 𝑏}.

Exercise 1.37.  Determine the cartesian product of [1, 2] and [3, 4] ∪ [5, 6].

Exercise 1.38.  Identify the set

{𝑥 ∈ ℝ ∖ {0} : 𝑥 + 1
𝑥

≥ 2}.

Solution.  Let 𝑥 be an element of ℝ ∖ {0}. Note that

𝑥 + 1
𝑥

− 2 = 𝑥2 + 1 − 2𝑥
𝑥

= (𝑥 − 1)2

𝑥
hold. This shows that the condition

𝑥 + 1
𝑥

≥ 2

is equivalent to the condition
(𝑥 − 1)2

𝑥
≥ 0. (1)

If 𝑥 ≠ 1, then we obtain (𝑥 − 1)2 > 0, and then, Equation 1 yields 1
𝑥 > 0, or equivalently, 𝑥 > 0. This

gives that

{𝑥 ∈ ℝ ∖ {0} : 𝑥 + 1
𝑥

≥ 2} ∖ {1} ⊆ {𝑥 ∈ ℝ : 𝑥 > 0},

which implies

{𝑥 ∈ ℝ ∖ {0} : 𝑥 + 1
𝑥

≥ 2} ⊆ {𝑥 ∈ ℝ : 𝑥 > 0}.

Also note that if 𝑥 > 0, then
(𝑥 − 1)2

𝑥
≥ 0,

or equivalently,

𝑥 + 1
𝑥

≥ 2.

It follows that

{𝑥 ∈ ℝ ∖ {0} : 𝑥 + 1
𝑥

≥ 2} = {𝑥 ∈ ℝ : 𝑥 > 0} .
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□

Exercise 1.39.  Let 𝐴, 𝐵 be subsets of ℝ defined by
𝐴 = {𝑥 ∈ ℝ : 𝑥2 ≥ 0},

𝐵 = {𝑥 ∈ ℝ : 𝑥3 ≥ 0}.

Determine the sets 𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵, 𝐴 ∖ 𝐵, 𝐵 ∖ 𝐴.

Exercise 1.40.  For a positive integer 𝑘, let 𝐴𝑘 denote the set of integral multiples of 𝑘, that is,
𝐴𝑘 ≔ {𝑟 ∈ ℤ : 𝑟 = 𝑘ℓ for some ℓ ∈ ℤ}.

Let 𝑚, 𝑛 be positive integers. For each of the following statements, determine the equivalent condi-
tions on the integers 𝑚, 𝑛.

1. 𝐴𝑚 ⊆ 𝐴𝑛
2. 𝐴𝑚 ⊊ 𝐴𝑛
3. 𝐴𝑚 ⊈ 𝐴𝑛
4. 𝐴𝑚 = 𝐴𝑛
5. 𝐴𝑚 ∩ 𝐴𝑛 = ∅
6. 𝐴𝑚 ∖ 𝐴𝑛 ≠ ∅
7. 𝐴𝑚 ∖ 𝐴𝑛 ≠ ∅ or 𝐴𝑛 ∖ 𝐴𝑚 ≠ ∅
8. 𝐴𝑚 ∖ 𝐴𝑛 ≠ ∅ and 𝐴𝑛 ∖ 𝐴𝑚 ≠ ∅

§1.6.2 Complex numbers

Note that no real number 𝑥 satisfies 𝑥2 = −1. To “resolve” this, one “introduces”² an element 𝑖
satisfying

𝑖2 = −1.

The element 𝑖 can be multiplied by any real number, and the product can also be added to any real
number. This leads to the numbers of the form 𝑎 + 𝑖𝑏, where 𝑎, 𝑏 are real numbers. Such numbers are
called the complex numbers, and the set of such numbers is denoted by ℂ.

Definition

The set of complex numbers, is denoted by ℂ, and is defined by
ℂ ≔ {𝑎 + 𝑖𝑏 : 𝑎, 𝑏 ∈ ℝ}.

Exercise 1.41.  Show that ℝ is a subset of ℂ.

Definition

For a complex number 𝑧 = 𝑎 + 𝑖𝑏 with 𝑎, 𝑏 ∈ ℝ, the real part (resp. imaginary part) of 𝑧, denoted
by ℜ(𝑧) (resp. ℑ(𝑧)), is defined by

ℜ(𝑧) = 𝑎,
ℑ(𝑧) = 𝑏.

²To introduce is to adjoin.
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Definition

For complex numbers 𝑧 = 𝑎 + 𝑖𝑏, 𝑤 = 𝑐 + 𝑖𝑑 with 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ, the sum 𝑧 + 𝑤 and the product
𝑧 ⋅ 𝑤 of 𝑧 and 𝑤 are defined by

𝑧 + 𝑤 ≔ (𝑎 + 𝑐) + 𝑖(𝑏 + 𝑑),
𝑧 ⋅ 𝑤 ≔ (𝑎𝑐 − 𝑏𝑑) + 𝑖(𝑎𝑑 + 𝑏𝑐).

Definition

For a complex number 𝑧 = 𝑎 + 𝑖𝑏 with 𝑎, 𝑏 ∈ ℝ, the conjugate of 𝑧, denoted by 𝑧, is defined by
𝑧 ≔ 𝑎 − 𝑖𝑏.

Definition

For a complex number 𝑧 = 𝑎 + 𝑖𝑏 with 𝑎, 𝑏 ∈ ℝ, the absolute value of 𝑧, also called the modulus
of 𝑧, is denoted by |𝑧|, and is defined by

|𝑧| ≔ √𝑎2 + 𝑏2.

Exercise 1.42.  If 𝑧, 𝑤 are complex numbers, then show that
1. 𝑧 + 𝑤 = 𝑧 + 𝑤,
2. 𝑧 ⋅ 𝑤 = 𝑧 ⋅ 𝑤,
3. |𝑧| ≥ 0, and |𝑧| = 0 if and only if 𝑧 = 0,
4. |𝑧 ⋅ 𝑤| = |𝑧| |𝑤|.

Exercise 1.43.  If 𝑧 is a complex number, then show that
𝑧 ⋅ 𝑧 = |𝑧|2.

Exercise 1.44.  For any real number 𝜃, show that
| cos 𝜃 + 𝑖 sin 𝜃| = 1.

Fact 1.45.  If 𝑧 is a complex number satisfying |𝑧| = 1, then there exists a real number 𝜃 such that
𝑧 = cos 𝜃 + 𝑖 sin 𝜃.

Consequently, if 𝑧 is a nonzero complex number, then for some real number 𝜃,
𝑧 = |𝑧| (cos 𝜃 + 𝑖 sin 𝜃)

holds.
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Chapter 2. Induction principles

Example

Show that

1 + 2 + 3 + ⋯ + 𝑛 = 𝑛(𝑛 + 1)
2

holds for any positive integer 𝑛.

Solution

For any 𝑛 ∈ ℕ, let 𝑃(𝑛) denote the statement that

1 + 2 + 3 + ⋯ + 𝑛 = 𝑛(𝑛 + 1)
2

.

Note that 𝑃(1) holds. Let 𝑘 be an element of ℕ, and assume that 𝑃(𝑘) holds. Note that

1 + 2 + 3 + ⋯ + 𝑘 + (𝑘 + 1) = 𝑘(𝑘 + 1)
2

+ (𝑘 + 1) (using 𝑃(𝑘))

= (𝑘 + 1)(𝑘
2

+ 1)

= (𝑘 + 1)(𝑘 + 2)
2

.

This shows that if 𝑘 is a positive integer and 𝑃(𝑘) holds, then 𝑃(𝑘 + 1) also holds. By the principle
of induction, it follows that 𝑃(𝑛) holds for any positive integer 𝑛.

Definition

If 𝐴 is a nonempty subset of ℕ, then an element 𝑎0 of 𝐴 is called a least element of 𝐴 if 𝑎0 ≤ 𝑎
for all 𝑎 ∈ 𝐴.

Exercise 2.1.  If 𝐴 is a nonempty subset of ℕ, and 𝑎1, 𝑎2 are least elements of 𝐴, then show that
𝑎1 = 𝑎2.

Solution.  Since 𝑎1, 𝑎2 are least elements of 𝐴, they belong to 𝐴. Using that 𝑎1 is a least element of 𝐴, we
obtain that 𝑎1 ≤ 𝑎2. Further, using that 𝑎2 is a least element of 𝐴, we obtain that 𝑎2 ≤ 𝑎1. Combining
these two inequalities, it follows that 𝑎1 = 𝑎2. □

Remark

By Exercise 2.1, a nonempty subset of ℕ has at most one least element, to be called the least
element, if it exists.

Well-ordering principle

Every nonempty subset of ℕ has a least element.
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Principle of mathematical induction

For each 𝑛 ∈ ℕ, let 𝑃(𝑛) be a statement. Suppose 𝑃(1) is true, and that whenever 𝑃(𝑛) holds
for some 𝑛 ≥ 1, the statement 𝑃(𝑛 + 1) holds. Then 𝑃(𝑛) is true for all 𝑛 ≥ 1.

Principle of strong induction

For each 𝑛 ∈ ℕ, let 𝑃(𝑛) be a statement. Suppose 𝑃(1) is true, and that whenever
𝑃(1), 𝑃 (2), …, 𝑃 (𝑛) hold for some 𝑛 ≥ 1, the statement 𝑃(𝑛 + 1) holds. Then 𝑃(𝑛) is true for
all 𝑛 ≥ 1.

Remark

The above three principles are equivalent. A proof of this is provided in Chapter  5 (see
Theorem 5.1).

Exercise 2.2.  Show that
1

1 ⋅ 2
+ 1

2 ⋅ 3
+ ⋯ + 1

𝑛(𝑛 + 1)
= 𝑛

𝑛 + 1
for all 𝑛 ∈ ℕ.

Solution.  For a positive integer 𝑛, let 𝑃(𝑛) denote the statement that
1

1 ⋅ 2
+ 1

2 ⋅ 3
+ ⋯ + 1

𝑛(𝑛 + 1)
= 𝑛

𝑛 + 1
.

Note that 𝑃(1) holds.
Let 𝑘 be a positive integer such that 𝑃(𝑘) holds. Note that

1
1 ⋅ 2

+ 1
2 ⋅ 3

+ ⋯ + 1
𝑘(𝑘 + 1)

+ 1
(𝑘 + 1)(𝑘 + 2)

= 𝑘
𝑘 + 1

+ 1
(𝑘 + 1)(𝑘 + 2)

(using 𝑃(𝑘))

= 𝑘(𝑘 + 2) + 1
(𝑘 + 1)(𝑘 + 2)

= (𝑘 + 1)2

(𝑘 + 1)(𝑘 + 2)

= 𝑘 + 1
𝑘 + 2

.

This shows that if 𝑘 is a positive integer and 𝑃(𝑘) holds, then 𝑃(𝑘 + 1) also holds. By the principle of
induction, it follows that 𝑃(𝑛) holds for any positive integer 𝑛. □

Exercise 2.3.  Show that
1

1 ⋅ 3
+ 1

3 ⋅ 5
+ ⋯ + 1

(2𝑛 − 1)(2𝑛 + 1)
= 𝑛

2𝑛 + 1
for all 𝑛 ∈ ℕ.

Solution.  For a positive integer 𝑛, let 𝑃(𝑛) denote the statement that
1

1 ⋅ 3
+ 1

3 ⋅ 5
+ ⋯ + 1

(2𝑛 − 1)(2𝑛 + 1)
= 𝑛

2𝑛 + 1
.
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Note that 𝑃(1) holds.
Let 𝑘 be a positive integer such that 𝑃(𝑘) holds. Note that

1
1 ⋅ 3

+ 1
3 ⋅ 5

+ ⋯ + 1
(2𝑘 − 1)(2𝑘 + 1)

+ 1
(2(𝑘 + 1) − 1)(2(𝑘 + 1) + 1)

= 𝑘
2𝑘 + 1

+ 1
(2𝑘 + 1)(2𝑘 + 3)

(using 𝑃(𝑘))

= 2𝑘2 + 3𝑘 + 1
(2𝑘 + 1)(2𝑘 + 3)

= (𝑘 + 1)(2𝑘 + 1)
(2𝑘 + 1)(2𝑘 + 3)

= 𝑘 + 1
2(𝑘 + 1) + 1

.

This shows that if 𝑘 is a positive integer and 𝑃(𝑘) holds, then 𝑃(𝑘 + 1) also holds. By the principle of
induction, it follows that 𝑃(𝑛) holds for any positive integer 𝑛. □

Exercise 2.4.  Show that
1

1 ⋅ 2 ⋅ 3
+ 1

2 ⋅ 3 ⋅ 4
+ ⋯ + 1

𝑛(𝑛 + 1)(𝑛 + 2)
= 𝑛(𝑛 + 3)

4(𝑛 + 1)(𝑛 + 2)
for all 𝑛 ∈ ℕ.

Solution.  For a positive integer 𝑛, let 𝑃(𝑛) denote the statement that
1

1 ⋅ 2 ⋅ 3
+ 1

2 ⋅ 3 ⋅ 4
+ ⋯ + 1

𝑛(𝑛 + 1)(𝑛 + 2)
= 𝑛(𝑛 + 3)

4(𝑛 + 1)(𝑛 + 2)
.

Note that 𝑃(1) holds.
Let 𝑘 be a positive integer such that 𝑃(𝑘) holds. Note that
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1
1 ⋅ 2 ⋅ 3

+ 1
2 ⋅ 3 ⋅ 4

+ ⋯ + 1
𝑘(𝑘 + 1)(𝑘 + 2)

+ 1
(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)

= 𝑘(𝑘 + 3)
4(𝑘 + 1)(𝑘 + 2)

+ 1
(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)

(using 𝑃(𝑘))

= 𝑘(𝑘 + 3)2 + 4
4(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)

=
(𝑘 + 1)(𝑘 + 3)2 − ((𝑘 + 3)2 − 4)

4(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)

=
(𝑘 + 1)(𝑘 + 3)2 − ((𝑘 + 3)2 − 22)

4(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)

= (𝑘 + 1)(𝑘 + 3)2 − (𝑘 + 1)(𝑘 + 5)
4(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)

=
(𝑘 + 1)((𝑘 + 3)2 − (𝑘 + 5))

4(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)

= 𝑘2 + 6𝑘 + 9 − (𝑘 + 5)
4(𝑘 + 2)(𝑘 + 3)

= 𝑘2 + 5𝑘 + 4
4(𝑘 + 2)(𝑘 + 3)

= (𝑘 + 1)((𝑘 + 1) + 3)
4((𝑘 + 1) + 1)((𝑘 + 1) + 2)

.

This shows that if 𝑘 is a positive integer and 𝑃(𝑘) holds, then 𝑃(𝑘 + 1) also holds. By the principle of
induction, it follows that 𝑃(𝑛) holds for any positive integer 𝑛. □

Exercise 2.5.  Show that
3 + 11 + ⋯ + (8𝑛 − 5) = 4𝑛2 − 𝑛

for all 𝑛 ∈ ℕ.

Solution.  For a positive integer 𝑛, let 𝑃(𝑛) denote the statement that
3 + 11 + ⋯ + (8𝑛 − 5) = 4𝑛2 − 𝑛.

Note that 𝑃(1) holds.
Let 𝑘 be a positive integer such that 𝑃(𝑘) holds. Note that

3 + 11 + ⋯ + (8𝑘 − 5) + (8(𝑘 + 1) − 5)

= (4𝑘2 − 𝑘) + (8𝑘 + 3) (using 𝑃(𝑘))

= 4𝑘2 + 7𝑘 + 3
= 4𝑘2 + 8𝑘 + 4 − (𝑘 + 1)

= 4(𝑘 + 1)2 − (𝑘 + 1).
This shows that if 𝑘 is a positive integer and 𝑃(𝑘) holds, then 𝑃(𝑘 + 1) also holds. By the principle of
induction, it follows that 𝑃(𝑛) holds for any positive integer 𝑛. □

Exercise 2.6.  Show that

12 + 32 + ⋯ + (2𝑛 − 1)2 = 4𝑛3 − 𝑛
3

for all 𝑛 ∈ ℕ.
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Solution.  For a positive integer 𝑛, let 𝑃(𝑛) denote the statement that

12 + 32 + ⋯ + (2𝑛 − 1)2 = 4𝑛3 − 𝑛
3

.

Note that 𝑃(1) holds.
Let 𝑘 be a positive integer such that 𝑃(𝑘) holds. Note that

12 + 32 + ⋯ + (2𝑘 − 1)2 + (2(𝑘 + 1) − 1)2

= 4𝑘3 − 𝑘
3

+ (2𝑘 + 1)2 (using 𝑃(𝑘))

= 4𝑘3 − 𝑘 + 3(2𝑘 + 1)2

3

= 4𝑘3 − 𝑘 + 12𝑘2 + 12𝑘 + 3
3

= 4𝑘3 + 12𝑘2 + 11𝑘 + 3
3

= 4(𝑘 + 1)3 − (𝑘 + 1)
3

.

This shows that if 𝑘 is a positive integer and 𝑃(𝑘) holds, then 𝑃(𝑘 + 1) also holds. By the principle of
induction, it follows that 𝑃(𝑛) holds for any positive integer 𝑛. □

Exercise 2.7.  Show that

12 − 22 + 32 − 42 + ⋯ + (−1)𝑛+1𝑛2 = (−1)𝑛+1 𝑛(𝑛 + 1)
2

for all 𝑛 ∈ ℕ.

Solution.  For a positive integer 𝑛, let 𝑃(𝑛) denote the statement that

12 − 22 + 32 − 42 + ⋯ + (−1)𝑛+1𝑛2 = (−1)𝑛+1 𝑛(𝑛 + 1)
2

.

Note that 𝑃(1) holds.
Let 𝑘 be a positive integer such that 𝑃(𝑘) holds. Note that

12 − 22 + 32 − 42 + ⋯ + (−1)𝑘+1𝑘2 + (−1)(𝑘+1)+1(𝑘 + 1)2

= (−1)𝑘+1 𝑘(𝑘 + 1)
2

+ (−1)𝑘+2(𝑘 + 1)2 (using 𝑃(𝑘))

= (−1)𝑘+1(𝑘(𝑘 + 1)
2

− (𝑘 + 1)2)

= (−1)𝑘+1(𝑘(𝑘 + 1) − 2(𝑘 + 1)2

2
)

= (−1)𝑘+1(−(𝑘 + 1)(𝑘 + 2)
2

)

= (−1)(𝑘+1)+1 (𝑘 + 1)((𝑘 + 1) + 1)
2

.

This shows that if 𝑘 is a positive integer and 𝑃(𝑘) holds, then 𝑃(𝑘 + 1) also holds. By the principle of
induction, it follows that 𝑃(𝑛) holds for any positive integer 𝑛. □

Exercise 2.8.  Show that
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12 + 22 + 32 + ⋯ + 𝑛2 = 𝑛(𝑛 + 1)(2𝑛 + 1)
6

,

13 + 23 + 33 + ⋯ + 𝑛3 = (𝑛(𝑛 + 1)
2

)
2

hold for any positive integer 𝑛.

Solution.  For a positive integer 𝑛, let 𝑃(𝑛) denote the statement that

12 + 22 + 32 + ⋯ + 𝑛2 = 𝑛(𝑛 + 1)(2𝑛 + 1)
6

,

13 + 23 + 33 + ⋯ + 𝑛3 = (𝑛(𝑛 + 1)
2

)
2

.

Note that 𝑃(1) holds. Let 𝑘 be a positive integer such that 𝑃(𝑘) holds. Note that
12 + 22 + 32 + ⋯ + 𝑘2 + (𝑘 + 1)2

= 𝑘(𝑘 + 1)(2𝑘 + 1)
6

+ (𝑘 + 1)2 (using 𝑃(𝑘))

= 𝑘(𝑘 + 1)(2𝑘 + 1) + 6(𝑘 + 1)2

6

= (𝑘 + 1)(𝑘(2𝑘 + 1) + 6(𝑘 + 1))
6

=
(𝑘 + 1)(2𝑘2 + 𝑘 + 6𝑘 + 6)

6

=
(𝑘 + 1)(2𝑘2 + 7𝑘 + 6)

6

= (𝑘 + 1)(𝑘 + 2)(2𝑘 + 3)
6

= (𝑘 + 1)(𝑘 + 2)(2(𝑘 + 1) + 1)
6

.

Also note that
13 + 23 + 33 + ⋯ + 𝑘3 + (𝑘 + 1)3

= (𝑘(𝑘 + 1)
2

)
2

+ (𝑘 + 1)3 (using 𝑃(𝑘))

= (𝑘 + 1)2(𝑘2

4
+ (𝑘 + 1))

= (𝑘 + 1)2(𝑘2

4
+ 𝑘 + 1)

= (𝑘 + 1)2((𝑘 + 2)2

4
)

= ((𝑘 + 1)((𝑘 + 1) + 1)
2

)
2

.

This shows that if 𝑘 is a positive integer and 𝑃(𝑘) holds, then 𝑃(𝑘 + 1) also holds. By the principle of
induction, it follows that 𝑃(𝑛) holds for any positive integer 𝑛.

□
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Exercise 2.9.  Show that
1

𝑛 + 1
+ 1

𝑛 + 2
+ ⋯ + 1

2𝑛
= 1 − 1

2
+ 1

3
− 1

4
+ ⋯ + 1

2𝑛 − 1
− 1

2𝑛
for all 𝑛 ∈ ℕ.

Solution.  For a positive integer 𝑛, let 𝑃(𝑛) denote the statement that
1

𝑛 + 1
+ 1

𝑛 + 2
+ ⋯ + 1

2𝑛
= 1 − 1

2
+ 1

3
− 1

4
+ ⋯ + 1

2𝑛 − 1
− 1

2𝑛
.

Note that 𝑃(1) holds.
Let 𝑘 be a positive integer such that 𝑃(𝑘) holds. Note that

1
(𝑘 + 1) + 1

+ ⋯ + 1
2𝑘 + 1

+ 1
2(𝑘 + 1)

= 1
𝑘 + 1

+ 1
(𝑘 + 1) + 1

+ ⋯ + 1
2𝑘

+ 1
2𝑘 + 1

+ 1
2(𝑘 + 1)

− 1
𝑘 + 1

= 1
𝑘 + 1

+ 1
(𝑘 + 1) + 1

+ ⋯ + 1
2𝑘

+ 1
2𝑘 + 1

− 1
2(𝑘 + 1)

= (1 − 1
2

+ 1
3

− 1
4

+ ⋯ + 1
2𝑘 − 1

− 1
2𝑘

) + 1
2𝑘 + 1

− 1
2(𝑘 + 1)

(using 𝑃(𝑘))

= (1 − 1
2

+ 1
3

− 1
4

+ ⋯ + 1
2𝑘 − 1

− 1
2𝑘

) + 1
2𝑘 + 1

− 1
2𝑘 + 2

= 1 − 1
2

+ 1
3

− 1
4

+ ⋯ + 1
(2(𝑘 + 1)) − 1

− 1
(2(𝑘 + 1))

.

This shows that if 𝑘 is a positive integer and 𝑃(𝑘) holds, then 𝑃(𝑘 + 1) also holds. By the principle of
induction, it follows that 𝑃(𝑛) holds for any positive integer 𝑛. □

Definition

An integer is called divisible by a nonzero integer 𝑚 if it is equal to 𝑚𝑘 for some integer 𝑘.

Exercise 2.10.  Show that 𝑛3 + 5𝑛 is divisible by 6 for all 𝑛 ∈ ℕ.

Solution.  For a positive integer 𝑛, let 𝑃(𝑛) denote the statement that 𝑛3 + 5𝑛 is divisible by 6.
Note that 𝑃(1) holds.
Let 𝑘 be a positive integer such that 𝑃(𝑘) holds. Note that

(𝑘 + 1)3 + 5(𝑘 + 1) = (𝑘3 + 3𝑘2 + 3𝑘 + 1) + (5𝑘 + 5)

= (𝑘3 + 5𝑘) + (3𝑘2 + 3𝑘 + 6).

By the induction hypothesis, the integer 𝑘3 + 5𝑘 is divisible by 6. Also note that 3𝑘2 + 3𝑘 + 6 =
3(𝑘2 + 𝑘 + 2) is divisible by 3. Further, one of the integers 𝑘, 𝑘 + 1 is even, and hence 𝑘2 + 𝑘 is even.
This gives that 𝑘2 + 𝑘 + 2 is even, and hence 3(𝑘2 + 𝑘 + 2) is divisible by 2. It follows that 3(𝑘2 +
𝑘 + 2) is divisible by 6. This shows that (𝑘 + 1)3 + 5(𝑘 + 1) is divisible by 6. This proves that if 𝑘 is
a positive integer and 𝑃(𝑘) holds, then 𝑃(𝑘 + 1) also holds.
By the principle of induction, it follows that 𝑃(𝑛) holds for any positive integer 𝑛. □

Exercise 2.11.  Show that 52𝑛 − 1 is divisible by 8 for all 𝑛 ∈ ℕ.

Solution.  For a positive integer 𝑛, let 𝑃(𝑛) denote the statement that 52𝑛 − 1 is divisible by 8.
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Note that 𝑃(1) holds.
Let 𝑘 be a positive integer such that 𝑃(𝑘) holds. Note that

52(𝑘+1) − 1 = 52𝑘+2 − 1
= 52 ⋅ 52𝑘 − 1
= 25 ⋅ 52𝑘 − 1
= (24 + 1) ⋅ 52𝑘 − 1

= 24 ⋅ 52𝑘 + (52𝑘 − 1).

By the induction hypothesis, the integer 52𝑘 − 1 is divisible by 8. Also note that 24 ⋅ 52𝑘 is divisible
by 8. This shows that 52(𝑘+1) − 1 is divisible by 8. This shows that if 𝑘 is a positive integer and 𝑃(𝑘)
holds, then 𝑃(𝑘 + 1) also holds.
By the principle of induction, it follows that 𝑃(𝑛) holds for any positive integer 𝑛. □

Exercise 2.12.  Show that 5𝑛 − 4𝑛 − 1 is divisible by 16 for all 𝑛 ∈ ℕ.

Solution.  For a positive integer 𝑛, let 𝑃(𝑛) denote the statement that 5𝑛 − 4𝑛 − 1 is divisible by 16.
Note that 𝑃(1) holds.
Let 𝑘 be a positive integer such that 𝑃(𝑘) holds. Note that

5𝑘+1 − 4(𝑘 + 1) − 1 = 5 ⋅ 5𝑘 − 4𝑘 − 4 − 1

= 5 ⋅ (5𝑘 − 4𝑘 − 1) + 5 ⋅ (4𝑘 + 1) − 4𝑘 − 5

= 5 ⋅ (5𝑘 − 4𝑘 − 1) + 16𝑘.

By the induction hypothesis, the integer 5𝑘 − 4𝑘 − 1 is divisible by 16. Using the above, it follows that
5𝑘+1 − 4(𝑘 + 1) − 1 is divisible by 16. This shows that if 𝑘 is a positive integer and 𝑃(𝑘) holds, then
𝑃(𝑘 + 1) also holds.
By the principle of induction, it follows that 𝑃(𝑛) holds for any positive integer 𝑛. □

Exercise 2.13.  Show that 6𝑛 − 5𝑛 − 1 is divisible by 25 for all 𝑛 ∈ ℕ.

Exercise 2.14.  Show that 𝑛3 + (𝑛 + 1)3 + (𝑛 + 2)3 is divisible by 9 for all 𝑛 ∈ ℕ.

Solution.  For a positive integer 𝑛, let 𝑃(𝑛) denote the statement that 𝑛3 + (𝑛 + 1)3 + (𝑛 + 2)3 is
divisible by 9.
Note that 𝑃(1) holds.
Let 𝑘 be a positive integer such that 𝑃(𝑘) holds. Note that

(𝑘 + 1)3 + (𝑘 + 2)3 + (𝑘 + 3)3

= (𝑘3 + (𝑘 + 1)3 + (𝑘 + 2)3) − 𝑘3 + (𝑘 + 3)3

= (𝑘3 + (𝑘 + 1)3 + (𝑘 + 2)3) − 𝑘3 + (𝑘3 + 9𝑘2 + 27𝑘 + 27)

= (𝑘3 + (𝑘 + 1)3 + (𝑘 + 2)3) + (9𝑘2 + 27𝑘 + 27).

By the induction hypothesis, the integer 𝑘3 + (𝑘 + 1)3 + (𝑘 + 2)3 is divisible by 9. Also note that
9𝑘2 + 27𝑘 + 27 is divisible by 9. This shows that (𝑘 + 1)3 + (𝑘 + 2)3 + (𝑘 + 3)3 is divisible by 9. This
implies that if 𝑘 is a positive integer and 𝑃(𝑘) holds, then 𝑃(𝑘 + 1) also holds.
By the principle of induction, it follows that 𝑃(𝑛) holds for any positive integer 𝑛. □

Exercise 2.15.  Show that
1√
1

+ 1√
2

+ ⋯ + 1√
𝑛

>
√

𝑛
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for all 𝑛 ∈ ℕ satisfying 𝑛 > 1.

Solution.  For a positive integer 𝑛, let 𝑃(𝑛) denote the statement that
1√
1

+ 1√
2

+ ⋯ + 1√
𝑛

>
√

𝑛

holds.
Note that 𝑃(2) holds, since

1√
1

+ 1√
2

= 1 +
√

2
2

>
√

2.

Let 𝑘 be a positive integer such that 𝑘 ≥ 2 and 𝑃(𝑘) holds. Note that
1√
1

+ 1√
2

+ ⋯ + 1√
𝑘

+ 1√
𝑘 + 1

>
√

𝑘 + 1√
𝑘 + 1

(using 𝑃(𝑘))

≥
√

𝑘 + 1,
where the last inequality follows since

𝑘 − (
√

𝑘 + 1 − 1√
𝑘 + 1

)
2

= 𝑘 − (𝑘 + 1) + 2 − 1
𝑘 + 1

= 1 − 1
𝑘 + 1

> 0.
This shows that if 𝑘 is a positive integer satisfying 𝑘 ≥ 2 and 𝑃(𝑘) holds, then 𝑃(𝑘 + 1) also holds.
By the principle of induction, it follows that 𝑃(𝑛) holds for any positive integer 𝑛 satisfying 𝑛 ≥ 2.

□

Exercise 2.16.  Show that 3𝑛 ≥ 𝑛2 for all 𝑛 ∈ ℕ.

Solution.  For any 𝑛 ∈ ℕ, let 𝑃(𝑛) denote the statement that 3𝑛 ≥ 𝑛2. Note that 𝑃(1) holds. Let 𝑘 be
a positive integer such that 𝑃(𝑘) holds. Note that

(𝑘 + 1)2 = 𝑘2 + 2𝑘 + 1

≤ 3𝑘 + 2𝑘 + 1 (using 𝑃(𝑘))

≤ 3𝑘 + 3𝑘 + 3𝑘 (using 𝑘 ≥ 1)

= 3 ⋅ 3𝑘

= 3𝑘+1.
This shows that if 𝑘 is a positive integer and 𝑃(𝑘) holds, then 𝑃(𝑘 + 1) also holds. By the principle of
induction, it follows that 𝑃(𝑛) holds for any positive integer 𝑛. □

Exercise 2.17.  Show that 𝑛! > 2𝑛 for all 𝑛 ∈ ℕ satisfying 𝑛 ≥ 4.

Solution.  For a positive integer 𝑛, let 𝑃(𝑛) denote the statement that 𝑛! > 2𝑛.
Note that 𝑃(4) holds, since 4! = 24 > 16 = 24.
Let 𝑘 be a positive integer such that 𝑘 ≥ 4 and 𝑃(𝑘) holds. Note that
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(𝑘 + 1)! = (𝑘 + 1)𝑘!

≥ (𝑘 + 1) ⋅ 2𝑘 (using 𝑃(𝑘))

> 2 ⋅ 2𝑘 (using 𝑘 ≥ 4)

= 2𝑘+1.
This shows that if 𝑘 is a positive integer satisfying 𝑘 ≥ 4 and 𝑃(𝑘) holds, then 𝑃(𝑘 + 1) also holds.
By the principle of induction, it follows that 𝑃(𝑛) holds for any positive integer 𝑛 satisfying 𝑛 ≥ 4.

□

Warning

It is important to verify the base case, that is, verifying that 𝑃(1) holds, even if it is trivial. For
example, if we define 𝑃(𝑛) to be the statement that

𝑛 = 𝑛 + 1,
then 𝑃(𝑛) implies 𝑃(𝑛 + 1) for any 𝑛 ∈ ℕ. However, 𝑃(1) does not hold. Another example is to
take 𝑄(𝑛) to be the statement that 2𝑛 + 1 is even, then 𝑄(𝑛) implies 𝑄(𝑛 + 1) for any 𝑛 ∈ ℕ.
However, 𝑄(1) does not hold.

Here are a few exercises where strong induction is useful.

Exercise 2.18.  Show that every positive integer greater than 1 is a prime or is a product of prime
numbers.

Solution.  For any integer 𝑛 ≥ 2, let 𝑃(𝑛) denote the statement that 𝑛 is a prime or is a product of
prime numbers.
Note that 𝑃(2) holds, since 2 is a prime.
Let 𝑘 ≥ 2 be an integer such that 𝑃(𝑚) holds for all integers 𝑚 satisfying 2 ≤ 𝑚 ≤ 𝑘. If 𝑘 + 1 is a

prime, then 𝑃(𝑘 + 1) holds. If 𝑘 + 1 is not a prime, then there exist integers 𝑎, 𝑏 such that 𝑘 + 1 = 𝑎𝑏
and 1 < 𝑎 ≤ 𝑏 < 𝑘 + 1. This gives that 2 ≤ 𝑎 ≤ 𝑘 and 2 ≤ 𝑏 ≤ 𝑘. By the induction hypothesis, both
𝑎 and 𝑏 are either primes or products of primes. It follows that 𝑘 + 1 = 𝑎𝑏 is a product of primes. This
shows that if 𝑘 ≥ 2 is an integer such that 𝑃(𝑚) holds for all integers 𝑚 satisfying 2 ≤ 𝑚 ≤ 𝑘, then
𝑃(𝑘 + 1) also holds.
By the principle of strong induction, it follows that 𝑃(𝑛) holds for any integer 𝑛 ≥ 2. □

Exercise 2.19.  Let the integers 𝑥1, 𝑥2, … be defined by
𝑥1 ≔ 1,
𝑥2 ≔ 2,

𝑥𝑛+2 ≔ 1
2
(𝑥𝑛 + 𝑥𝑛+1)

for all 𝑛 ∈ ℕ. Show that 1 ≤ 𝑥𝑛 ≤ 2 for all 𝑛 ∈ ℕ.

Tip

For any 𝑛 ∈ ℕ, let 𝑃(𝑛) denote the statement that 1 ≤ 𝑥𝑚 ≤ 2 for all 𝑚 ∈ ℕ satisfying 𝑚 ≤ 𝑛.

Exercise 2.20.  The Fibonacci sequence 𝐹0, 𝐹1, 𝐹2, … is defined by
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𝐹0 ≔ 0,
𝐹1 ≔ 1,
𝐹2 ≔ 1,

𝐹𝑛+2 ≔ 𝐹𝑛 + 𝐹𝑛+1

for all 𝑛 ∈ ℕ. Show that

𝐹𝑛 = 1√
5(
(((1 +

√
5

2
)

𝑛

− (1 −
√

5
2

)
𝑛

)
))

for all 𝑛 ∈ ℕ ∪ {0}.

Exercise 2.21.  Show that
𝐹 2

0 + 𝐹 2
1 + 𝐹 2

2 + ⋯ + 𝐹 2
𝑛 = 𝐹𝑛𝐹𝑛+1

for all 𝑛 ∈ ℕ ∪ {0}.
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Linear algebra

Chapter 3. Matrices

§3.1 Vectors

§3.1.1 Definitions and examples

A vector is a column of numbers. The numbers in the vector are called its components or
coordinates.

Remark

Throughout this course, most of the vectors to be considered, will have real or complex compo-
nents.

Recall that for two sets 𝐴, 𝐵, their cartesian product 𝐴 × 𝐵 is defined as
𝐴 × 𝐵 ≔ {(𝑎, 𝑏) | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

The cartesian product of ℝ with itself is denoted by ℝ2. In other words,

ℝ2 ≔ {(𝑥, 𝑦) | 𝑥 ∈ ℝ, 𝑦 ∈ ℝ} .

Similarly, one defines ℝ3 as ℝ × ℝ × ℝ, that is,

ℝ3 ≔ {(𝑥, 𝑦, 𝑧) | 𝑥 ∈ ℝ, 𝑦 ∈ ℝ, 𝑧 ∈ ℝ} .

Definition

If 𝑛 ≥ 2 is an integer and 𝐴1, 𝐴2, …, 𝐴𝑛 are sets, then their cartesian product 𝐴1 × 𝐴2 × ⋯ ×
𝐴𝑛 is defined as

𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛 ≔ {(𝑎1, 𝑎2, …, 𝑎𝑛) | 𝑎𝑖 ∈ 𝐴𝑖 for all 𝑖 = 1, 2, …, 𝑛}.

The 𝑛-fold cartesian product of ℝ with itself, that is, the cartesian product of 𝑛 copies of ℝ, is denoted
by ℝ𝑛. In other words,

ℝ𝑛 ≔ {(𝑥1, 𝑥2, …, 𝑥𝑛) | 𝑥𝑖 ∈ ℝ for all 𝑖 = 1, 2, …, 𝑛} .

Similarly, one defines ℂ𝑛 as the 𝑛-fold cartesian product of ℂ with itself, that is,

ℂ𝑛 ≔ {(𝑧1, 𝑧2, …, 𝑧𝑛) | 𝑧𝑖 ∈ ℂ for all 𝑖 = 1, 2, …, 𝑛} .
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Example

The elements

(1
0), (0

1), (1
1)

of ℝ2 are vectors. The elements

(
((
(1

0
0)
))
),

(
((
(0

1
0)
))
),

(
((
(0

0
1)
))
),

(
((
( 10

20
−2025)

))
)

of ℝ3 are vectors too. The elements

(
((
(1 + 𝑖

2 − 𝑖
−3𝑖 )

))
),

(
((
( 0

𝜋
1 + 𝑖)

))
)

of ℂ3 are vectors as well.

§3.1.2 Vector operations

Definition

Two vectors 
(
((
(

𝑥1
𝑥2
⋮

𝑥𝑛)
))
) and 

(
((
(

𝑦1
𝑦2
⋮

𝑦𝑛)
))
) in ℝ𝑛 are added component-wise. That is, the sum of two elements

(
((
(

𝑥1
𝑥2
⋮

𝑥𝑛)
))
) and 

(
((
(

𝑦1
𝑦2
⋮

𝑦𝑛)
))
) in ℝ𝑛 is defined as

(
((
((
((

𝑥1
𝑥2
⋮

𝑥𝑛)
))
))
))

+

(
((
((
((

𝑦1
𝑦2
⋮

𝑦𝑛)
))
))
))

≔

(
((
((
((

𝑥1 + 𝑦1
𝑥2 + 𝑦2

⋮
𝑥𝑛 + 𝑦𝑛)

))
))
))

.

If 𝑐 ∈ ℝ is a real number and 𝑣 =
(
((
(

𝑥1
𝑥2
⋮

𝑥𝑛)
))
) is a vector in ℝ𝑛, then the scalar multiplication of 𝑐

with the vector 𝑣 is defined as

𝑐 ⋅

(
((
((
((

𝑥1
𝑥2
⋮

𝑥𝑛)
))
))
))

≔

(
((
((
((

𝑐 ⋅ 𝑥1
𝑐 ⋅ 𝑥2

⋮
𝑐 ⋅ 𝑥𝑛)

))
))
))

.

Note that 1 ⋅ 𝑣 is equal to 𝑣. Instead of (−1) ⋅ 𝑣, we write −𝑣. Further, 𝑐 ⋅ 𝑣 is often written as 𝑐𝑣.

Warning

In the above definition, we have used the same notation “+” for addition of two vectors and
addition of two real numbers, and the same notation “⋅” for scalar multiplication of a vector by a
real number and multiplication of two real numbers. The meaning will be clear from the context.
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Remark

Note that the sum of two vectors in ℝ𝑛 is again a vector in ℝ𝑛. Also, the scalar multiplication of
a vector in ℝ𝑛 by a real number is again a vector in ℝ𝑛.

Remark

Similar definitions work for vectors in ℂ𝑛.

Example

Consider the vectors 𝑢 = (
1
2
3
) and 𝑣 = (

4
5
6
) in ℝ3. Note that

𝑢 + 𝑣 =
(
((
(1 + 4

2 + 5
3 + 6)

))
) =

(
((
(5

7
9)
))
),

and if 𝑐 = 3, then

𝑐 ⋅ 𝑢 = 3 ⋅
(
((
(1

2
3)
))
) =

(
((
(3 ⋅ 1

3 ⋅ 2
3 ⋅ 3)

))
) =

(
((
(3

6
9)
))
).

§3.2 Matrix

§3.2.1 Definitions and examples

Definition

A matrix is a rectangular array of numbers arranged in rows and columns. A matrix with 𝑚 rows
and 𝑛 columns is called an 𝑚 × 𝑛 matrix. The numbers in the matrix are called its entries or
elements. A matrix is called a square matrix if its number of rows, and its number of columns
are equal.

Definition

Two matrices are equal if they have the same size and their corresponding entries are equal.

Remark

The size of a matrix is always given in the form “(the number of rows) × (the number of columns)”.
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Example

The following is a 2 × 3 matrix:

𝐴 = (1
4

2
5

3
6).

The following is a 3 × 2 matrix:

𝐵 =
(
((
( 7

9
11

8
10
12)

))
).

Example

Here is an example of two matrices which are not equal.

(1
3

2
4) ≠ (1

3
2
5)

If 𝐴 is a matrix, its (𝑖, 𝑗)-th entry, that is, the entry common to the 𝑖-th row and the 𝑗-th column is
denoted by 𝑎𝑖𝑗. Thus an 𝑚 × 𝑛 matrix 𝐴 can be represented as

𝐴 =

(
((
((
((

𝑎11
𝑎21
⋮

𝑎𝑚1

𝑎12
𝑎22
⋮

𝑎𝑚2

…
…
⋱
…

𝑎1𝑛
𝑎2𝑛
⋮

𝑎𝑚𝑛)
))
))
))

.

One also writes 𝐴 = (𝑎𝑖𝑗)1≤𝑖≤𝑚,
1≤𝑗≤𝑛

 to denote the matrix 𝐴, or one writes 𝐴 = (𝑎𝑖𝑗) if the size of 𝐴 is

clear from the context.

Remark

Note that for an 𝑚 × 𝑛 matrix 𝐴, one writes 𝐴 = (the (𝑖, 𝑗)-th entry of 𝐴)1≤𝑖≤𝑚,
1≤𝑗≤𝑛

.

If 𝐴 = (𝑎𝑖𝑗) is an 𝑛 × 𝑛 matrix, then the entries 𝑎11, 𝑎22, …, 𝑎𝑛𝑛 are called its diagonal entries. A
square matrix is called a diagonal matrix if its entries, other the diagonal entries, are equal to zero.

§3.2.2 Matrix times a vector

The product

(1
4

2
5

3
6)

(
((
(7

8
9)
))
)

is defined by “combining” each row of the matrix with the vector as follows:

(1
4

2
5

3
6)

(
((
(7

8
9)
))
) = (1 × 7 + 2 × 8 + 3 × 9

4 × 7 + 5 × 8 + 6 × 9),

which is equal to the vector ( 50
122).

As we see, for this to work, the number of columns of the matrix must be equal to the number of rows
of the vector. Thus, when the product of an 𝑚 × 𝑛 matrix with a vector in ℝ𝑛 is defined similarly, the
result is a vector in ℝ𝑚.
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Definition

If

𝐴 =

(
((
((
((

𝑎11
𝑎21
⋮

𝑎𝑚1

𝑎12
𝑎22
⋮

𝑎𝑚2

…
…
⋱
…

𝑎1𝑛
𝑎2𝑛
⋮

𝑎𝑚𝑛)
))
))
))

is an 𝑚 × 𝑛 matrix with entries in ℝ and 
(
((
(

𝑥1
𝑥2
⋮

𝑥𝑛)
))
) is a vector in ℝ𝑛, then one defines

(
((
((
((

𝑎11
𝑎21
⋮

𝑎𝑚1

𝑎12
𝑎22
⋮

𝑎𝑚2

…
…
⋱
…

𝑎1𝑛
𝑎2𝑛
⋮

𝑎𝑚𝑛)
))
))
))

(
((
((
((

𝑥1
𝑥2
⋮

𝑥𝑛)
))
))
))

≔

(
((
((
((

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛
𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛

⋮
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛)

))
))
))

.

Note that the result is a vector in ℝ𝑚.

§3.2.3 Matrix times a matrix

Similar to the case of vectors, one defines addition, subtraction, and scalar multiplication of matrices
entry-wise. For addition and subtraction, the two matrices must be of the same size. Indeed, if

𝐴 = (𝑎𝑖𝑗)1≤𝑖≤𝑚,
1≤𝑗≤𝑛

, 𝐵 = (𝑏𝑖𝑗)1≤𝑖≤𝑚,
1≤𝑗≤𝑛

are two 𝑚 × 𝑛 matrices, then their sum 𝐴 + 𝐵 and difference 𝐴 − 𝐵 are defined as
𝐴 + 𝐵 ≔ (𝑎𝑖𝑗 + 𝑏𝑖𝑗)1≤𝑖≤𝑚,

1≤𝑗≤𝑛
,

and
𝐴 − 𝐵 ≔ (𝑎𝑖𝑗 − 𝑏𝑖𝑗)1≤𝑖≤𝑚,

1≤𝑗≤𝑛

respectively. If 𝑐 is a real number and 𝐴 = (𝑎𝑖𝑗)1≤𝑖≤𝑚,
1≤𝑗≤𝑛

 is an 𝑚 × 𝑛 matrix, then the scalar multipli9

cation of 𝐴 with 𝑐 is defined as
𝑐 ⋅ 𝐴 ≔ (𝑐 ⋅ 𝑎𝑖𝑗)1≤𝑖≤𝑚,

1≤𝑗≤𝑛
.

Note that 1 ⋅ 𝐴 is equal to 𝐴. Instead of −1 ⋅ 𝐴, we write −𝐴. Further, 𝑐 ⋅ 𝐴 is often written as 𝑐𝐴.

Remark

Note that the sum of two matrices with entries in ℝ is a matrix with entries in ℝ. Also, the scalar
multiplication of a matrix with entries in ℝ by a real number is again a matrix with entries in ℝ.

Remark

Similar definitions work for matrices with entries in ℂ.
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Example

If

𝐴 = (1
4

2
5

3
6)

and

𝐵 = ( 7
10

8
11

9
12),

then

𝐴 + 𝐵 = ( 1 + 7
4 + 10

2 + 8
5 + 11

3 + 9
6 + 12) = ( 8

14
10
16

12
18),

and if 𝑐 = 3, then

𝑐 ⋅ 𝐴 = 3 ⋅ (1
4

2
5

3
6) = (3 ⋅ 1

3 ⋅ 4
3 ⋅ 2
3 ⋅ 5

3 ⋅ 3
3 ⋅ 6) = ( 3

12
6
15

9
18).

Exercise 3.1.  If 𝐴, 𝐵, 𝐶 are matrices of the same size, show that
𝐴 + (𝐵 + 𝐶) = (𝐴 + 𝐵) + 𝐶.

Exercise 3.2.  If 𝐴, 𝐵 are matrices of the same size, show that
𝐴 + 𝐵 = 𝐵 + 𝐴.

Exercise 3.3.  If 𝐴 is an 𝑚 × 𝑛 matrix, show that
𝐴 + 0𝑚×𝑛 = 0𝑚×𝑛 + 𝐴 = 𝐴

holds, where 0𝑚×𝑛 denotes the 𝑚 × 𝑛 zero matrix, that is, the 𝑚 × 𝑛 matrix whose entries are
all zero.

Exercise 3.4.  Show that if 𝐴 is a matrix and 𝑐, 𝑑 are real numbers, then
(𝑐 + 𝑑)𝐴 = 𝑐𝐴 + 𝑑𝐴

and
𝑐(𝑑𝐴) = (𝑐𝑑)𝐴.
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Definition

The transpose of an 𝑚 × 𝑛 matrix
𝐴 = (𝑎𝑖𝑗)1≤𝑖≤𝑚,

1≤𝑗≤𝑛

is the 𝑛 × 𝑚 matrix
𝐴𝑇 ≔ (𝑎𝑗𝑖)1≤𝑖≤𝑛,

1≤𝑗≤𝑚
.

That is, if

𝐴 =

(
((
((
((

𝑎11
𝑎21
⋮

𝑎𝑚1

𝑎12
𝑎22
⋮

𝑎𝑚2

…
…
⋱
…

𝑎1𝑛
𝑎2𝑛
⋮

𝑎𝑚𝑛)
))
))
))

,

then its transpose is the 𝑛 × 𝑚 matrix

𝐴𝑇 ≔

(
((
((
((

𝑎11
𝑎12
⋮

𝑎1𝑛

𝑎21
𝑎22
⋮

𝑎2𝑛

⋯
⋯
⋱
⋯

𝑎𝑚1
𝑎𝑚2

⋮
𝑎𝑚𝑛)

))
))
))

.

Example

If

𝐴 = (1
4

2
5

3
6),

then its transpose is the 3 × 2 matrix

𝐴𝑇 =
(
((
(1

2
3

4
5
6)
))
).

Remark

Note that the transpose of a matrix is obtained by interchanging its rows and columns.

Exercise 3.5.  If 𝐴 is a matrix, what is (𝐴𝑇 )𝑇 ?

Exercise 3.6.  Show that if 𝐴, 𝐵 are matrices of the same size, then
(𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇 .

Solution.  Write
𝐴 = (𝑎𝑖𝑗)1≤𝑖≤𝑚,

1≤𝑗≤𝑛
, 𝐵 = (𝑏𝑖𝑗)1≤𝑖≤𝑚,

1≤𝑗≤𝑛
.

Note that
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(𝐴 + 𝐵)𝑇 = ((𝑎𝑖𝑗 + 𝑏𝑖𝑗)1≤𝑖≤𝑚,
1≤𝑗≤𝑛

)
𝑇

= (𝑎𝑗𝑖 + 𝑏𝑗𝑖)1≤𝑖≤𝑛,
1≤𝑗≤𝑚

= (𝑎𝑗𝑖)1≤𝑖≤𝑛,
1≤𝑗≤𝑚

+ (𝑏𝑗𝑖)1≤𝑖≤𝑛,
1≤𝑗≤𝑚

= 𝐴𝑇 + 𝐵𝑇 .
□

Exercise 3.7.  Show that if 𝐴 denotes a matrix, then

(𝐴𝑇 )𝑇 = 𝐴.

Solution.  Write
𝐴 = (𝑎𝑖𝑗)1≤𝑖≤𝑚,

1≤𝑗≤𝑛
.

Note that

(𝐴𝑇 )𝑇 = ((𝑎𝑗𝑖)1≤𝑖≤𝑛,
1≤𝑗≤𝑚

)
𝑇

= (𝑎𝑖𝑗)1≤𝑖≤𝑚,
1≤𝑗≤𝑛

= 𝐴.
□
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Definition

The product of an 𝑚 × 𝑛 matrix 𝐴 with an 𝑛 × 𝑝 matrix 𝐵 is defined as follows:
𝐴𝐵 ≔ (𝑐𝑖𝑗)1≤𝑖≤𝑚,

1≤𝑗≤𝑝
,

where
𝑐𝑖𝑗 ≔ 𝑎𝑖1𝑏1𝑗 + 𝑎𝑖2𝑏2𝑗 + ⋯ + 𝑎𝑖𝑛𝑏𝑛𝑗

for all 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑝. In other words, given an 𝑚 × 𝑛 matrix

𝐴 =

(
((
((
((

𝑎11
𝑎21
⋮

𝑎𝑚1

𝑎12
𝑎22
⋮

𝑎𝑚2

…
…
⋱
…

𝑎1𝑛
𝑎2𝑛
⋮

𝑎𝑚𝑛)
))
))
))

and an 𝑛 × 𝑝 matrix

𝐵 =

(
((
((
((
(𝑏11

𝑏21
⋮

𝑏𝑛1

𝑏12
𝑏22
⋮

𝑏𝑛2

…
…
⋱
…

𝑏1𝑝
𝑏2𝑝
⋮

𝑏𝑛𝑝)
))
))
))
)

,

we have

𝐴𝐵 =

(
((
((
((
( 𝑐11

𝑐21
⋮

𝑐𝑚1

𝑐12
𝑐22
⋮

𝑐𝑚2

…
…
⋱
…

𝑐1𝑝
𝑐2𝑝
⋮

𝑐𝑚𝑝)
))
))
))
)

,

where
𝑐𝑖𝑗 = 𝑎𝑖1𝑏1𝑗 + 𝑎𝑖2𝑏2𝑗 + ⋯ + 𝑎𝑖𝑛𝑏𝑛𝑗

for all 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑝. Note that the result is an 𝑚 × 𝑝 matrix.

In other words, the (𝑖, 𝑗)-th entry of the product 𝐴𝐵 is obtained by “combining” the 𝑖-th row of 𝐴
with the 𝑗-th column of 𝐵.

Remark

Note that the product 𝐴𝐵 is defined only when the number of columns of 𝐴 is equal to the
number of rows of 𝐵.
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Example

If

𝐴 = (1
4

2
5

3
6)

and

𝐵 =
(
((
( 7

9
11

8
10
12)

))
),

then the product 𝐴𝐵 is the 2 × 2 matrix

𝐴𝐵 = (1 × 7 + 2 × 9 + 3 × 11
4 × 7 + 5 × 9 + 6 × 11

1 × 8 + 2 × 10 + 3 × 12
4 × 8 + 5 × 10 + 6 × 12)

= ( 58
139

64
154).

Question

Suppose 𝐴, 𝐵 are matrices.
• Under what conditions are the products 𝐴𝐵 and 𝐵𝐴 defined?
• Under what conditions is the product 𝐵𝑇 𝐴𝑇  defined?

Exercise 3.8.  Show that if 𝐴, 𝐵, 𝐶 are matrices such that the products 𝐴(𝐵𝐶) and (𝐴𝐵)𝐶 are
defined, then

𝐴(𝐵𝐶) = (𝐴𝐵)𝐶.

Exercise 3.9.  Provide examples to show that in general, matrix multiplication is not commutative,
that is, 𝐴𝐵 ≠ 𝐵𝐴 for some matrices 𝐴, 𝐵.

Exercise 3.10 (**).  Show that for any 𝑛 ∈ ℕ with 𝑛 ≥ 2, there are 𝑛 × 𝑛 matrices 𝐴, 𝐵 such that
𝐴𝐵 ≠ 𝐵𝐴.

Question

Can induction be used for the above exercise?

Exercise 3.11.  If 𝐴 is an 𝑛 × 𝑛 matrix, show that
𝐴𝐼𝑛 = 𝐼𝑛𝐴 = 𝐴

holds, where 𝐼𝑛 denotes the 𝑛 × 𝑛 diagonal matrix, with all diagonal entries equal to 1, that is,

𝐼𝑛 =

(
((
((
((

1
0
⋮
0

0
1
⋮
0

…
…
⋱
…

0
0
⋮
1)
))
))
))

.
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Remark

The matrix 𝐼𝑛 as above, is called the identity matrix of order 𝑛, or the 𝑛 × 𝑛 identity matrix.

Exercise 3.12.  If 𝐴 is an 𝑚 × 𝑛 matrix, show that
𝐼𝑚𝐴 = 𝐴, 𝐴𝐼𝑛 = 𝐴

where 𝐼𝑚 (resp. 𝐼𝑛) denote the 𝑚 × 𝑚 (resp. 𝑛 × 𝑛) identity matrix.

Exercise 3.13.  If 𝐴 is an 𝑚 × 𝑛 matrix with entries in ℝ and 𝑐 is a real number, then
𝑐𝐴 = (𝑐𝐼𝑛)𝐴 = 𝐴(𝑐𝐼𝑚),

where 𝐼𝑛 (resp. 𝐼𝑚) denotes the 𝑛 × 𝑛 (resp. 𝑚 × 𝑚) identity matrix.

Exercise 3.14.  Show that if 𝐴, 𝐵 are matrices, then
(𝐴𝐵)𝑇 = 𝐵𝑇 𝐴𝑇 .

Remark

Given a square matrix 𝐴, that is, a matrix with the same number of rows and columns, the product
𝐴𝐴 is often denoted by 𝐴2. Similarly, one defines 𝐴3, 𝐴4, ….

Definition

Let 𝐴 be an 𝑛 × 𝑛 matrix, and 𝑘 be a positive integer. The 𝑘9th power of 𝐴, denoted by 𝐴𝑘, is
defined as the product of 𝑘 copies of 𝐴.

Exercise 3.15.  Show that if

𝐴 = (0
1

1
1),

then

𝐴𝑛 = (𝐹𝑛−1
𝐹𝑛

𝐹𝑛
𝐹𝑛+1

)

for all 𝑛 ∈ ℕ with 𝑛 ≥ 1, where 𝐹𝑛 denotes the 𝑛-th Fibonacci number.

Exercise 3.16.  Compute

(
((
((
((

0
0
⋮
1

⋯
⋯
⋰
⋯

0
1
⋮
0

1
0
⋮
0)
))
))
))

2

.

Exercise 3.17.  Show that if 𝐴, 𝐵, 𝐶 are matrices such that the sum 𝐵 + 𝐶 , and the products
𝐴𝐵, 𝐴𝐶, 𝐴(𝐵 + 𝐶) are defined, then

𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶.
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Exercise 3.18.  Show that if 𝐴, 𝐵, 𝐶 are matrices such that the sum 𝐵 + 𝐶 , and the products
𝐴𝐵, 𝐴𝐶, 𝐴(𝐵 + 𝐶) are defined, then

(𝐴 + 𝐵)𝐶 = 𝐴𝐶 + 𝐵𝐶.

§3.2.4 Few to many more!

Exercise

Suppose 𝐴 is a 3 × 2 matrix, and

𝐴(1
4) =

(
((
( 2

8
14)

))
),

𝐴(3
7) =

(
((
(−4

8
20)

))
).

Determine

𝐴(103
407), 𝐴( 97

393).

Solution.  Observe that

(103
407) = 100(1

4) + (3
7).

This yields

𝐴(103
407) = 𝐴(100(1

4) + (3
7))

= 100𝐴(1
4) + 𝐴(3

7)

= 100
(
((
( 2

8
14)

))
) +

(
((
(−4

8
20)

))
)

=
(
((
( 200 − 4

800 + 8
1400 + 20)

))
)

=
(
((
( 196

808
1420)

))
).

Also note that

( 97
393) = 100(1

4) − (3
7).

Using this we obtain
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𝐴( 97
393) = 𝐴(100(1

4) − (3
7))

= 100𝐴(1
4) − 𝐴(3

7)

= 100
(
((
( 2

8
14)

))
) −

(
((
(−4

8
20)

))
)

=
(
((
( 200 + 4

800 − 8
1400 − 20)

))
)

=
(
((
( 204

792
1380)

))
).

□

Remark

The above exercise indicates that if we know how a matrix acts on a bunch of vectors, then we
can determine how it acts on any vector that can be expressed as a linear combination of those
vectors.
A linear combination of vectors 𝑣1, 𝑣2, …, 𝑣𝑘 is a vector of the form

𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ + 𝑐𝑘𝑣𝑘,
where 𝑐1, 𝑐2, …, 𝑐𝑘 are real numbers³.
Note that any vector in ℝ2 is a linear combination of the vectors

(1
0), (0

1).

So, if 𝐴 is a 3 × 2 matrix and we know how 𝐴 acts on the vectors

(1
0), (0

1),

that is, we know the products

𝐴(1
0), 𝐴(0

1),

then we can determine how 𝐴 acts on any vector in ℝ2. Indeed, for any (𝑥
𝑦) in ℝ2, we have

(𝑥
𝑦) = 𝑥(1

0) + 𝑦(0
1),

and hence we obtain

𝐴(𝑥
𝑦) = 𝐴(𝑥(1

0) + 𝑦(0
1))

= 𝑥𝐴(1
0) + 𝑦𝐴(0

1).

³One can also allow the 𝑐𝑖’s to be complex numbers, depending on the situation.
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Exercise

Show that every vector in ℝ2 can be expressed as a linear combination of the vectors

(1
4), (3

7).

Solution.  Note that for any (𝑥
𝑦) in ℝ2, we have

(𝑥
𝑦) = 𝑥(1

0) + 𝑦(0
1),

that is, (𝑥
𝑦) is a linear combination of the vectors

(1
0), (0

1).

So, it suffices⁴ to show that

(1
0), (0

1)

can be expressed as linear combinations of the vectors

(1
4), (3

7).

Note that

7(1
4) − 4(3

7) = (−5
0 ),

3(1
4) − 1(3

7) = (0
5),

which yields

(1
0) = −7

5
(1

4) + 4
5
(3

7),

(0
1) = 3

5
(1

4) − 1
5
(3

7).

□

Remark

A careful reading of the above exercises and the remark indicates that if there are a few vectors
𝑣1, 𝑣2, …, 𝑣𝑘 in ℝ𝑛 such that every vector in ℝ𝑛 can be expressed as a linear combination of those
vectors, then knowing how a matrix 𝐴 acts on the vectors 𝑣1, 𝑣2, …, 𝑣𝑘 is sufficient to determine
how 𝐴 acts on any vector in ℝ𝑛.

⁴How does it suffice?
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Example

Note that

(
((
(1

4
7

2
5
8

3
6
9)
))
)

(
((
(1

0
0)
))
) =

(
((
(1

4
7)
))
),

(
((
(1

4
7

2
5
8

3
6
9)
))
)

(
((
(0

1
0)
))
) =

(
((
(2

5
8)
))
),

(
((
(1

4
7

2
5
8

3
6
9)
))
)

(
((
(0

0
1)
))
) =

(
((
(3

6
9)
))
)

hold. The vectors

𝑒1 ≔
(
((
(1

0
0)
))
), 𝑒2 ≔

(
((
(0

1
0)
))
), 𝑒3 ≔

(
((
(0

0
1)
))
)

are called the standard basis vectors of ℝ3. The standard basis vectors of ℝ2 are

𝑒1 ≔ (1
0), 𝑒2 ≔ (0

1).

In general, the vectors

𝑒1 ≔

(
((
((
((
((
(1

0
0
⋮
0)
))
))
))
))
)

, 𝑒2 ≔

(
((
((
((
((
(0

1
0
⋮
0)
))
))
))
))
)

, 𝑒3 ≔

(
((
((
((
((
(0

0
1
⋮
0)
))
))
))
))
)

, …, 𝑒𝑛 ≔

(
((
((
((
((
(0

0
0
⋮
1)
))
))
))
))
)

lying in ℝ𝑛 are called the standard basis vectors of ℝ𝑛.

Example

Note that

(
((
(1

3
5

2
4
6)
))
)(1

0) =
(
((
(1

3
5)
))
),

(
((
(1

3
5

2
4
6)
))
)(0

1) =
(
((
(2

4
6)
))
)

hold. The vectors

𝑒1 ≔ (1
0), 𝑒2 ≔ (0

1)

are called the standard basis vectors of ℝ2.

Exercise 3.19.  If 𝐴 is an 𝑚 × 𝑛 matrix, then show that for all 𝑖 = 1, 2, …, 𝑛, the product 𝐴𝑒𝑖 is equal
to the 𝑖-th column of 𝐴, where 𝑒𝑖 denotes the 𝑖-th standard basis vector of ℝ𝑛, that is,
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𝑒𝑖 =

(
((
((
((
((
(0

⋮
1
⋮
0)
))
))
))
))
)

with 1 in the 𝑖-th position, and 0’s elsewhere.

Remark

Exercise 3.19 shows that the columns of a matrix 𝐴 can be obtained by multiplying 𝐴 with the
standard basis vectors. Further, if 𝐴 is an 𝑚 × 𝑛 matrix, and we know how 𝐴 acts on the standard
basis vectors of ℝ𝑛, then we can determine all the entries of 𝐴, and hence we can determine how
𝐴 acts on any vector 𝑣 in ℝ𝑛. Note that this is achieved by determining the entries of 𝐴.
Moreover, the first remark in Section 3.2.4 indicates that if we know how 𝐴 acts on the standard

basis vectors of ℝ𝑛, then using that every element of ℝ𝑛 can be expressed as a linear combination
of the standard basis vectors, we can determine how 𝐴 acts on any vector 𝑣 in ℝ𝑛.
Furthermore, if 𝑣1, 𝑣2, …, 𝑣𝑘 are elements of ℝ𝑛, then knowing how a matrix 𝐴 acts on

𝑣1, 𝑣2, …, 𝑣𝑘 is sufficient to determine how 𝐴 acts on any vector which can be expressed as a
linear combination of 𝑣1, …, 𝑣𝑘.

§3.3 System of linear equations

Exercise

Solve the system of equations in the variables 𝑥, 𝑦:
2𝑥 + 3𝑦 = 8,
5𝑥 + 7𝑦 = 19.

Solution.  Multiplying the first equation by 7, and the second equation by 3, and taking the difference
of the equations obtained, we get

7 ⋅ 2𝑥 − 3 ⋅ 5𝑥 = 7 ⋅ 8 − 3 ⋅ 19,
which yields

𝑥 = 7 ⋅ 8 − 3 ⋅ 19
7 ⋅ 2 − 3 ⋅ 5

.

Similarly, multiplying the first equation by 5, and the second equation by 2, and taking the difference
of the equations obtained, we get

5 ⋅ 3𝑦 − 2 ⋅ 7𝑦 = 5 ⋅ 8 − 2 ⋅ 19,
which yields

𝑦 = 5 ⋅ 8 − 2 ⋅ 19
5 ⋅ 3 − 2 ⋅ 7

.

□
Alternate solution.  Note that the given system of equations can be rewritten as

(2
5

3
7)(𝑥

𝑦) = ( 8
19), (2)

which can be thought as a concise way of putting the information
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(2𝑥 + 3𝑦
5𝑥 + 7𝑦) = ( 8

19). (3)

Recall that in the previous solution,
• to solve for 𝑥, the first equation was multiplied by 7, and the second equation by 3, and next, we

considered the difference of the equations obtained,
• to solve for 𝑦, the first equation was multiplied by 5, and the second equation was multiplied by

2, and then, we considered the difference of the equations obtained.
The two steps can be put together in the matrix form as

(7
5

−3
−2)(2𝑥 + 3𝑦

5𝑥 + 7𝑦).

Using Equation 3, it yields

(7
5

−3
−2)(2𝑥 + 3𝑦

5𝑥 + 7𝑦) = (7
5

−3
−2)( 8

19).

The advantage of this process is that, first 𝑦 gets eliminated in the first step and helps to find 𝑥, and in
the next step, 𝑥 gets eliminated and leads to finding 𝑦. Stated in matrix form, we have that

(7
5

−3
−2)(2𝑥 + 3𝑦

5𝑥 + 7𝑦) = ((7 ⋅ 2 − 3 ⋅ 5)𝑥
(5 ⋅ 3 − 2 ⋅ 7)𝑦).

We could have also written

( 7
−5

−3
2 )(2𝑥 + 3𝑦

5𝑥 + 7𝑦) = ( (7 ⋅ 2 − 3 ⋅ 5)𝑥
(−5 ⋅ 3 + 2 ⋅ 7)𝑦).

Thus, rewriting the given sysem of equations in the matrix form as in Equation 3, and multiplying it
from the left by the matrix

( 7
−5

−3
2 ),

we obtain

( 7
−5

−3
2 )(2𝑥 + 3𝑦

5𝑥 + 7𝑦) = ( 7
−5

−3
2 )( 8

19),

which gives

( (7 ⋅ 2 − 3 ⋅ 5)𝑥
(−5 ⋅ 3 + 2 ⋅ 7)𝑦) = ( 7

−5
−3
2 )( 8

19),

that is, we have

(7 ⋅ 2 − 3 ⋅ 5)(𝑥
𝑦) = ( 7

−5
−3
2 )( 8

19),

and hence, the solution to the given system of equations is given by

(𝑥
𝑦) = 1

7 ⋅ 2 − 3 ⋅ 5
( 7

−5
−3
2 )( 8

19).

□
Summarizing the above.  The given system of equations can be rewritten as

(2𝑥 + 3𝑦
5𝑥 + 7𝑦) = ( 8

19), (4)

or equivalently,

(2
5

3
7)(𝑥

𝑦) = ( 8
19), (5)
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Multiplying the above from the left by the matrix
1

7 ⋅ 2 − 3 ⋅ 5
( 7

−5
−3
2 ), (6)

we obtain
1

7 ⋅ 2 − 3 ⋅ 5
( 7

−5
−3
2 )(2𝑥 + 3𝑦

5𝑥 + 7𝑦) = 1
7 ⋅ 2 − 3 ⋅ 5

( 7
−5

−3
2 )( 8

19),

which shows that the solution to the given system of equations is given by

(𝑥
𝑦) = 1

7 ⋅ 2 − 3 ⋅ 5
( 7

−5
−3
2 )( 8

19).

□

Remark

In the above, Equation 5 was multiplied by the matrix as in Equation 6, since multiplying the
matrix

(2
5

3
7)

as in Equation 5 from the left by the matrix
1

7 ⋅ 2 − 3 ⋅ 5
( 7

−5
−3
2 ),

as in Equation 6 yields
1

7 ⋅ 2 − 3 ⋅ 5
( 7

−5
−3
2 )(2

5
3
7) = 1

7 ⋅ 2 − 3 ⋅ 5
(7 ⋅ 2 − 3 ⋅ 5

0
0

−5 ⋅ 3 + 2 ⋅ 7)

= (1
0

0
1),

which is the 2 × 2 identity matrix.

§3.4 Invertible matrices

Definition

Let 𝐴 be an 𝑛 × 𝑛 matrix. If there is an 𝑛 × 𝑛 matrix 𝐵 such that
𝐴𝐵 = 𝐵𝐴 = 𝐼𝑛,

then 𝐵 is called an inverse of 𝐴. If 𝐴 admits an inverse, then 𝐴 is called invertible.

Fact 3.20.  Show that if 𝐵, 𝐶 are inverses of an 𝑛 × 𝑛 matrix 𝐴, then 𝐵 = 𝐶 .

A proof of the above is provided in Chapter 6.

Remark

If 𝐴 is an 𝑛 × 𝑛 matrix, and 𝐴 admits an inverse, then it is called the inverse of 𝐴, and is denoted
by 𝐴−1.

Exercise 3.21.  Let 𝐴, 𝐵 be invertible 𝑛 × 𝑛 matrices. Show that 𝐴𝐵 is invertible, and that
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(𝐴𝐵)−1 = 𝐵−1𝐴−1.

Compare the above exercise with Exercise 3.14.
Solution.  Note that

(𝐴𝐵)(𝐵−1𝐴−1) = 𝐴(𝐵𝐵−1)𝐴−1

= 𝐴𝐼𝑛𝐴−1

= 𝐴𝐴−1

= 𝐼𝑛,
and

(𝐵−1𝐴−1)(𝐴𝐵) = 𝐵−1(𝐴−1𝐴)𝐵

= 𝐵−1𝐼𝑛𝐵

= 𝐵−1𝐵
= 𝐼𝑛.

This shows that 𝐴𝐵 is invertible, and that
(𝐴𝐵)−1 = 𝐵−1𝐴−1.

□

Lemma 3.22.  Let

𝐴 = (𝑎
𝑐

𝑏
𝑑)

be a 2 × 2 matrix. The following statements are equivalent.
• 𝐴 is invertible,
• 𝑎𝑑 − 𝑏𝑐 is nonzero,
• every vector (𝑒

𝑓) can be expressed as a linear combination of the columns of 𝐴.

Moreover, if 𝐴 is invertible, then its inverse is equal to
1

𝑎𝑑 − 𝑏𝑐
( 𝑑

−𝑐
−𝑏
𝑎 ).

Proof.  Note that

(𝑎
𝑐

𝑏
𝑑)( 𝑑

−𝑐
−𝑏
𝑎 ) = (𝑎𝑑 − 𝑏𝑐

0
0

𝑎𝑑 − 𝑏𝑐),

( 𝑑
−𝑐

−𝑏
𝑎 )(𝑎

𝑐
𝑏
𝑑) = (𝑎𝑑 − 𝑏𝑐

0
0

𝑎𝑑 − 𝑏𝑐)

hold. Assume that if 𝐴 is invertible. It follows that

50



MTH102

(𝑎𝑑 − 𝑏𝑐)𝐴−1 = (𝑎𝑑 − 𝑏𝑐
0

0
𝑎𝑑 − 𝑏𝑐)𝐴−1

= ( 𝑑
−𝑐

−𝑏
𝑎 )(𝑎

𝑐
𝑏
𝑑)𝐴−1

= ( 𝑑
−𝑐

−𝑏
𝑎 )𝐴𝐴−1

= ( 𝑑
−𝑐

−𝑏
𝑎 )𝐼2

= ( 𝑑
−𝑐

−𝑏
𝑎 ).

Note that if 𝑎𝑑 − 𝑏𝑐 = 0, then 𝑎, 𝑏, 𝑐, 𝑑 are equal to 0, which implies 𝐴 = 0, which is impossible since
𝐴𝐴−1 = 𝐼2. Hence, 𝑎𝑑 − 𝑏𝑐 is nonzero, and

𝐴−1 = 1
𝑎𝑑 − 𝑏𝑐

( 𝑑
−𝑐

−𝑏
𝑎 ).

Conversely, note that if 𝑎𝑑 − 𝑏𝑐 ≠ 0, then it follows that the matrix
1

𝑎𝑑 − 𝑏𝑐
( 𝑑

−𝑐
−𝑏
𝑎 )

is the inverse⁵ of 𝐴.
Also note that if every vector (𝑒

𝑓) can be expressed as a linear combination of the columns of 𝐴, then
in particular, the vectors (1

0), (0
1) can be expressed as a linear combination of the columns of 𝐴. This

implies that there are real numbers 𝑥1, 𝑦1, 𝑥2, 𝑦2 such that

𝐴(𝑥1
𝑦1

) = (1
0),

and

𝐴(𝑥2
𝑦2

) = (0
1).

This shows that

𝐴(𝑥1
𝑦1

𝑥2
𝑦2

) = 𝐼2,

implying that 𝐴 is invertible⁶. Further, if 𝑎𝑑 − 𝑏𝑐 is nonzero, then as observed above, it follows that
𝑑

𝑎𝑑 − 𝑏𝑐
(𝑎

𝑐) + −𝑐
𝑎𝑑 − 𝑏𝑐

(𝑏
𝑑) = (1

0),

−𝑏
𝑎𝑑 − 𝑏𝑐

(𝑎
𝑐) + 𝑎

𝑎𝑑 − 𝑏𝑐
(𝑏

𝑑) = (0
1)

hold, which shows that every vector (𝑒
𝑓) can be expressed as a linear combination of the columns of

𝐴. □

⁵Why?
⁶How?
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Definition

If 𝐴 = (𝑎
𝑐

𝑏
𝑑) is a 2 × 2 matrix, then its determinant is denoted by det 𝐴, and is defined as

det 𝐴 ≔ 𝑎𝑑 − 𝑏𝑐.

Remark

The determinant of a 2 × 2 matrix can be used to determine whether the matrix is invertible or
not. Indeed, by Lemma 3.22, the following statements are equivalent.

• The matrix (𝑎
𝑐

𝑏
𝑑) is invertible.

• The determinant det((𝑎
𝑐

𝑏
𝑑)) is nonzero.

Moreover, if (𝑎
𝑐

𝑏
𝑑) is invertible, then its inverse is given by

1

det((𝑎
𝑐

𝑏
𝑑))

( 𝑑
−𝑐

−𝑏
𝑎 ).

Exercise 3.23.  If 𝐴, 𝐵 are 2 × 2 matrices, then show that
det(𝐴𝐵) = det(𝐴) det(𝐵).

Solution.  Let

𝐴 = (𝑎
𝑐

𝑏
𝑑)

and

𝐵 = (𝑒
𝑔

𝑓
ℎ)

be 2 × 2 matrices. Note that

𝐴𝐵 = (𝑎𝑒 + 𝑏𝑔
𝑐𝑒 + 𝑑𝑔

𝑎𝑓 + 𝑏ℎ
𝑐𝑓 + 𝑑ℎ).

Using the definition of determinant, we obtain
det(𝐴𝐵) = (𝑎𝑒 + 𝑏𝑔)(𝑐𝑓 + 𝑑ℎ) − (𝑎𝑓 + 𝑏ℎ)(𝑐𝑒 + 𝑑𝑔)

= 𝑎𝑐𝑒𝑓 + 𝑎𝑑𝑒ℎ + 𝑏𝑐𝑓𝑔 + 𝑏𝑑𝑔ℎ − 𝑎𝑐𝑒𝑓 − 𝑎𝑑𝑓𝑔 − 𝑏𝑐𝑒ℎ − 𝑏𝑑𝑔ℎ
= 𝑎𝑑𝑒ℎ − 𝑎𝑑𝑓𝑔 + 𝑏𝑐𝑓𝑔 − 𝑏𝑐𝑒ℎ
= (𝑎𝑑 − 𝑏𝑐)(𝑒ℎ − 𝑓𝑔)
= det(𝐴) det(𝐵).

□

Exercise 3.24.  Solve the system of equations in the variables 𝑥, 𝑦:
5𝑥 + 2𝑦 = 11,
3𝑥 + 4𝑦 = 8.

Solution.  Note that the given system of equations can be rewritten as

(5
3

2
4)(𝑥

𝑦) = (11
8 ), (7)

Note that
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det((5
3

2
4)) = 5 ⋅ 4 − 2 ⋅ 3 = 14,

which is nonzero. Hence, the matrix (5
3

2
4) is invertible, and

(5
3

2
4)

−1

= 1
14

( 4
−3

−2
5 ).

Multiplying Equation 7 from the left by the inverse of the matrix (5
3

2
4), we obtain

(𝑥
𝑦) = 1

14
( 4

−3
−2
5 )(11

8 ),

which yields

(𝑥
𝑦) = 1

14
( 44 − 16

−33 + 40) = (
2
1
2
).

□

Exercise 3.25.  Solve the system of equations in the variables 𝑥, 𝑦:
12𝑥 − 25𝑦 = −47,
−7𝑥 + 30𝑦 = 51.

Solution.  The given system of equations can be put in the matrix form as

(12
−7

−25
30 )(𝑥

𝑦) = (−47
51 ), (8)

Note that

det((12
−7

−25
30 )) = 12 ⋅ 30 − (−25) ⋅ (−7) = 360 − 175 = 185,

which is nonzero. It follows that the matrix ( 12
−7

−25
30 ) is invertible, and

(12
−7

−25
30 )

−1

= 1
185

(30
7

25
12).

Multiplying Equation 8 from the left by the inverse of the matrix ( 12
−7

−25
30 ), we obtain

(𝑥
𝑦) = 1

185
(30

7
25
12)(−47

51 ),

which yields

(𝑥
𝑦) = 1

185
(−1410 + 1275

−329 + 612 ) = (
−135

185
283
185

) = (
−27

37
283
185

).

□

Exercise 3.26.  Solve the system of equations in the variables 𝑥, 𝑦, 𝑧:
2𝑥 + 3𝑦 + 𝑧 = 1,
4𝑥 + 𝑦 + 2𝑧 = 2,

3𝑥 + 2𝑦 + 3𝑧 = 3.

Solution.  The given system of equations can be rewritten as

𝐴
(
((
(𝑥

𝑦
𝑧)
))
) =

(
((
(1

2
3)
))
), (9)
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where

𝐴 =
(
((
(2

4
3

3
1
2

1
2
3)
))
).

Note that 𝐴−1 is equal to⁷

1
15

(
((
( 1

6
−5

7
−3
−5

−5
0
10)

))
).

Indeed, observe that

𝐴 × 1
15

(
((
( 1

6
−5

7
−3
−5

−5
0
10)

))
) = 1

15
(
((
(2

4
3

3
1
2

1
2
3)
))
)

(
((
( 1

6
−5

7
−3
−5

−5
0
10)

))
)

= 1
15

(
((
(15

0
0

0
15
0

0
0
15)

))
)

= 𝐼3,
and

1
15

(
((
( 1

6
−5

7
−3
−5

−5
0
10)

))
) × 𝐴 = 1

15
(
((
( 1

6
−5

7
−3
−5

−5
0
10)

))
)

(
((
(2

4
3

3
1
2

1
2
3)
))
)

= 1
15

(
((
(15

0
0

0
15
0

0
0
15)

))
)

= 𝐼3.
Multiplying Equation 9 from the left by 𝐴−1, we obtain

(
((
(𝑥

𝑦
𝑧)
))
) = 𝐴−1

(
((
(1

2
3)
))
),

which yields

(
((
(𝑥

𝑦
𝑧)
))
) = 1

15
(
((
( 1

6
−5

7
−3
−5

−5
0
10)

))
)

(
((
(1

2
3)
))
) = 1

15
(
((
( 1 + 14 − 15

6 − 6 + 0
−5 − 10 + 30)

))
) =

(
((
(0

0
1)
))
).

□

Exercise 3.27.  Let 𝐴, 𝐵 be 2 × 2 matrices. Show that if 𝐴𝐵 is invertible, then both 𝐴 and 𝐵 are
invertible.

Compare the above with Exercise 3.70, Exercise 3.71, Exercise 3.87.

Exercise 3.28.  Let 𝐴 be an 𝑛 × 𝑛 matrix. If 𝑃  is an invertible 𝑛 × 𝑛 matrix, then show that

(𝑃𝐴𝑃−1)𝑘 = 𝑃𝐴𝑘𝑃−1

holds for any positive integer 𝑘.

⁷One may wonder how to find the inverse of an invertible 3 × 3 matrix. One way is to use the Gaussian elimination
method, to be discussed in Section 3.7. Can one also have a formula for the inverse of an invertible 3 × 3 matrix, similar
to the formula for the inverse of a 2 × 2 matrix as in Lemma 3.22? See Lemma 3.96 for the details.
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Solution.  We prove the statement by induction. Let 𝑃  be an invertible 𝑛 × 𝑛 matrix. For a positive
integer 𝑘, let 𝑃(𝑘) denote the statement

(𝑃𝐴𝑃−1)𝑘 = 𝑃𝐴𝑘𝑃−1.

Note that 𝑃(1) holds. Assume that 𝑃(𝑘) holds for some positive integer 𝑘. Then, using the induction
hypothesis, we obtain

(𝑃𝐴𝑃−1)𝑘+1 = (𝑃𝐴𝑃−1)𝑘(𝑃𝐴𝑃−1)

= (𝑃𝐴𝑘𝑃−1)(𝑃𝐴𝑃−1)

= 𝑃𝐴𝑘(𝑃−1𝑃)𝐴𝑃−1

= 𝑃𝐴𝑘𝐼𝑛𝐴𝑃−1

= 𝑃𝐴𝑘+1𝑃−1.
This shows that 𝑃(𝑘 + 1) holds. Hence, by the principle of mathematical induction, 𝑃(𝑘) holds for all
positive integers 𝑘. □

§3.5 Systems of linear equations again

§3.5.1 Linear combination of the columns of a matrix

Here are further examples of systems of linear equations.

System of linear equations Matrix form Solution(s) Associated matrix
𝑥 + 2𝑦 = 1,

3𝑥 − 5𝑦 = −7
(1

3
2

−5)(𝑥
𝑦) = ( 1

−7)
Unique Invertible

𝑥 + 2𝑦 = 1,
2𝑥 + 4𝑦 = 2

(1
2

2
4)(𝑥

𝑦) = (1
2)

Infinitely many⁸ Not invertible

𝑥 + 2𝑦 = 1,
3𝑥 + 6𝑦 = 2

(1
3

2
6)(𝑥

𝑦) = (1
2)

None Not invertible

Question

Which of such systems of equations can be solved?

⁸Why?
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Remark

Consider the following system of linear equations.
12345𝑥 + 67890𝑦 = 11111,
54321𝑥 + 9876𝑦 = 22222.

To solve it, we need to find a vector (𝑥
𝑦) in ℝ2 satisfying

(12345
54321

67890
9876 )(𝑥

𝑦) = (11111
22222).

In other words, we need to find real numbers 𝑥, 𝑦 such that

(12345
54321

67890
9876 )(𝑥

𝑦) = (12345
54321

67890
9876 )(𝑥𝑒1 + 𝑦𝑒2)

= 𝑥(12345
54321

67890
9876 )𝑒1 + 𝑦(12345

54321
67890
9876 )𝑒2

= 𝑥(12345
54321) + 𝑦(67890

9876 )

is equal to (11111
22222), where 𝑒1, 𝑒2 are the standard basis vectors of ℝ2.

It is left to determining whether some linear combination of the columns of the matrix
(12345

54321
67890
9876 ) is equal to (11111

22222). If such a linear combination exists, then the system of equations
has a solution, and if such a linear combination does not exist, then the system of equations
does not have a solution. If there is more than one such linear combination, then the system of
equations has more than one solution, etc.

Remark

The above discussion shows that solving a system of linear equations is equivalent to determining
whether some linear combination of the columns of a matrix is equal to the given vector. This is
the reason why the notions⁹ of column space and linear span of vectors are important in the study
of systems of linear equations.

Remark

Consider a matrix (𝑎
𝑐

𝑏
𝑑), and a vector (𝛼

𝛽) where 𝑎, 𝑏, 𝑐, 𝑑, 𝛼, 𝛽 are real numbers. If (𝛼
𝛽) is not

a linear combination of the columns of (𝑎
𝑐

𝑏
𝑑), that is, if (𝛼

𝛽) is not a linear combination of the
vectors (𝑎

𝑐) and (𝑏
𝑑), then the system of equations

(𝑎
𝑐

𝑏
𝑑)(𝑥

𝑦) = (𝛼
𝛽)

admits no solution.

Lemma 3.29.  Let 𝐴 be a 2 × 2 matrix, and let (𝛼
𝛽) be a vector of ℝ2. Show that the following statements

are equivalent.
• The vector (𝛼

𝛽) is a linear combination of the columns of the matrix 𝐴.
• The system of equations

⁹The notions of column space and linear span of vectors will be introduced formally at a later stage.
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𝐴(𝑥
𝑦) = (𝛼

𝛽)

admits at least one solution.

Proof.  Assume that (𝛼
𝛽) is a linear combination of the columns of the matrix 𝐴. This shows that there

are real numbers 𝑥0, 𝑦0 such that

𝐴(𝑥0
𝑦0

) = (𝛼
𝛽).

Hence, the system of equations

𝐴(𝑥
𝑦) = (𝛼

𝛽)

admits at least one solution.
Conversely, assume that the system of equations

𝐴(𝑥
𝑦) = (𝛼

𝛽)

admits at least one solution, say (𝑥1
𝑦1

). It follows that

𝐴(𝑥1
𝑦1

) = (𝛼
𝛽).

This shows that (𝛼
𝛽) is a linear combination of the columns of the matrix 𝐴. □

§3.5.2 Homogeneous system of linear equations

Let us first consider the solutions to the system of equations

(𝑎
𝑐

𝑏
𝑑)(𝑥

𝑦) = (0
0). (10)

Note that (0
0) is a linear combination of the columns of (𝑎

𝑐
𝑏
𝑑), since

(0
0) = 0(𝑎

𝑐) + 0(𝑏
𝑑).

This shows that (0
0) is a solution to Equation 10. It is called the trivial solution to Equation 10.

Case 1

Let us first consider the case that the matrix 𝐴 is invertible.
Note that under this hypothesis, Equation 10 has no solution other than (0

0). Indeed, if (𝑥1
𝑦1

) is
another solution to Equation 10, then

(𝑎
𝑐

𝑏
𝑑)(𝑥1

𝑦1
) = (0

0).

This shows that

(𝑎
𝑐

𝑏
𝑑)

−1

(𝑎
𝑐

𝑏
𝑑)(𝑥1

𝑦1
) = (0

0),

which yields

(𝑥1
𝑦1

) = (0
0).

Hence, if 𝐴 is invertible, then the only solution to Equation 10 is (0
0).
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Observation

If Equation 10 has at least one solution other than (0
0), then Equation 10 has infinitely many

solutions. Indeed, if (𝑥2
𝑦2

) is a solution to Equation 10 other than (0
0), then for any real number

𝑡, the vector 𝑡(𝑥2
𝑦2

) is also a solution to Equation 10, and hence, Equation 10 has infinitely many
solutions.

Case 2

Now let us consider the case that the matrix 𝐴 is not invertible. By Lemma 3.22, we have 𝑎𝑑 −
𝑏𝑐 = 0, this implies that

𝑑(𝑎
𝑐) − 𝑐(𝑏

𝑑) = (𝑎𝑑 − 𝑏𝑐
0 ) = (0

0),

𝑏(𝑎
𝑐) − 𝑎(𝑏

𝑑) = ( 0
𝑏𝑐 − 𝑎𝑑) = (0

0),

and consequently,

(𝑎
𝑐

𝑏
𝑑)( 𝑑

−𝑐) = (0
0),

(𝑎
𝑐

𝑏
𝑑)( 𝑏

−𝑎) = (0
0).

This shows that if 𝐴 is not invertible, then the vectors ( 𝑑
−𝑐) and ( 𝑏

−𝑎) are solutions to Equation 10.

Subcase 2a

If the vectors ( 𝑑
−𝑐) and ( 𝑏

−𝑎) are equal to the zero vector, equivalently, if 𝑎, 𝑏, 𝑐, 𝑑 are all equal
to 0, then any vector (𝑥

𝑦) of ℝ2 is a solution to Equation 10.

Subcase 2b

If not both of the vectors ( 𝑑
−𝑐) and ( 𝑏

−𝑎) are equal to the zero vector (equivalently, at least one of
them is nonzero) and 𝐴 is not invertible, then Equation 10 admits a solution other than (0

0), and
moreover, not all vectors of ℝ2 are solutions to Equation 10 since not all of (1

0), (0
1) are solutions

to Equation 10.

Lemma 3.30.  Consider the system of linear equations

𝐴(𝑥
𝑦) = (0

0), (11)

where 𝐴 is a 2 × 2 matrix. The following statements are equivalent.
• The matrix 𝐴 is invertible.
• The system of equations as in Equation 11 admits a unique solution, that is, it admits no solution

other than the trivial solution (0
0).

• The trivial linear combination (that is, the linear combination using zeroes as the coefficients) of
the columns of the matrix 𝐴 is the only linear combination of the columns of 𝐴 that is equal to
(0

0).
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Furthermore, the following statements are equivalent.
• Any element of ℝ2 is a solution to Equation 11.
• The matrix 𝐴 is the zero matrix.

Moreover, the following statements are equivalent too.
• The system of equations as in Equation 11 admits a solution other than the trivial solution (0

0),
and not all elements of ℝ2 are solutions to Equation 11.

• The matrix 𝐴 is not invertible and nonzero.

A proof of the above is provided in Chapter 6.

Exercise 3.31.  Let 𝐴 be a 2 × 2 matrix. Let 𝑉  be the set of solutions to the system of equations

𝐴(𝑥
𝑦) = (0

0),

that is,

𝑉 = {(𝑥
𝑦) ∈ ℝ2 : 𝐴(𝑥

𝑦) = (0
0)}.

Show that for any 𝑢, 𝑣 ∈ 𝑉  and 𝑐 ∈ ℝ, the element 𝑢 + 𝑣 of ℝ2 lies in 𝑉 , and the element 𝑐𝑢 also
lies in 𝑉 .

Solution.  Let 𝑢, 𝑣 be elements of 𝑉 , and let 𝑐 be a real number. Note that

𝐴(𝑢 + 𝑣) = 𝐴𝑢 + 𝐴𝑣 = (0
0) + (0

0) = (0
0),

and

𝐴(𝑐𝑢) = 𝑐(𝐴𝑢) = 𝑐(0
0) = (0

0).

This shows that both 𝑢 + 𝑣 and 𝑐𝑢 lie in 𝑉 . □

Remark

What about the difference of two elements of 𝑉 ? If 𝑢, 𝑣 are elements of 𝑉  and 𝑐, 𝑑 are real
numbers, then what can be said about the element 𝑐𝑢 + 𝑑𝑣 of ℝ2?

Exercise 3.32.  Let 𝐴 be a 2 × 2 matrix. Let 𝑉  be the set of vectors which can be expressed as a linear
combination of the columns of 𝐴, that is¹⁰,

𝑉 = {(𝑥
𝑦) ∈ ℝ2 : (𝑥

𝑦) = 𝐴(𝑠
𝑡) for some 𝑠, 𝑡 ∈ ℝ}.

Show that for any 𝑢, 𝑣 ∈ 𝑉  and 𝑐 ∈ ℝ, the element 𝑢 + 𝑣 of ℝ2 lies in 𝑉 , and the element 𝑐𝑢 also
lies in 𝑉 .

Solution.  Let 𝑢, 𝑣 be elements of 𝑉 , and let 𝑐 be a real number. By the definition of 𝑉 , there exist real
numbers 𝑠1, 𝑡1, 𝑠2, 𝑡2 such that

¹⁰Observe that

𝐴(𝑠
𝑡) = 𝑠𝐶1 + 𝑡𝐶2,

where 𝐶1, 𝐶2 denote the first and second columns of 𝐴 respectively.
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𝑢 = 𝐴(𝑠1
𝑡1

),

𝑣 = 𝐴(𝑠2
𝑡2

).

Note that

𝑢 + 𝑣 = 𝐴(𝑠1
𝑡1

) + 𝐴(𝑠2
𝑡2

) = 𝐴((𝑠1
𝑡1

) + (𝑠2
𝑡2

)) = 𝐴(𝑠1 + 𝑠2
𝑡1 + 𝑡2

),

and

𝑐𝑢 = 𝑐(𝐴(𝑠1
𝑡1

)) = 𝐴(𝑐(𝑠1
𝑡1

)) = 𝐴(𝑐𝑠1
𝑐𝑡1

).

This shows that both 𝑢 + 𝑣 and 𝑐𝑢 lie in 𝑉 . □

Exercise 3.33.  Let 𝐴 be an 𝑚 × 𝑛 matrix. Let 𝑉  be the set of solutions to the system of equations
𝐴𝑢 = 0,

that is,
𝑉 = {𝑣 ∈ ℝ𝑛 : 𝐴𝑣 = 0}.

Show that for any 𝑢, 𝑣 ∈ 𝑉  and 𝑐, 𝑑 ∈ ℝ, the element 𝑐𝑢 + 𝑑𝑣 of ℝ𝑚 lies in 𝑉 .

Solution.  Let 𝑢, 𝑣 be elements of 𝑉 , and let 𝑐, 𝑑 be real numbers. Note that
𝐴(𝑐𝑢 + 𝑑𝑣) = 𝑐(𝐴𝑢) + 𝑑(𝐴𝑣) = 𝑐 ⋅ 0 + 𝑑 ⋅ 0 = 0.

This shows that 𝑐𝑢 + 𝑑𝑣 lies in 𝑉 . □
Compare the following exercise with Exercise 3.62.

Exercise 3.34.  Let 𝐴 be an 𝑚 × 𝑛 matrix. Let 𝑉  be the set of vectors which can be expressed as a
linear combination of the columns of 𝐴, that is,

𝑉 = {𝑣 ∈ ℝ𝑚 : 𝑣 = 𝐴𝑢 for some 𝑢 ∈ ℝ𝑛}.
Show that for any 𝑢, 𝑣 ∈ 𝑉  and 𝑐, 𝑑 ∈ ℝ, the element 𝑐𝑢 + 𝑑𝑣 of ℝ𝑚 lies in 𝑉 .

Solution.  Let 𝑢, 𝑣 be elements of 𝑉 , and let 𝑐, 𝑑 be real numbers. By the definition of 𝑉 , there exist
vectors 𝑢1, 𝑢2 ∈ ℝ𝑛 such that

𝑢 = 𝐴𝑢1,
𝑣 = 𝐴𝑢2.

Note that
𝑐𝑢 + 𝑑𝑣 = 𝑐(𝐴𝑢1) + 𝑑(𝐴𝑢2) = 𝐴(𝑐𝑢1) + 𝐴(𝑑𝑢2) = 𝐴(𝑐𝑢1 + 𝑑𝑢2).

This shows that 𝑐𝑢 + 𝑑𝑣 lies in 𝑉 . □

§3.5.3 General system of linear equations

If (𝛼
𝛽) is a linear combination of the columns of the matrix (𝑎

𝑐
𝑏
𝑑), then there exist real numbers 𝑥0, 𝑦0

such that

(𝑎
𝑐

𝑏
𝑑)(𝑥0

𝑦0
) = (𝛼

𝛽).

This shows that the system of equations

(𝑎
𝑐

𝑏
𝑑)(𝑥

𝑦) = (𝛼
𝛽)
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has at least one solution, namely (𝑥0
𝑦0

). If (𝑥1
𝑦1

) is another solution to the above system of equations,
then

(𝑎
𝑐

𝑏
𝑑)(𝑥1

𝑦1
) = (𝛼

𝛽).

This shows that

(𝑎
𝑐

𝑏
𝑑)(𝑥0

𝑦0
) = (𝑎

𝑐
𝑏
𝑑)(𝑥1

𝑦1
).

Hence,

(𝑎
𝑐

𝑏
𝑑)((𝑥1

𝑦1
) − (𝑥0

𝑦0
)) = (0

0)

holds. This shows that the difference of any two solutions to the system of equations

(𝑎
𝑐

𝑏
𝑑)(𝑥

𝑦) = (𝛼
𝛽)

is a solution to the system of equations

(𝑎
𝑐

𝑏
𝑑)(𝑥

𝑦) = (0
0).

Conversely, if (𝑥2
𝑦2

) is a solution to the system of equations

(𝑎
𝑐

𝑏
𝑑)(𝑥

𝑦) = (0
0),

then

(𝑎
𝑐

𝑏
𝑑)((𝑥0

𝑦0
) + (𝑥2

𝑦2
)) = (𝑎

𝑐
𝑏
𝑑)(𝑥0

𝑦0
) + (𝑎

𝑐
𝑏
𝑑)(𝑥2

𝑦2
)

= (𝛼
𝛽) + (0

0)

= (𝛼
𝛽).

This shows that if (𝑥2
𝑦2

) is a solution to the system of equations

(𝑎
𝑐

𝑏
𝑑)(𝑥

𝑦) = (0
0),

then (𝑥0
𝑦0

) + (𝑥2
𝑦2

) is also a solution to the system of equations

(𝑎
𝑐

𝑏
𝑑)(𝑥

𝑦) = (𝛼
𝛽).

In summary, if (𝛼
𝛽) is a linear combination of the columns of (𝑎

𝑐
𝑏
𝑑), then the solutions to the system

of equations

(𝑎
𝑐

𝑏
𝑑)(𝑥

𝑦) = (𝛼
𝛽)

are in one-to-one correspondence with the solutions to the system of equations

(𝑎
𝑐

𝑏
𝑑)(𝑥

𝑦) = (0
0).
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Remark

The above discussion shows that if (𝛼
𝛽) is a linear combination of the columns of (𝑎

𝑐
𝑏
𝑑), then

the solutions to the system of equations

(𝑎
𝑐

𝑏
𝑑)(𝑥

𝑦) = (𝛼
𝛽)

are in one-to-one correspondence with the solutions to the system of equations

(𝑎
𝑐

𝑏
𝑑)(𝑥

𝑦) = (0
0).

Hence, to determine the number of solutions to the system of equations

(𝑎
𝑐

𝑏
𝑑)(𝑥

𝑦) = (𝛼
𝛽)

it suffices to determine the number of solutions to the system of equations

(𝑎
𝑐

𝑏
𝑑)(𝑥

𝑦) = (0
0).

Lemma 3.35.  Let 𝐴 be a 2 × 2 matrix, and let (𝛼
𝛽) be a vector of ℝ2. Assume that (𝛼

𝛽) is a linear
combination of the columns of the matrix 𝐴. Then the solutions to the system of equations

𝐴(𝑥
𝑦) = (𝛼

𝛽)

are in one-to-one correspondence with the solutions to the system of equations

𝐴(𝑥
𝑦) = (0

0).

More specifically, for any fixed solution (𝑥0
𝑦0

) to the system of equations

𝐴(𝑥
𝑦) = (𝛼

𝛽),

the map

(𝑥
𝑦) ↦ (𝑥

𝑦) − (𝑥0
𝑦0

)

is a bijection from the set of solutions to the system of equations

𝐴(𝑥
𝑦) = (𝛼

𝛽)

to the set of solutions to the system of equations

𝐴(𝑥
𝑦) = (0

0),

having the following map as its inverse:

(𝑥
𝑦) ↦ (𝑥

𝑦) + (𝑥0
𝑦0

).

Proof.  Deferred. □
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Remark

The terms “one-to-one correspondence” and “bijection” will be introduced formally at a later
stage. The proof of the above lemma is deferred until then.

§3.6 Special types of matrices

§3.6.1 Diagonal, scalar, and triangular matrices

Recall that a matrix is called a square matrix if it has the same number of rows and columns.

Definition

A square matrix 𝐴 is called diagonal if all its non-diagonal entries are equal to zero.

Example

The following matrices are diagonal.

(
((
(1

0
0

0
2
0

0
0
3)
))
), (5

0
0

−7),
(
((
(𝑖

0
0

0
0
0

0
0
𝜋)
))
).

Some non-diagonal matrices are as follows.

(1
0

2
3), (0

0
1
0), ( 1

−1
0
1).

Definition

A square matrix 𝐴 is called scalar if it is a diagonal matrix and all its diagonal entries are equal.
In other words, an 𝑛 × 𝑛 matrix 𝐴 is called scalar if

𝐴 = 𝜆𝐼𝑛

for some scalar 𝜆.

Example

The following matrices are scalar.

(2
0

0
2),

(
((
(−3

0
0

0
−3
0

0
0

−3)
))
), (0

0
0
0).

Some non-scalar matrices are as follows.

(1
0

0
2),

(
((
(5

0
0

0
−7
0

0
0
𝜋)
))
), (1

0
2
1).
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Definition

A square matrix 𝐴 is called triangular if all its entries below the main diagonal are equal to zero,
or if all its entries above the main diagonal are equal to zero.
A triangular matrix 𝐴 is called upper9triangular if all its entries below the main diagonal are

equal to zero.
A triangular matrix 𝐴 is called lower9triangular if all its entries above the main diagonal are

equal to zero.

Example

The following matrices are upper-triangular.

(
((
(1

0
0

2
4
0

3
5
6)
))
), (7

0
8
9).

The following matrices are lower-triangular.

(
((
(1

2
4

0
3
5

0
0
6)
))
), (7

8
0
9).

Some non-triangular matrices are as follows.

(1
3

2
4),

(
((
(1

0
5

2
3
0

0
4
6)
))
).

§3.6.2 Symmetric, and skew9symmetric matrices

Definition

A square matrix 𝐴 is called symmetric if
𝐴𝑇 = 𝐴.

Example

The following matrices are symmetric.

(
((
(1

2
3

2
4
5

3
5
6)
))
), (7

8
8
9), (1

0
0
1).

Some non-symmetric matrices are as follows.

(1
3

2
4), (0

0
1
0), ( 1

−1
0
1).
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Definition

A square matrix 𝐴 is called skew9symmetric if
𝐴𝑇 = −𝐴.

Example

The following matrices are skew-symmetric.

(
((
( 0

−2
−3

2
0

−5

3
5
0)
))
), ( 0

−8
8
0), (0

0
0
0).

Here are some matrices that are not skew-symmetric.

(1
3

2
4), (0

0
1
0), ( 1

−1
0
1).

Exercise 3.36.  Let 𝐴 be a square matrix. Show that if 𝐴 is symmetric and skew-symmetric, then 𝐴
is the zero matrix.

Solution.  Assume that 𝐴 is symmetric and skew-symmetric. It follows that
𝐴𝑇 = 𝐴,

𝐴𝑇 = −𝐴.
This shows that

𝐴 = −𝐴,
which yields

2𝐴 = 0,
and hence, 𝐴 is the zero matrix. □

Fact 3.37.  Any square matrix can be uniquely expressed as the sum of a symmetric matrix and a
skew-symmetric matrix.

A proof of the above is provided in Chapter 6.

§3.6.3 Orthogonal matrices

Definition

An 𝑛 × 𝑛 matrix 𝐴 with real entries is called orthogonal if
𝐴𝐴𝑇 = 𝐴𝑇 𝐴 = 𝐼𝑛.
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Example

The following matrices are orthogonal.

(0
1

1
0), (1

0
0

−1),
(
((

1√
2

1√
2

− 1√
2

1√
2 )

)).

Some non-orthogonal matrices are as follows.

(1
3

2
4), (0

0
1
0), ( 1

−1
0
1).

Remark

There are infinitely many orthogonal matrices. For instance, for any real number 𝜃, the matrix

(cos 𝜃
sin 𝜃

− sin 𝜃
cos 𝜃 )

is an orthogonal matrix since

(cos 𝜃
sin 𝜃

− sin 𝜃
cos 𝜃 )

𝑇

(cos 𝜃
sin 𝜃

− sin 𝜃
cos 𝜃 ) = ( cos 𝜃

− sin 𝜃
sin 𝜃
cos 𝜃)(cos 𝜃

sin 𝜃
− sin 𝜃
cos 𝜃 )

= (cos2 𝜃 + sin2 𝜃
0

0
cos2 𝜃 + sin2 𝜃)

= (1
0

0
1),

and

(cos 𝜃
sin 𝜃

− sin 𝜃
cos 𝜃 )(cos 𝜃

sin 𝜃
− sin 𝜃
cos 𝜃 )

𝑇

= (cos 𝜃
sin 𝜃

− sin 𝜃
cos 𝜃 )( cos 𝜃

− sin 𝜃
sin 𝜃
cos 𝜃)

= (cos2 𝜃 + sin2 𝜃
0

0
cos2 𝜃 + sin2 𝜃)

= (1
0

0
1).

Exercise 3.38.  Show that for any 𝑛 ≥ 2, there are infinitely many 𝑛 × 𝑛 orthogonal matrices.

Exercise 3.39.  Let 𝐴 be an orthogonal matrix. Show that 𝐴 is invertible and that
𝐴−1 = 𝐴𝑇 .

Solution.  Let 𝐴 be an 𝑛 × 𝑛 orthogonal matrix. It follows that
𝐴𝐴𝑇 = 𝐴𝑇 𝐴 = 𝐼𝑛,

which shows that 𝐴 is invertible and that
𝐴−1 = 𝐴𝑇 .

□

Exercise 3.40.  Let 𝐴, 𝐵 be orthogonal matrices of the same size. Show that the matrix product 𝐴𝐵
is also an orthogonal matrix.

Solution.  Let 𝐴, 𝐵 be 𝑛 × 𝑛 orthogonal matrices. Note that
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(𝐴𝐵)(𝐴𝐵)𝑇 = 𝐴𝐵𝐵𝑇 𝐴𝑇 = 𝐴𝐼𝑛𝐴𝑇 = 𝐴𝐴𝑇 = 𝐼𝑛,
and similarly,

(𝐴𝐵)𝑇 (𝐴𝐵) = 𝐵𝑇 𝐴𝑇 𝐴𝐵 = 𝐵𝑇 𝐼𝑛𝐵 = 𝐵𝑇 𝐵 = 𝐼𝑛.
This shows that the matrix product 𝐴𝐵 is also an orthogonal matrix. □

§3.6.4 Hermitian and skew9hermitian matrices

Definition

If 𝐴 is a matrix with complex entries, then the complex conjugate of 𝐴, denoted by 𝐴, is defined
as the matrix of the same size, obtained by taking the complex conjugate of each entry of 𝐴.

Example

The complex conjugate of the matrix

(1 + 2𝑖
−𝑖

3 − 4𝑖
5 )

is the matrix

(1 − 2𝑖
𝑖

3 + 4𝑖
5 ).

Exercise 3.41.  Let 𝐴, 𝐵 be square matrices with complex entries. Show that

𝐴𝐵 = 𝐴 𝐵.

Exercise 3.42.  Let 𝐴 be a square matrix with complex entries. Show that

𝐴𝑇 = (𝐴)
𝑇
.

Definition

If 𝐴 is a matrix with complex entries, then the conjugate transpose of 𝐴, denoted by 𝐴∗, is defined
as the transpose of the matrix obtained by taking the complex conjugate of each entry of 𝐴, that
𝐴∗ is equal to 𝐴𝑇 .

Example

The conjugate transpose of the matrix

(1 + 2𝑖
−𝑖

3 − 4𝑖
5 )

is the matrix

(1 − 2𝑖
3 + 4𝑖

𝑖
5).

Compare the following exercises with Exercise 3.6, Exercise 3.7, Exercise 3.14.

Exercise 3.43.  Let 𝐴, 𝐵 be square matrices of the same size with complex entries. Show that
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(𝐴 + 𝐵)∗ = 𝐴∗ + 𝐵∗.

Solution.  Note that

(𝐴 + 𝐵)∗ = (𝐴 + 𝐵)
𝑇

= (𝐴 + 𝐵)
𝑇

= 𝐴𝑇 + 𝐵𝑇 = 𝐴∗ + 𝐵∗.

□

Exercise 3.44.  Let 𝐴 be a matrix with complex entries. Show that
(𝐴∗)∗ = 𝐴.

Solution.  Note that

(𝐴∗)∗ = (𝐴𝑇 )
∗

= (𝐴𝑇 )
∗

= 𝐴𝑇
𝑇

= (𝐴𝑇 )𝑇 = 𝐴.

□

Exercise 3.45.  Let 𝐴, 𝐵 be matrices with complex entries. Show that
(𝐴𝐵)∗ = 𝐵∗𝐴∗.

Solution.  Note that

(𝐴𝐵)∗ = (𝐴𝐵)
𝑇

= (𝐴 𝐵)
𝑇

= 𝐵𝑇 𝐴𝑇 = 𝐵∗𝐴∗.

□

Definition

A square matrix 𝐴 with complex entries is called hermitian if
𝐴∗ = 𝐴,

where 𝐴∗ denotes the conjugate transpose of 𝐴.

Example

The following matrices are hermitian.

( 1
2 − 𝑖

2 + 𝑖
3 ), ( 5

−𝑖
𝑖
7), (1

0
0
1).

Some non-hermitian matrices are as follows.

(1
3

2
4), (0

0
1
0), ( 1

−1
0
1).

Exercise 3.46.  Let 𝐴 be an 𝑛 × 𝑛 hermitian matrix. Show that all the diagonal entries of 𝐴 are real
numbers. More generally, show that for any 1 ≤ 𝑖, 𝑗 ≤ 𝑛, the (𝑖, 𝑗)-entry and the (𝑗, 𝑖)-entry of 𝐴
are complex conjugates of each other.

Exercise 3.47.  Let 𝐴, 𝐵 be hermitian matrices of the same size. Show that the matrix 𝐴 + 𝐵 is also
a hermitian matrix. Is the matrix 𝐴𝐵 also a hermitian matrix?

Solution.  Let 𝐴, 𝐵 be 𝑛 × 𝑛 hermitian matrices. Note that
(𝐴 + 𝐵)∗ = 𝐴∗ + 𝐵∗ = 𝐴 + 𝐵.

This shows that the matrix 𝐴 + 𝐵 is also a hermitian matrix.
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The matrix product 𝐴𝐵 is not necessarily a hermitian matrix. For instance, let

𝐴 = ( 1
−𝑖

𝑖
1),

𝐵 = (2
0

0
3).

Note that both 𝐴 and 𝐵 are hermitian matrices. Also note that

𝐴𝐵 = ( 2
−2𝑖

3𝑖
3 ),

and hence, the product 𝐴𝐵 is not a hermitian matrix. □

Definition

A square matrix 𝐴 with complex entries is called skew9hermitian if
𝐴∗ = −𝐴,

where 𝐴∗ denotes the conjugate transpose of 𝐴.

Example

The following matrices are skew-hermitian.

( 0
−2 + 𝑖

2 + 𝑖
0 ), ( 0

−𝑖
𝑖
0), (0

0
0
0).

Some non-skew-hermitian matrices are as follows.

(1
3

2
4), (0

0
1
0), ( 1

−1
0
1).

Exercise 3.48.  State and prove an analogue of Exercise 3.46 for skew-hermitian matrices.

Exercise 3.49.  Let 𝐴, 𝐵 be skew-hermitian matrices of the same size. Show that the matrix 𝐴 + 𝐵
is also a skew-hermitian matrix. Is the matrix 𝐴𝐵 also a skew-hermitian matrix?

Solution.  Let 𝐴, 𝐵 be 𝑛 × 𝑛 skew-hermitian matrices. Note that
(𝐴 + 𝐵)∗ = 𝐴∗ + 𝐵∗ = −𝐴 − 𝐵 = −(𝐴 + 𝐵).

This shows that the matrix 𝐴 + 𝐵 is also a skew-hermitian matrix.
The matrix product 𝐴𝐵 is not necessarily a skew-hermitian matrix. For instance, let

𝐴 = ( 0
−2 + 𝑖

2 + 𝑖
0 ),

𝐵 = ( 0
−1

1
0).

Note that both 𝐴 and 𝐵 are skew-hermitian matrices. Also note that

𝐴𝐵 = (−2 − 𝑖
0

0
−2 + 𝑖),

which is not a skew-hermitian matrix. □

Exercise 3.50.  Let 𝐴 be a square matrix with complex entries. Show that if 𝐴 is hermitian and skew-
hermitian, then 𝐴 is the zero matrix.
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Solution.  Assume that 𝐴 is hermitian and skew-hermitian. It follows that
𝐴∗ = 𝐴,

𝐴∗ = −𝐴.
This shows that

𝐴 = −𝐴,
which yields

2𝐴 = 0,
and hence, 𝐴 is the zero matrix. □

Fact 3.51.  Let 𝐴 be a square matrix with complex entries. Show that 𝐴 can be uniquely expressed
as the sum of a hermitian matrix and a skew-hermitian matrix.

A proof of the above is provided in Chapter 6.

§3.6.5 Unitary and normal matrices

Definition

An 𝑛 × 𝑛 matrix 𝐴 with complex entries is called unitary if
𝐴𝐴∗ = 𝐴∗𝐴 = 𝐼𝑛.

Example

The following matrices are unitary.

(0
1

1
0), (1

0
0

−1),
(
((

1√
2

− 𝑖√
2

− 𝑖√
2

1√
2 )

)).

Some non-unitary matrices are as follows.

(1
3

2
4), (0

0
1
0), ( 1

−1
0
1).

Exercise 3.52.  Let 𝐴 be a unitary matrix. Show that 𝐴 is invertible and that
𝐴−1 = 𝐴∗.

Solution.  Let 𝐴 be a unitary matrix. It follows that
𝐴𝐴∗ = 𝐴∗𝐴 = 𝐼𝑛,

which shows that 𝐴 is invertible and that
𝐴−1 = 𝐴∗.

□

Exercise 3.53.  Let 𝐴, 𝐵 be unitary matrices of the same size. Show that the matrix product 𝐴𝐵 is
also a unitary matrix.

Solution.  Let 𝐴, 𝐵 be 𝑛 × 𝑛 unitary matrices. Note that
(𝐴𝐵)(𝐴𝐵)∗ = 𝐴𝐵𝐵∗𝐴∗ = 𝐴𝐼𝑛𝐴∗ = 𝐴𝐴∗ = 𝐼𝑛,

and similarly,
(𝐴𝐵)∗(𝐴𝐵) = 𝐵∗𝐴∗𝐴𝐵 = 𝐵∗𝐼𝑛𝐵 = 𝐵∗𝐵 = 𝐼𝑛.
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This shows that the matrix product 𝐴𝐵 is also a unitary matrix. □

Exercise 3.54.  Show that any orthogonal matrix is a unitary matrix. Is the converse true?

Solution.  Let 𝐴 be an orthogonal matrix. It follows that
𝐴𝑇 𝐴 = 𝐼𝑛,

which shows that 𝐴 is invertible and that
𝐴−1 = 𝐴𝑇 .

Since 𝐴 has real entries, we have 𝐴∗ = 𝐴𝑇 , and hence,
𝐴∗𝐴 = 𝐴𝑇 𝐴 = 𝐼𝑛.

Similarly, we have
𝐴𝐴∗ = 𝐴𝐴𝑇 = 𝐼𝑛.

This shows that any orthogonal matrix is a unitary matrix.
The converse is not true in general. For instance, the matrix

(
((

1√
2

− 𝑖√
2

− 𝑖√
2

1√
2 )

))

is a unitary matrix but not an orthogonal matrix. □

Exercise 3.55.  Determine whether the following matrices are unitary, hermitian, both, or neither.

(0
1

1
0), (0

𝑖
−𝑖
0 ), (1

0
0

−1).

Exercise 3.56.  Let 𝑧, 𝑤 be complex numbers such that |𝑧|2 + |𝑤|2 = 1. Show that

(𝑧
𝑤

−𝑤
𝑧 )

is a unitary matrix.

Solution.  Let 𝑧, 𝑤 be complex numbers such that |𝑧|2 + |𝑤|2 = 1. Note that

(𝑧
𝑤

−𝑤
𝑧 )(𝑧

𝑤
−𝑤
𝑧 )

∗

= (𝑧
𝑤

−𝑤
𝑧 )( 𝑧

−𝑤
𝑤
𝑧)

= (𝑧𝑧 + 𝑤𝑤
𝑤𝑧 − 𝑧𝑤

𝑧𝑤 − 𝑤𝑧
𝑤𝑤 + 𝑧𝑧)

= (|𝑧|2 + |𝑤|2
0

0
|𝑧|2 + |𝑤|2)

= (1
0

0
1)

hold. Also note that
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(𝑧
𝑤

−𝑤
𝑧 )

∗

(𝑧
𝑤

−𝑤
𝑧 ) = ( 𝑧

−𝑤
𝑤
𝑧)(𝑧

𝑤
−𝑤
𝑧 )

= (𝑧𝑧 + 𝑤(−𝑤)
−𝑤𝑧 + 𝑧𝑤

𝑧(−𝑤) + 𝑤𝑧
−𝑤(−𝑤) + 𝑧𝑧)

= (|𝑧|2 + |𝑤|2
0

0
|𝑧|2 + |𝑤|2)

= (1
0

0
1)

hold. This shows that

(𝑧
𝑤

−𝑤
𝑧 )

is a unitary matrix. □

Exercise 3.57.  Let 𝐴 be a diagonal matrix with complex entries. Show that 𝐴 is a unitary matrix if
and only if all the diagonal entries of 𝐴 have absolute value equal to 1.

Definition

A square matrix 𝐴 with complex entries is called normal if
𝐴𝐴∗ = 𝐴∗𝐴,

where 𝐴∗ denotes the conjugate transpose of 𝐴.

Example

The following matrices are normal.

( 1
2 − 𝑖

2 + 𝑖
3 ), ( 5

−𝑖
𝑖
7), (1

0
0
1), (0

0
1
0).

Some non-normal matrices are as follows.

(1
3

2
4), ( 1

−1
0
1).

Exercise 3.58.  Show that any unitary matrix is a normal matrix. Is the converse true?

Exercise 3.59.  Show that any hermitian matrix is a normal matrix. Is the converse true?

Exercise 3.60.  Show that any skew-hermitian matrix is a normal matrix. Is the converse true?

Here is a summary of some properties of some of the special types of matrices introduced above.
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Matrix Some property
Diagonal Entries outside the main diagonal are zero

Scalar Diagonal matrix with all diagonal entries equal
Triangular Entries below or above the main diagonal are zero

Upper-triangular Entries below the main diagonal are zero
Lower-triangular Entries above the main diagonal are zero

Symmetric 𝐴𝑇 = 𝐴
Skew-symmetric 𝐴𝑇 = −𝐴

Orthogonal 𝐴𝐴𝑇 = 𝐴𝑇 𝐴 = 𝐼𝑛

Hermitian 𝐴∗ = 𝐴
Skew-hermitian 𝐴∗ = −𝐴

Unitary 𝐴𝐴∗ = 𝐴∗𝐴 = 𝐼𝑛

Normal 𝐴𝐴∗ = 𝐴∗𝐴

§3.7 Row reduction

§3.7.1 Matrix units

Definition

The matrix unit 𝑒𝑖𝑗 is the 𝑛 × 𝑛 matrix whose (𝑖, 𝑗)-entry is equal to 1 and all other entries are
equal to 0.

Example

The matrix unit 𝑒23 for 𝑛 = 4 is the matrix

(
((
((
((

0
0
0
0

0
0
0
0

0
1
0
0

0
0
0
0)
))
))
))

.

Remark

For a 2 × 2 matrix 𝐴 = (𝑎
𝑐

𝑏
𝑑), we have

𝐴 = 𝑎(1
0

0
0) + 𝑏(0

0
1
0) + 𝑐(0

1
0
0) + 𝑑(0

0
0
1)

= 𝑎𝑒11 + 𝑏𝑒12 + 𝑐𝑒21 + 𝑑𝑒22.
More generally, if 𝐴 = (𝑎𝑖𝑗) is an 𝑛 × 𝑛 matrix, then

𝐴 = 𝑎11𝑒11 + 𝑎12𝑒12 + ⋯ + 𝑎1𝑛𝑒1𝑛

+ 𝑎21𝑒21 + 𝑎22𝑒22 + ⋯ + 𝑎2𝑛𝑒2𝑛

+ ⋯
+ 𝑎𝑛1𝑒𝑛1 + 𝑎𝑛2𝑒𝑛2 + ⋯ + 𝑎𝑛𝑛𝑒𝑛𝑛

holds.
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Example

Let

𝐴 = (1
4

2
5

3
6).

Note that

𝑒12𝐴 = (0
0

1
0)(1

4
2
5

3
6) = (4

0
5
0

6
0),

𝑒21𝐴 = (0
1

0
0)(1

4
2
5

3
6) = (0

1
0
2

0
3),

𝑒11𝐴 = (1
0

0
0)(1

4
2
5

3
6) = (1

0
2
0

3
0),

𝑒22𝐴 = (0
0

0
1)(1

4
2
5

3
6) = (0

4
0
5

0
6).

Remark

More generally, if 𝐴 is a matrix with 𝑛 rows, then multiplying 𝐴 from the left by the matrix unit
𝑒𝑖𝑗 produces the matrix whose 𝑖-th row is equal to the 𝑗-th row of 𝐴, and all other rows are equal
to zero.

Exercise 3.61.  Let 𝑒𝑖𝑗, 𝑒𝑘𝑙 be matrix units of the same size. Show that 𝑒𝑖𝑗𝑒𝑘𝑙 is equal to the matrix
unit 𝑒𝑖𝑙 if 𝑗 = 𝑘, and is equal to the zero matrix if 𝑗 ≠ 𝑘, that is,

𝑒𝑖𝑗𝑒𝑘𝑙 = {𝑒𝑖𝑙 if 𝑗 = 𝑘,
0 if 𝑗 ≠ 𝑘.

§3.7.2 Matrix multiplication and linear combinations of rows

Remark

If 𝐴 is an 𝑚 × 𝑛 matrix and 𝐵 is an 𝑛 × 𝑝 matrix, then the matrix product 𝐴𝐵 is an 𝑚 × 𝑝 matrix.
Recall that the 𝑖-th column of 𝐴𝐵 is a linear combination of the columns of 𝐴 with coefficients
from the 𝑖-th column of 𝐵.
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Remark

Consider the matrices

𝐴 = (1
4

2
5

3
6),

𝐵 =
(
((
( 7

9
11

8
10
12)

))
).

Note that

𝐴𝐵 = (1 × 7 + 2 × 9 + 3 × 11
4 × 7 + 5 × 9 + 6 × 11

1 × 8 + 2 × 10 + 3 × 12
4 × 8 + 5 × 10 + 6 × 12) = ( 58

139
64
154).

Note that first row of 𝐴𝐵 is a linear combination of the rows of 𝐵 with coefficients from the first
row of 𝐴, and the second row of 𝐴𝐵 is a linear combination of the rows of 𝐵 with coefficients
from the second row of 𝐴. Indeed,

(1 × 7 + 2 × 9 + 3 × 11, 1 × 8 + 2 × 10 + 3 × 12)
= 1 × (7, 8) + 2 × (9, 10) + 3 × (11, 12),

(4 × 7 + 5 × 9 + 6 × 11, 4 × 8 + 5 × 10 + 6 × 12)
= 4 × (7, 8) + 5 × (9, 10) + 6 × (11, 12).

Remark

If 𝐴 is an 𝑚 × 𝑛 matrix and 𝐵 is an 𝑛 × 𝑝 matrix, then the matrix product 𝐴𝐵 is an 𝑚 × 𝑝 matrix,
and the 𝑖-th row of 𝐴𝐵 is a linear combination of the rows of 𝐵 with coefficients from the 𝑖-
th row of 𝐴. Thus, left multiplication by a matrix 𝐴 (in particular, by a square matrix 𝐴) can be
viewed as a transformation that transforms each row of 𝐵 into a linear combination of the rows
of 𝐵, and is often called a row operation.

Denote the set of 𝑚 × 𝑛 matrices with entries from ℝ by 𝑀𝑚,𝑛(ℝ).
Compare the following exercise with Exercise 3.34.

Exercise 3.62.  Let 𝐴 be an 𝑚 × 𝑛 matrix. Let 𝑉  be the set of row vectors which can be expressed as
a linear combination of the rows of 𝐴, that is,

𝑉 = {𝑣 ∈ 𝑀1,𝑛(ℝ) : 𝑣 = 𝑢𝑇 𝐴 for some 𝑢 ∈ ℝ𝑚}.

Show that for any 𝑢, 𝑣 ∈ 𝑉  and 𝑐, 𝑑 ∈ ℝ, the element 𝑐𝑢 + 𝑑𝑣 of 𝑀1,𝑛(ℝ) lies in 𝑉 .

Solution.  Let 𝑢, 𝑣 ∈ 𝑉  and 𝑐, 𝑑 ∈ ℝ. By the definition of 𝑉 , there exist 𝑥, 𝑦 ∈ ℝ𝑚 such that
𝑢 = 𝑥𝑇 𝐴,
𝑣 = 𝑦𝑇 𝐴.

Note that
𝑐𝑢 + 𝑑𝑣 = 𝑐𝑥𝑇 𝐴 + 𝑑𝑦𝑇 𝐴 = (𝑐𝑥𝑇 + 𝑑𝑦𝑇 )𝐴 = (𝑐𝑥 + 𝑑𝑦)𝑇 𝐴.

Since 𝑐𝑥 + 𝑑𝑦 ∈ ℝ𝑚, it follows that 𝑐𝑢 + 𝑑𝑣 ∈ 𝑉 . □
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§3.7.3 Elementary row operations and elementary matrices

Definition

An elementary row operation on a matrix is one of the following operations:
1. Interchanging two rows.
2. Multiplying a row by a nonzero scalar.
3. Adding a scalar multiple of one row to another row.

To study matrices that perform elementary row operations, we introduce the following special types
of matrices, called elementary matrices.

Definition

The elementary matrices are of three types, and these are obtained by performing the elementary
row operations on the identity matrix.

1. The matrix obtained by interchanging the 𝑖-th row and the 𝑗-th row of the identity matrix,
that is, it is given by

𝐼𝑛 − 𝑒𝑖𝑖 − 𝑒𝑗𝑗 + 𝑒𝑖𝑗 + 𝑒𝑗𝑖 with 𝑖 ≠ 𝑗,
2. The matrix obtained by multiplying the 𝑖-th row of the identity matrix by a nonzero scalar,

that is, it is given by
𝐼𝑛 + (𝜆 − 1)𝑒𝑖𝑖 with 𝜆 ≠ 0,

3. The matrix obtained by adding a scalar multiple of the 𝑗-th row of the identity matrix to its
𝑖-th row, that is, it is given by

𝐼𝑛 + 𝜆𝑒𝑖𝑗 with 𝑖 ≠ 𝑗.

Example

The elementary 2 × 2 matrices are as follows.

(0
1

1
0), (𝜆

0
0
1), (1

0
0
𝜆), (1

𝜆
0
1), (1

0
𝜆
1), where 𝜆 ≠ 0.

Example

The elementary 3 × 3 matrices are as follows.

(
((
(0

1
0

1
0
0

0
0
1)
))
),

(
((
(0

0
1

0
1
0

1
0
0)
))
),

(
((
(1

0
0

0
0
1

0
1
0)
))
),

(
((
(𝜆

0
0

0
1
0

0
0
1)
))
),

(
((
(1

0
0

0
𝜆
0

0
0
1)
))
),

(
((
(1

0
0

0
1
0

0
0
𝜆)
))
) where 𝜆 ≠ 0,

(
((
(1

𝜆
0

0
1
0

0
0
1)
))
),

(
((
(1

0
𝜆

0
1
0

0
0
1)
))
),

(
((
(1

0
0

𝜆
1
0

0
0
1)
))
),

(
((
(1

0
0

0
1
𝜆

0
0
1)
))
),

(
((
(1

0
0

0
1
0

𝜆
0
1)
))
),

(
((
(1

0
0

0
1
0

0
𝜆
1)
))
) where 𝜆 ≠ 0.
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Lemma 3.63.  Left multiplication by an elementary matrix on a matrix 𝐴 performs the corresponding
elementary row operation on the matrix 𝐴. More precisely, if 𝐸 is an elementary matrix obtained by
performing an elementary row operation on the identity matrix, then the matrix product 𝐸𝐴 is the
matrix obtained by performing the same elementary row operation on the matrix 𝐴.

A proof of the above is provided in Chapter 6.

Lemma 3.64.  Any elementary matrix is invertible, and its inverse is also an elementary matrix.

A proof of the above is provided in Chapter 6.

Remark

Note that the elementary row operations on a matrix 𝐴 are precisely the operations of left
multiplying 𝐴 by the elementary matrices. Thus, if 𝐸1, 𝐸2, …, 𝐸𝑘 are elementary matrices, then
the matrix

𝐸𝑘…𝐸2𝐸1𝐴
is obtained by performing a sequence of elementary row operations on the matrix 𝐴. Moreover,
any matrix that can be obtained from 𝐴 by performing a sequence of elementary row operations
can be expressed in the form

𝐸𝐴,
where 𝐸 is an invertible matrix which is a product of elementary matrices.

§3.7.4 Row reduction of a matrix

Definition

Multiplying a matrix 𝐴 by a matrix 𝐸 from the left is called row reduction of the matrix 𝐴 if 𝐸
is a product of elementary matrices. In other words, row reduction of a matrix 𝐴 is the process
of performing a sequence of elementary row operations on the matrix 𝐴. It is also known as
Gaussian elimination.
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Example

Consider the matrix

𝐴 =
(
((
( 1

2
−2

2
3
0

−1
−1
−3

−4
−11
22 )

))
).

We perform row reduction on the matrix 𝐴 as follows.
1. First, we add −2 times the first row to the second row, and add 2 times the first row to the

third row, to obtain the matrix

(
((
(1

0
0

2
−1
4

−1
1

−5

−4
−3
14)

))
).

2. Next, we add 4 times the second row to the third row, to obtain the matrix

(
((
(1

0
0

2
−1
0

−1
1

−1

−4
−3
2 )

))
).

3. Finally, we multiply the second row by −1, and multiply the third row by −1, to obtain the
matrix

(
((
(1

0
0

2
1
0

−1
−1
1

−4
3

−2)
))
).

We now illustrate how row reduction can be used to solve a system of linear equations.

Exercise 3.65.  Solve the system of linear equations in five variables 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5:
𝑥1 + 2𝑥2 − 𝑥3 + 4𝑥4 + 𝑥5 = 7,

2𝑥1 + 3𝑥2 + 𝑥3 + 5𝑥4 + 2𝑥5 = 14,
−𝑥1 + 4𝑥2 − 2𝑥3 − 3𝑥4 + 𝑥5 = −10.

(12)

Solution.  The above system of equations can be expressed in matrix form as

(
((
( 1

2
−1

2
3
4

−1
1

−2

4
5

−3

1
2
1)
))
)

(
((
((
((
((
(𝑥1

𝑥2
𝑥3
𝑥4
𝑥5)

))
))
))
))
)

=
(
((
( 7

14
−10)

))
).

We perform row reduction on the augmented matrix

(𝐴 | 𝑏) =
(
((
( 1

2
−1

2
3
4

−1
1

−2

4
5

−3

1
2
1

7
14

−10)
))
).

1. First, we add −2 times the first row to the second row, and add 1 times the first row to the third
row, to obtain the matrix

(
((
(1

0
0

2
−1
6

−1
3

−3

4
−3
1

1
0
2

7
0

−3)
))
).

2. Next, we add 6 times the second row to the third row, to obtain the matrix
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(
((
(1

0
0

2
−1
0

−1
3
15

4
−3
−17

1
0
2

7
0

−3)
))
).

3. Finally, we multiply the second row by −1, and multiply the third row by 1
15 , to obtain the matrix

(
(((
(1

0
0

2
1
0

−1
−3
1

4
3

−17
15

1
0
2
15

7
0

−1
5)
)))
)

.

The solutions to the system of equations Equation 12 are precisely the solutions to the system of
equations

(
(((
(1

0
0

2
1
0

−1
−3
1

4
3

−17
15

1
0
2
15)

)))
)

(
((
((
((
((
(𝑥1

𝑥2
𝑥3
𝑥4
𝑥5)

))
))
))
))
)

=

(
(((
( 7

0
−1

5)
)))
)

.

Hence, the solutions of the given system of equations are precisely the elements 

(
((
((
(

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5)

))
))
)

 of ℝ5 satisfying

𝑥1 + 2𝑥2 − 𝑥3 + 4𝑥4 + 𝑥5 = 7,
𝑥2 − 3𝑥3 + 3𝑥4 = 0,

𝑥3 − 17
15

𝑥4 + 2
15

𝑥5 = −1
5
,

or equivalently,
𝑥1 = 7 − 2𝑥2 + 𝑥3 − 4𝑥4 − 𝑥5,
𝑥2 = 3𝑥3 − 3𝑥4,

𝑥3 = −1
5

+ 17
15

𝑥4 − 2
15

𝑥5,

which is equivalent to

𝑥3 = −1
5

+ 17
15

𝑠 − 2
15

𝑡,

𝑥2 = 3(−1
5

+ 17
15

𝑠 − 2
15

𝑡) − 3𝑠

= −3
5

+ 51
15

𝑠 − 2
5
𝑡 − 3𝑠

= −3
5

+ 2
5
𝑠 − 2

5
𝑡

𝑥1 = 7 − 2(−3
5

+ 2
5
𝑠 − 2

5
𝑡) + (−1

5
+ 17

15
𝑠 − 2

15
𝑡) − 4𝑠 − 𝑡

= 7 + 6
5

− 4
5
𝑠 + 4

5
𝑡 − 1

5
+ 17

15
𝑠 − 2

15
𝑡 − 4𝑠 − 𝑡

= 8 − 11
3

𝑠 − 1
3
𝑡.

In other words, the set of solutions of the given system of equations is equal to
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{(8 − 11
3

𝑠 − 1
3
𝑡, −3

5
+ 2

5
𝑠 − 2

5
𝑡, −1

5
+ 17

15
𝑠 − 2

15
𝑡, 𝑠, 𝑡)

𝑇

: 𝑠, 𝑡 ∈ ℝ} .

□

Theorem 3.66.  Let 𝑏 denote the vector 

(
((
(

𝑏1
𝑏2
⋮

𝑏𝑚)
))
), and let 𝐴 be an 𝑚 × 𝑛 matrix. Let 𝐸 be a product of

elementary matrices. Write 𝑋 =
(
((
(

𝑥1
𝑥2
⋮

𝑥𝑛)
))
). The solutions to the system of equations

𝐴𝑋 = 𝑏
are precisely the solutions to the system of equations

𝐴′𝑋 = 𝑏′,
where

𝑏′ = 𝐸𝑏, 𝐴′ = 𝐸𝐴.

A proof of the above is provided in Chapter 6.
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Remark

Note that while solving Equation 12, we performed row reduction on the augmented matrix

(𝐴 | 𝑏) =
(
((
( 1

2
−1

2
3
4

−1
1

−2

4
5

−3

1
2
1

7
14

−10)
))
),

and obtained the matrix

(
(((
(1

0
0

2
1
0

−1
−3
1

4
3

−17
15

1
0
2
15

7
0

−1
5)
)))
)

.

Note that one can perform further row reductions. Adding the third row to the first row, and
adding 3 times the third row to the second row, we obtain the matrix

(
((
((
(1

0
0

2
1
0

0
0
1

43
15

−2
5

−17
15

17
15
2
5
2
15

34
5

−3
5

−1
5)
))
))
)

.

Next, we add −2 times the second row to the first row, to obtain the matrix

(
((
((
(1

0
0

0
1
0

0
0
1

11
3

−2
5

−17
15

1
3
2
5
2
15

8
−3

5
−1

5)
))
))
)

.

This shows that the augmented matrix corresponding to the system of equations Equation 12 can
be row reduced to the matrix

(
((
((
(1

0
0

0
1
0

0
0
1

11
3

−2
5

−17
15

1
3
2
5
2
15

8
−3

5
−1

5)
))
))
)

,

which shows that the solutions of the system of equations Equation 12 are precisely the elements
of the set

{(8 − 11
3

𝑠 − 1
3
𝑡, −3

5
+ 2

5
𝑠 − 2

5
𝑡, −1

5
+ 17

15
𝑠 − 2

15
𝑡, 𝑠, 𝑡)

𝑇

: 𝑠, 𝑡 ∈ ℝ} .

Exercise 3.67.  Solve the system of equations in the variables 𝑥1, 𝑥2, 𝑥3:
𝑥1 + 2𝑥2 − 𝑥3 = 1,

2𝑥1 + 3𝑥2 + 𝑥3 = 2,
−𝑥1 + 4𝑥2 − 2𝑥3 = −3,

3𝑥1 − 𝑥2 + 4𝑥3 = 4,
5𝑥1 + 2𝑥2 + 3𝑥3 = 5.

Solution.  The above system of equations can be expressed in matrix form as
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(
((
((
((
((
( 1

2
−1
3
5

2
3
4

−1
2

−1
1

−2
4
3 )

))
))
))
))
)

(
((
(𝑥1

𝑥2
𝑥3)

))
) =

(
((
((
((
((
( 1

2
−3
4
5 )

))
))
))
))
)

.

We perform row reduction on the augmented matrix

(𝐴 | 𝑏) =

(
((
((
((
((
( 1

2
−1
3
5

2
3
4

−1
2

−1
1

−2
4
3

1
2

−3
4
5 )

))
))
))
))
)

.

1. First, we add −2 times the first row to the second row, add 1 times the first row to the third row,
add −3 times the first row to the fourth row, and add −5 times the first row to the fifth row, to
obtain the matrix

(
((
((
((
((
(1

0
0
0
0

2
−1
6

−7
−8

−1
3

−3
7
8

1
0

−2
1
0 )

))
))
))
))
)

.

2. Next, we add 6 times the second row to the third row, add −7 times the second row to the fourth
row, and add −8 times the second row to the fifth row, to obtain the matrix

(
((
((
((
((
(1

0
0
0
0

2
−1
0
0
0

−1
3
15

−14
−16

1
0

−2
1
0 )

))
))
))
))
)

.

3. Finally, we multiply the second row by −1, multiply the third row by 1
15 , multiply the fourth row

by − 1
14 , and multiply the fifth row by − 1

16 , to obtain the matrix

(
((
((
((
((
((

1
0
0
0
0

2
1
0
0
0

−1
−3
1
1
1

1
0

− 2
15

− 1
14
0 )

))
))
))
))
))

.

Note that the above matrix corresponds to the system of equations

(
((
((
((
((
(1

0
0
0
0

2
1
0
0
0

−1
−3
1
1
1 )

))
))
))
))
)

(
((
(𝑥1

𝑥2
𝑥3)

))
) =

(
((
((
((
((
((

1
0

− 2
15

1
14
0 )

))
))
))
))
))

,

which has no solutions. Hence, the given system of equations has no solutions. □

Exercise 3.68.  Solve the system of equations in the variables 𝑥1, 𝑥2, 𝑥3, 𝑥4:
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𝑥1 + 2𝑥2 − 𝑥3 + 4𝑥4 = 5,
2𝑥1 + 3𝑥2 + 𝑥3 + 5𝑥4 = 8,

−𝑥1 + 4𝑥2 − 2𝑥3 − 3𝑥4 = −4,
3𝑥1 − 𝑥2 + 4𝑥3 + 2𝑥4 = 7.

Solution.  The above system of equations can be expressed in matrix form as

(
((
((
((

1
2

−1
3

2
3
4

−1

−1
1

−2
4

4
5

−3
2 )

))
))
))

(
((
((
((

𝑥1
𝑥2
𝑥3
𝑥4)

))
))
))

=

(
((
((
((

5
8

−4
7 )

))
))
))

.

We perform row reduction on the augmented matrix

(𝐴 | 𝑏) =

(
((
((
((

1
2

−1
3

2
3
4

−1

−1
1

−2
4

4
5

−3
2

5
8

−4
7 )

))
))
))

.

1. First, we add −2 times the first row to the second row, add 1 times the first row to the third row,
and add −3 times the first row to the fourth row, to obtain the matrix

(
((
((
((

1
0
0
0

2
−1
6

−7

−1
3

−3
7

4
−3
1

−10

5
−2
1

−8)
))
))
))

.

2. Next, we add 6 times the second row to the third row, and add −7 times the second row to the
fourth row, to obtain the matrix

(
((
((
((

1
0
0
0

2
−1
0
0

−1
3
15

−14

4
−3
−17
11

5
−2
−11
6 )

))
))
))

.

3. Multiplying the second row by −1, the third row by 1
15 , and the fourth row by − 1

14 , we obtain
the matrix

(
((
((
((
(1

0
0
0

2
1
0
0

−1
−3
1
1

4
3

−17
15

−11
14

5
2

−11
15

−3
7 )
))
))
))
)

.

4. Adding −1 times the third row to the fourth row (that is, subtracting the third row from the
fourth row), we obtain the matrix

(
((
((
((
(1

0
0
0

2
1
0
0

−1
−3
1
0

4
3

−17
15

73
210

5
2

−11
15

32
105 )

))
))
))
)

.

5. Multiplying the fourth row by 210
73 , we obtain the matrix

83



MTH102

(
((
((
((
(1

0
0
0

2
1
0
0

−1
−3
1
0

4
3

−17
15
1

5
2

−11
15

64
73 )

))
))
))
)

.

6. Adding −4 times the fourth row to the first row, and adding −3 times the fourth row to the
second row, and adding 17

15  times the fourth row to the third row, we obtain the matrix

(
((
((
((
((

1
0
0
0

2
1
0
0

−1
−3
1
0

0
0
0
1

109
73

−46
73

19
73
64
73 )

))
))
))
))

7. Adding 3 times the third row to the second row, and adding 1 times the third row to the first row,
we obtain the matrix

(
((
((
((
((

1
0
0
0

2
1
0
0

0
0
1
0

0
0
0
1

128
73
11
73
19
73
64
73 )

))
))
))
))

8. Adding −2 times the second row to the first row, we obtain the matrix

(
((
((
((
((

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

106
73
11
73
19
73
64
73 )

))
))
))
))

.

Hence, the given system of equations admits the unique solution

(
((
((
((
((

106
73
11
73
19
73
64
73 )

))
))
))
))

.

□

Exercise 3.69.  Solve the system of equations in the variables 𝑥1, 𝑥2, 𝑥3:
𝑥1 + 2𝑥2 − 5𝑥3 = 20,

2𝑥1 + 5𝑥2 − 7𝑥3 = 33,
−𝑥1 − 2𝑥2 + 4𝑥3 = −17.

Solution.  The above system of equations can be expressed in matrix form as

(
((
( 1

2
−1

2
5

−2

−5
−7
4 )

))
)

(
((
(𝑥1

𝑥2
𝑥3)

))
) =

(
((
( 20

33
−17)

))
).

We perform row reduction on the augmented matrix

(𝐴 | 𝑏) =
(
((
( 1

2
−1

2
5

−2

−5
−7
4

20
33

−17)
))
).
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1. First, we add −2 times the first row to the second row, to obtain the matrix

(
((
( 1

0
−1

2
1

−2

−5
3
4

20
−7
−17)

))
).

2. Adding 1 times the first row to the third row, we obtain the matrix

(
((
(1

0
0

2
1
0

−5
3

−1

20
−7
3 )

))
).

3. Next, we multiply the third row by −1, to obtain the matrix

(
((
(1

0
0

2
1
0

−5
3
1

20
−7
−3)

))
).

4. Adding −3 times the third row to the second row, we obtain the matrix

(
((
(1

0
0

2
1
0

−5
0
1

20
2

−3)
))
).

5. Adding 5 times the third row to the first row, we obtain the matrix

(
((
(1

0
0

2
1
0

0
0
1

5
2

−3)
))
).

6. Finally, adding −2 times the second row to the first row, we obtain the matrix

(
((
(1

0
0

0
1
0

0
0
1

1
2

−3)
))
).

Hence, the given system of equations admits the unique solution

(
((
( 1

2
−3)

))
) .

□

Exercise 3.70.  Let 𝐴, 𝐵 be square matrices of the same size. Suppose that 𝐴 is invertible and 𝐴𝐵 =
𝐼  holds. Show that 𝐵 is invertible and 𝐵 = 𝐴−1.

Exercise 3.71.  Let 𝐴, 𝐵 be square matrices of the same size. Suppose that 𝐴 is invertible and 𝐵𝐴 =
𝐼  holds. Show that 𝐵 is invertible and 𝐵 = 𝐴−1.

Compare the above two exercises with Exercise 3.27, Exercise 3.87.

Exercise 3.72.  Let 𝐴, 𝐵 be matrices, suppose that the number of columns of 𝐴 is equal to the number
of rows of 𝐵. Suppose 𝐴𝐵 has at least two columns. Let 𝐶 be the matrix obtained from 𝐴𝐵 by
removing the last column of 𝐴𝐵. Show that there exists a matrix 𝐵′ such that 𝐶 = 𝐴𝐵′.

Exercise 3.73.  Let 𝐴, 𝐵 be matrices, suppose that the number of columns of 𝐴 is equal to the number
of rows of 𝐵. Suppose 𝐴𝐵 has at least two rows. Let 𝐶 be the matrix obtained from 𝐴𝐵 by removing
the last row of 𝐴𝐵. Show that there exists a matrix 𝐴′ such that 𝐶 = 𝐴′𝐵.

85



MTH102

Remark 3.74.  Note that while solving the above system of equations, we performed row reduction
on the augmented matrix

(𝐴 | 𝑏) =
(
((
( 1

2
−1

2
5

−2

−5
−7
4

20
33

−17)
))
),

and obtained the matrix

(
((
(1

0
0

0
1
0

0
0
1

1
2

−3)
))
).

This shows that multiplying the matrix

𝐴 =
(
((
( 1

2
−1

2
5

−2

−5
−7
4 )

))
)

from the left by the product of some elementary matrices yields the identity matrix 𝐼3, which implies
that the matrix 𝐴 is invertible. Indeed, if 𝐸𝐴 = 𝐼3 where 𝐸 is the product of some elementary
matrices, then using that 𝐸 is invertible, it follows that 𝐴 = 𝐸−1𝐸𝐴 = 𝐸−1𝐼3 = 𝐸−1, and hence
𝐴𝐸 = 𝐼3, which shows that 𝐴 is invertible, and 𝐴−1 is equal to 𝐸.
The elementary matrices used to row reduce the matrix 𝐴 to 𝐼3 are

𝐸1 =
(
((
( 1

−2
0

0
1
0

0
0
1)
))
), 𝐸2 =

(
((
(1

0
1

0
1
0

0
0
1)
))
), 𝐸3 =

(
((
(1

0
0

0
1
0

0
0

−1)
))
),

𝐸4 =
(
((
(1

0
0

0
1
0

0
−3
1 )

))
), 𝐸5 =

(
((
(1

0
0

0
1
0

5
0
1)
))
), 𝐸6 =

(
((
(1

0
0

−2
1
0

0
0
1)
))
).

Note that 𝐸𝐴 = 𝐼3 holds for
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𝐸 = 𝐸6𝐸5𝐸4𝐸3𝐸2𝐸1

=
(
((
(1

0
0

−2
1
0

0
0
1)
))
)

(
((
(1

0
0

0
1
0

5
0
1)
))
)

(
((
(1

0
0

0
1
0

0
−3
1 )

))
)

(
((
(1

0
0

0
1
0

0
0

−1)
))
)

(
((
(1

0
1

0
1
0

0
0
1)
))
)

(
((
( 1

−2
0

0
1
0

0
0
1)
))
)

=
(
((
(1

0
0

−2
1
0

0
0
1)
))
)

(
((
(1

0
0

0
1
0

5
0
1)
))
)

(
((
(1

0
0

0
1
0

0
−3
1 )

))
)

(
((
(1

0
0

0
1
0

0
0

−1)
))
)

(
((
( 1

−2
1

0
1
0

0
0
1)
))
)

=
(
((
(1

0
0

−2
1
0

0
0
1)
))
)

(
((
(1

0
0

0
1
0

5
0
1)
))
)

(
((
(1

0
0

0
1
0

0
−3
1 )

))
)

(
((
( 1

−2
−1

0
1
0

0
0

−1)
))
)

=
(
((
(1

0
0

−2
1
0

0
0
1)
))
)

(
((
(1

0
0

0
1
0

5
0
1)
))
)

(
((
( 1

1
−1

0
1
0

0
3

−1)
))
)

=
(
((
(1

0
0

−2
1
0

0
0
1)
))
)

(
((
(−4

1
−1

0
1
0

−5
3

−1)
))
)

=
(
((
(−6

1
−1

−2
1
0

−11
3

−1 )
))
).

This yields

𝐴−1 = 𝐸 =
(
((
(−6

1
−1

−2
1
0

−11
3

−1 )
))
).

Exercise 3.75.  Solve the system of equations in the variables 𝑥1, 𝑥2:
2𝑥1 − 3𝑥2 = 7,

−4𝑥1 + 5𝑥2 = −11.

Solution.  The above system of equations can be expressed in matrix form as

( 2
−4

−3
5 )(𝑥1

𝑥2
) = ( 7

−11).

We perform row reduction on the augmented matrix

(𝐴 | 𝑏) = ( 2
−4

−3
5

7
−11).

1. First, we add 2 times the first row to the second row, to obtain the matrix

(2
0

−3
−1

7
3).

2. Next, we multiply the second row by −1, to obtain the matrix

(2
0

−3
1

7
−3).

3. Add 3 times the second row to the first row to obtain the matrix

(2
0

0
1

−2
−3).
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4. Finally, we multiply the first row by 12 , to obtain the matrix

(1
0

0
1

−1
−3).

Hence, the given system of equations admits the unique solution

(−1
−3) .

□

Remark

Let 𝐴 denote the matrix

( 2
−4

−3
5 ).

Note that 𝐸𝐴 = 𝐼2 holds where 𝐸 is the product of some elementary matrices. More specifically,
𝐸𝐴 = 𝐼2 holds for

𝐸 = 𝐸4𝐸3𝐸2𝐸1,
where

𝐸1 = (1
2

0
1), 𝐸2 = (1

0
0

−1), 𝐸3 = (1
0

3
1), 𝐸4 = (

1
2
0

0
1
).

One can argue that 𝐴 is invertible, and that
𝐴−1 = 𝐸

= 𝐸4𝐸3𝐸2𝐸1

= (
1
2
0

0
1
)(1

0
3
1)(1

0
0

−1)(1
2

0
1)

= (
1
2
0

3
2
1
)( 1

−2
0

−1)

= (−5
2

−2
−3

2
−1

).

§3.7.5 Row echelon form

Definition

A matrix is said to be in row echelon form if the following conditions hold.
1. The first nonzero entry in each nonzero row is 1 (called a leading 1 or a pivot).
2. The leading 1 in each nonzero row is to the right of the leading 1 in the previous row (if any).
3. All zero rows (if any) are at the bottom of the matrix.
4. If a column contains a pivot, then all its entries above the pivot are zero.
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Example

The following matrices are in row echelon form:

(
((
((
((
((
(0

0
0
0
0

1
0
0
0
0

−5
0
0
0
0

0
1
0
0
0

0
0
0
0
0

0
0
1
0
0

0
0
0
1
0

0
1
0
2
0

4
0
0
0
0)
))
))
))
))
)

, (0
0

1
0).

The following matrices are not in row echelon form:

(
((
(1

0
0

2
0
1

0
1
3)
))
), (1

3
2
4).

Fact 3.76.  Through a sequence of elementary row operations, any matrix can be transformed into a
matrix in row echelon form.

Exercise 3.77.  Transform the matrix

(
((
((
((
((
(0

1
0
0
0

2
−1
0
3
3

−3
4
0

−5
−5

0
0
1
0

−1

0
5

−2
1
2 )

))
))
))
))
)

into a matrix in row echelon form using elementary row operations.

Solution.  We perform row reduction on the matrix

𝐴 =

(
((
((
((
((
(0

1
0
0
0

2
−1
0
3
0

−3
4
0

−5
0

0
0
1
0
0

0
5

−2
1
0 )

))
))
))
))
)

.

1. Interchanging the first row and the second row, we obtain the matrix

(
((
((
((
((
(1

0
0
0
0

−1
2
0
3
0

4
−3
0

−5
0

0
0
1
0
0

5
0

−2
1
0 )

))
))
))
))
)

.

2. Next, multiplying the second row by 12 , we obtain the matrix

(
((
((
((
((
(1

0
0
0
0

−1
1
0
3
0

4
−3

2
0

−5
0

0
0
1
0
0

5
0

−2
1
0 )

))
))
))
))
)

.

3. Adding −3 times the second row to the fourth row, we obtain the matrix
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(
((
((
((
((
((

1
0
0
0
0

−1
1
0
0
0

4
−3

2
0

−1
2

0

0
0
1
0
0

5
0

−2
1
0 )

))
))
))
))
))

.

4. Interchanging the third row and the fourth row, we obtain the matrix

(
((
((
((
((
((

1
0
0
0
0

−1
1
0
0
0

4
−3

2
−1

2
0
0

0
0
0
1
0

5
0
1

−2
0 )

))
))
))
))
))

.

5. Multiplying the third row by −2, we obtain the matrix

(
((
((
((
((
(1

0
0
0
0

−1
1
0
0
0

4
−3

2
1
0
0

0
0
0
1
0

5
0

−2
−2
0 )

))
))
))
))
)

.

6. Adding −4 times the third row to the first row, and adding 32  times the third row to the second
row, we obtain the matrix

(
((
((
((
((
(1

0
0
0
0

−1
1
0
0
0

0
0
1
0
0

0
0
0
1
0

13
−3
−2
−2
0 )

))
))
))
))
)

.

7. Finally, adding the second row to the first row, we obtain the matrix

(
((
((
((
((
(1

0
0
0
0

0
1
0
0
0

0
0
1
0
0

0
0
0
1
0

10
−3
−2
−2
0 )

))
))
))
))
)

,

which is in row echelon form.
□

Exercise 3.78.  Solve the system of equations in the variables 𝑥1, 𝑥2, 𝑥3, 𝑥4:
2𝑥2 − 3𝑥3 = 0,

𝑥1 − 𝑥2 + 4𝑥3 = 5,
𝑥4 = −2,

3𝑥2 − 5𝑥3 = 1,
3𝑥2 − 5𝑥3 − 𝑥4 = 2.

Solution.  The above system of equations can be expressed in matrix form as
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(
((
((
((
((
(0

1
0
0
0

2
−1
0
3
3

−3
4
0

−5
−5

0
0
1
0

−1)
))
))
))
))
)

(
((
((
((

𝑥1
𝑥2
𝑥3
𝑥4)

))
))
))

=

(
((
((
((
((
( 0

5
−2
1
2 )

))
))
))
))
)

.

We perform row reduction on the augmented matrix. Adding the third row to the fifth row, we obtain
the matrix

(
((
((
((
((
(0

1
0
0
0

2
−1
0
3
3

−3
4
0

−5
−5

0
0
1
0
0

0
5

−2
1
0 )

))
))
))
))
)

.

Adding −1 times the fourth row to the fifth row, we obtain the matrix

(
((
((
((
((
(0

1
0
0
0

2
−1
0
3
0

−3
4
0

−5
0

0
0
1
0
0

0
5

−2
1

−1)
))
))
))
))
)

.

Multiplying the fifth row by −1, we obtain the matrix

(
((
((
((
((
(0

1
0
0
0

2
−1
0
3
0

−3
4
0

−5
0

0
0
1
0
0

0
5

−2
1
1 )

))
))
))
))
)

.

Performing several more elementary row operations, as done in the previous exercise, yields the matrix

(
((
((
((
((
(1

0
0
0
0

0
1
0
0
0

0
0
1
0
0

0
0
0
1
0

10
−3
−2
−2
1 )

))
))
))
))
)

.

The corresponding system of equations has no solution, since the last column of the above matrix
contains a pivot. □

Fact 3.79.  Let
𝑀 = (𝐴 𝑏)

be the matrix obtained by augmenting a matrix 𝐴 with a column vector 𝑏. If 𝑀  is in its row echelon
form, then the following statements are equivalent.

1. The system of equations 𝐴𝑋 = 𝑏 admits a solution.
2. The last column of the augmented matrix 𝑀  contains no pivot.

If one (and hence, both) of the above statements holds, then the solutions to the system of equations
𝐴𝑋 = 𝑏 can be obtained by assigning arbitrary values to the variables corresponding to the non-
pivot columns of the augmented matrix 𝑀 , and then solving for the variables corresponding to the
pivot columns of 𝑀 .

A pivot column of a matrix in row echelon form is a column that contains a pivot.
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Definition

If 𝑀 = (𝐴 | 𝑏) denotes the augmented matrix of a system of equations 𝐴𝑋 = 𝑏, and 𝑀 ′ =
(𝐴′ | 𝑏′) is the matrix in row echelon form obtained by performing a sequence of elementary
row operations on 𝑀 , then a variable corresponding to a non-pivot column of 𝐴′ is called a free
variable.

Recall that we obtained the following matrices earlier while reducing some augmented matrices. The
first and the third matrices are in row echelon form. The second matrix is not in row echelon form.

(
((
((
(1

0
0

0
1
0

0
0
1

11
3

−2
5

−17
15

1
3
2
5
2
15

8
−3

5
−1

5)
))
))
)

,

(
((
((
((
((
((

1
0
0
0
0

2
1
0
0
0

−1
−3
1
1
1

1
0

− 2
15

− 1
14
0 )

))
))
))
))
))

,
(
((
(1

0
0

0
1
0

0
0
1

1
2

−3)
))
).

Fact 3.80.  Every homogeneous system of linear equations with more variables than equations has at
least one free variable, and hence, admits infinitely many solutions. That is, if 𝐴 is an 𝑚 × 𝑛 matrix
with 𝑚 < 𝑛, then the homogeneous system of equations 𝐴𝑋 = 0 admits a nonzero solution, and
hence, infinitely many solutions.

A proof of the above is provided in Chapter 6.

Fact 3.81.  Let 𝐴 be an 𝑛 × 𝑛 matrix. The following statements are equivalent.
1. The matrix 𝐴 can be transformed into the identity matrix 𝐼𝑛 by performing a sequence of

elementary row operations.
2. The matrix 𝐴 is a product of elementary matrices.
3. The matrix 𝐴 is invertible.
4. The system of equations 𝐴𝑋 = 𝑏 admits a unique solution for every column vector 𝑏 having

𝑛 entries.

A proof of the above is provided in Chapter 6.

Exercise 3.82.  Let 𝐴 be a square matrix. If a sequence of elementary row operations can be performed
on 𝐴 to obtain the identity matrix, then 𝐴 is invertible, and the same sequence of elementary row
operations, when performed on the identity matrix, yields the inverse of 𝐴. Indeed, if there exists a
sequence of elementary matrices

𝐸1, 𝐸2, …, 𝐸𝑘

such that
𝐸𝑘…𝐸2𝐸1𝐴 = 𝐼,

then show that 𝐴 is invertible, and that
𝐴−1 = 𝐸𝑘…𝐸2𝐸1𝐼.

Definition

The rank of a matrix 𝐴 is the number of pivots in the row echelon form of 𝐴. The rank of a matrix
𝐴 is denoted by rk(𝐴).

Exercise 3.83.  Find the rank of the matrix
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(
((
((
((
((
((

1
0
0
0
0

2
1
0
0
0

−1
−3
1
1
1

1
0

− 2
15

− 1
14
0 )

))
))
))
))
))

.

Exercise 3.84.  If 𝐴 is an 𝑚 × 𝑛 matrix, then show that
rk(𝐴) ≤ min{𝑚, 𝑛}.

Exercise 3.85.  If 𝐴 is an 𝑛 × 𝑛 matrix, then show that the following statements are equivalent.
1. The matrix 𝐴 is invertible.
2. The rank of 𝐴 is 𝑛.

Solution.  Using Fact 3.81, it follows that following statements are equivalent.
1. The matrix 𝐴 is invertible.
2. The matrix 𝐴 can be transformed into the identity matrix by performing a sequence of elementary

row operations.
3. The row echelon form of 𝐴 has 𝑛 pivots.
4. The rank of 𝐴 is equal to 𝑛.

□

Exercise 3.86.  If 𝐴 is an invertible square matrix, then show that 𝐴−1 is also invertible, and that

(𝐴−1)−1 = 𝐴.

Solution.  Suppose 𝐴 is an invertible square matrix. We have
𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼.

This shows that 𝐴−1 is also invertible, and that

(𝐴−1)−1 = 𝐴.

□

Example

The matrix

(
((
(1

0
0

0
0
0

0
0
1)
))
)

is not in row echelon form, since the second row is a zero row, but is not at the bottom of the
matrix. The rank of this matrix is 2, since its row echelon form is

(
((
(1

0
0

0
0
0

0
1
0)
))
).

Exercise 3.87.  If 𝐴, 𝐵 are square matrices of the same size satisfying 𝐵𝐴 = 𝐼 , then show that the
matrices 𝐴, 𝐵 are invertible, and are the inverses of each other.

Compare the above with Exercise 3.70, Exercise 3.71, Exercise 3.27.
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Remark

Does considering the row echelon form of 𝐵 help?

Solution.  Let 𝐸 be a product of elementary matrices such that 𝐸𝐵 is in row echelon form. Note that
(𝐸𝐵)𝐴 = 𝐸

holds. Since 𝐸𝐵 is in row echelon form, it has a pivot in every nonzero row. If 𝐸𝐵 has a zero row, then
the corresponding row of 𝐸 is also zero, which is a contradiction. This shows that 𝐸𝐵 has no zero
row, and hence, has a pivot in every row. This implies that 𝐸𝐵 is the identity matrix¹¹. This shows
that 𝐵 is invertible, and that 𝐵−1 = 𝐸. Moreover, we obtain 𝐴 = 𝐸, which shows that 𝐴 is invertible,
and that

𝐴−1 = 𝐸−1 = (𝐵−1)−1 = 𝐵

holds. □

§3.8 Systems of linear equations in three variables and determinants of 3 × 3 matri9
ces

Exercise 3.88.  Solve the system of equations in the variables 𝑥, 𝑦, 𝑧:
𝑥 + 2𝑦 + 3𝑧 = 1,

4𝑥 + 5𝑦 + 6𝑧 = 2,
7𝑥 + 8𝑦 + 10𝑧 = 3.

¹¹Why?
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Remark

If the matrix

𝐴 =
(
((
(1

4
7

2
5
8

3
6
10)

))
)

is invertible, then the above system of equations admits a unique solution, which can be found by
multiplying 𝐴−1 from the left to the matrix form of the system of equations, that is, multiplying

𝐴
(
((
(𝑥

𝑦
𝑧)
))
) =

(
((
(1

2
3)
))
)

from the left by 𝐴−1, provided 𝐴−1 exists. Note that

1
3
(
((
(−2

−2
3

−4
11
−6

3
−6
3 )

))
)𝐴 = 1

3
(
((
(−2

−2
3

−4
11
−6

3
−6
3 )

))
)

(
((
(1

4
7

2
5
8

3
6
10)

))
) = 𝐼3,

and

𝐴 ⋅ 1
3
(
((
(−2

−2
3

−4
11
−6

3
−6
3 )

))
) = 1

3
(
((
(1

4
7

2
5
8

3
6
10)

))
)

(
((
(−2

−2
3

−4
11
−6

3
−6
3 )

))
) = 𝐼3.

This shows that 𝐴 is invertible, and that

𝐴−1 = 1
3
(
((
(−2

−2
3

−4
11
−6

3
−6
3 )

))
).

Definition

Let 𝐴 be a 3 × 3 matrix. Write 𝐴 = (
𝑎1
𝑎2
𝑎3

𝑏1
𝑏2
𝑏3

𝑐1
𝑐2
𝑐3

). The determinant of 𝐴 is denoted by det(𝐴),

and is defined to be
det(𝐴) ≔ 𝑎1(𝑏2𝑐3 − 𝑏3𝑐2) − 𝑏1(𝑎2𝑐3 − 𝑎3𝑐2) + 𝑐1(𝑎2𝑏3 − 𝑎3𝑏2).

The adjoint of 𝐴 is denoted by adj(𝐴), and is defined to be the matrix

adj(𝐴) ≔
(
((
( 𝑏2𝑐3 − 𝑏3𝑐2

−(𝑐3𝑎2 − 𝑐2𝑎3)
𝑎2𝑏3 − 𝑎3𝑏2

−(𝑏1𝑐3 − 𝑏3𝑐1)
𝑐3𝑎1 − 𝑐1𝑎3

−(𝑎1𝑏3 − 𝑎3𝑏1)

𝑏1𝑐2 − 𝑏2𝑐1
−(𝑐2𝑎1 − 𝑐1𝑎2)

𝑎1𝑏2 − 𝑎2𝑏1 )
))
).

Exercise 3.89.  Show that the determinant of the identity matrix 𝐼3 is 1, and that
adj(𝐼3) = 𝐼3.

Exercise 3.90.  Let

𝐴 =
(
((
(𝑎

0
0

0
𝑏
0

0
0
𝑐)
))
),

where 𝑎, 𝑏, 𝑐 are scalars. Show that det(𝐴) = 𝑎𝑏𝑐, and that
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adj(𝐴) =
(
((
(𝑏𝑐

0
0

0
𝑐𝑎
0

0
0
𝑎𝑏)

))
).

Exercise 3.91.  Let

𝐴 =
(
((
( 1

−4
7

−5
8
2

6
−9
10)

))
).

Find det(𝐴) and adj(𝐴).

Exercise 3.92.  Let

𝐴 =
(
((
(2

3
4

1
2
1

−1
1
2 )

))
).

Find det(𝐴) and adj(𝐴).

Definition

For a 2 × 2 matrix

𝐴 = (𝑎
𝑐

𝑏
𝑑),

its adjoint is denoted by adj(𝐴), and is defined to be

adj(𝐴) ≔ ( 𝑑
−𝑐

−𝑏
𝑎 ).

Exercise 3.93.  Let

𝐴 = (𝑎
0

0
𝑏)

where 𝑎, 𝑏 are scalars. Show that det(𝐴) = 𝑎𝑏, and that

adj(𝐴) = (𝑏
0

0
𝑎).

Prove that for a 2 × 2 matrix 𝐴, the equalities
𝐴 ⋅ adj(𝐴) = adj(𝐴) ⋅ 𝐴 = det(𝐴)𝐼2

hold (cf. Lemma 3.22). Moreover, if 𝐴, 𝐵 are 2 × 2 matrices, then
det(𝐴𝐵) = det(𝐴) det(𝐵)

holds, as shown in Exercise 3.23.

Fact 3.94.  For any 3 × 3 matrix 𝐴, the following holds.
𝐴 ⋅ adj(𝐴) = adj(𝐴) ⋅ 𝐴 = det(𝐴)𝐼3.

Fact 3.95.  If 𝐴, 𝐵 are 3 × 3 matrices, then
det(𝐴𝐵) = det(𝐴) det(𝐵).

The following is an analogue of Lemma 3.22 for 3 × 3 matrices.
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Lemma 3.96.  Let 𝐴 be a 3 × 3 matrix. The following statements are equivalent.
1. The matrix 𝐴 is invertible.
2. The determinant det(𝐴) of 𝐴 is nonzero.
3. Every vector

(
((
(𝑒

𝑓
𝑔)
))
)

can be expressed as a linear combination of the columns of 𝐴. Moreover, if 𝐴 is invertible, then

𝐴−1 = 1
det(𝐴)

adj(𝐴)

holds.

A proof of the above is provided in Chapter 6.

Exercise 3.97.  Determine whether the matrix

𝐴 =
(
((
( 1

2
−1

−5
0
2

6
9

−1)
))
)

is invertible. If 𝐴 is invertible, then find its inverse.

Solution.  Note that
det(𝐴) = 1 × (−18) − (−5) × 7 + 6 × 4 = −18 + 35 + 24 = 41.

Since det(𝐴) is nonzero, it follows that the matrix 𝐴 is invertible.
Note that

adj(𝐴) =
(
((
(−18

7
4

−7
5
3

−45
3
10 )

))
).

Hence, we obtain

𝐴−1 = 1
det(𝐴)

adj(𝐴) = 1
41

(
((
(−18

−7
4

−7
5
3

−45
3
10 )

))
).

□

Exercise 3.98.  Use Gaussian elimination to determine the row echelon form of the matrix

𝐴 =
(
((
( 1

2
−1

−5
0
2

6
9

−1)
))
).

Use the row echelon form to determine whether 𝐴 is invertible. If 𝐴 is invertible, then find its inverse
using elementary matrices, corresponding to the elementary row operations used to transform 𝐴
into its row echelon form.

Solution.  Adding −2 times the first row to the second row, we obtain the matrix

(
((
( 1

0
−1

−5
10
2

6
−3
−1)

))
).

Adding the first row to the third row, we obtain the matrix
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(
((
(1

0
0

−5
10
−3

6
−3
5 )

))
).

Next, multiplying the second row by 1
10 , we obtain the matrix

(
(((
(1

0
0

−5
1

−3

6
− 3

10
5 )

)))
)

.

Adding 3 times the second row to the third row, we obtain the matrix

(
((
((

1
0
0

−5
1
0

6
− 3

10
41
10 )

))
)).

Multiplying the third row by 10
41 , we obtain the matrix

(
(((
(1

0
0

−5
1
0

6
− 3

10
1 )

)))
)

,

Adding 3
10  times the third row to the second row, we obtain the matrix

(
((
(1

0
0

−5
1
0

6
0
1)
))
).

Adding −6 times the third row to the first row, we obtain the matrix

(
((
(1

0
0

−5
1
0

0
0
1)
))
).

Finally, adding 5 times the second row to the first row, we obtain the matrix

(
((
(1

0
0

0
1
0

0
0
1)
))
) = 𝐼3.

The above is the row echelon form of 𝐴. Since the row echelon form of 𝐴 is the identity matrix 𝐼3, it
follows that 𝐴 is invertible.
The elementary matrices corresponding to the above elementary row operations are

𝐸1 =
(
((
( 1

−2
0

0
1
0

0
0
1)
))
), 𝐸2 =

(
((
(1

0
1

0
1
0

0
0
1)
))
), 𝐸3 =

(
(((
(1

0
0

0
1
10
0

0
0
1)
)))
)

, 𝐸4 =
(
((
(1

0
0

0
1
3

0
0
1)
))
),

𝐸5 =

(
(((
(1

0
0

0
1
0

0
0
10
41)

)))
)

, 𝐸6 =

(
(((
(1

0
0

0
1
0

0
3
10
1 )

)))
)

, 𝐸7 =
(
((
(1

0
0

0
1
0

−6
0
1 )

))
), 𝐸8 =

(
((
(1

0
0

5
1
0

0
0
1)
))
).

It follows that
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𝐴−1 = 𝐸8𝐸7𝐸6𝐸5𝐸4𝐸3𝐸2𝐸1

=
(
((
(1

0
0

5
1
0

0
0
1)
))
)

(
((
(1

0
0

0
1
0

−6
0
1 )

))
)

(
(((
(1

0
0

0
1
0

0
3
10
1 )

)))
)

(
(((
(1

0
0

0
1
0

0
0
10
41)

)))
)

(
((
(1

0
0

0
1
3

0
0
1)
))
)

(
(((
(1

0
0

0
1
10
0

0
0
1)
)))
)

(
((
( 1

−2
0

0
1
0

0
0
1)
))
)

(
((
(1

0
1

0
1
0

0
0
1)
))
)

=
(
((
(1

0
0

5
1
0

−6
0
1 )

))
)

(
((
((

1
0
0

0
1
0

0
3
41
10
41)

))
))

(
((
((

1
0
0

0
1
10
3
10

0
0
1)
))
))

(
((
( 1

−2
1

0
1
0

0
0
1)
))
)

=

(
((
((
(1

0
0

5
1
0

−45
41

3
41
10
41 )

))
))
)

(
((
((

1
− 2

10
4
10

0
1
10
3
10

0
0
1)
))
))

= 1
41

(
((
(−18

−7
4

7
5
3

−45
3
10 )

))
).

□

Exercise 3.99.  Solve the following system of equations in the variables 𝑥, 𝑦, 𝑧.
𝑥 + 2𝑦 + 3𝑧 = 1,

4𝑥 − 5𝑦 + 6𝑧 = 2,
7𝑥 − 𝑦 + 10𝑧 = 3.
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Appendix
The content of the appendix is supplementary and not required for the main course. However, it may
be useful for further studies.

Chapter 4. Sets
Proof of Fact 1.23.  Note that if 𝑃  is a subset of 𝑄, then we claim that 𝐴 ∪ 𝑃  is a subset of 𝐴 ∪ 𝑄. Indeed,
for an element 𝑥 of 𝐴 ∪ 𝑃 , note that 𝑥 lies in 𝐴, or it lies in 𝑃 . If 𝑥 lies in 𝐴, then it lies in 𝐴 ∪ 𝑄. If 𝑥
lies in 𝑃 , it also lies in 𝑄, and hence it lies in 𝐴 ∪ 𝑄. This proves the claim. Consequently, 𝐴 ∪ (𝐵 ∩
𝐶) is a subset of both of the sets

𝐴 ∪ 𝐵, 𝐴 ∪ 𝐶,
and hence, we obtain

𝐴 ∪ (𝐵 ∩ 𝐶) ⊆ (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶) .

Let 𝑦 be an element of (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶). Note that 𝑦 lies in 𝐴 ∪ 𝐵 and 𝑦 also lies in 𝐴 ∪ 𝐶 . If 𝑦
lies in 𝐴, then it also lies in 𝐴 ∪ (𝐵 ∩ 𝐶). Thus, it remains to consider the case that 𝑦 does not lie in
𝐴, which we assume from now on. Since 𝑦 lies in 𝐴 ∪ 𝐵 and 𝑦 does not lie in 𝐴, it follows that 𝑦 lies
in 𝐵. Similarly, it also follows that 𝑦 lies in 𝐶 . This shows that 𝑦 lies in 𝐵 ∩ 𝐶 , and hence it lies in 𝐴 ∪
(𝐵 ∩ 𝐶). This proves that

(𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶) ⊆ 𝐴 ∪ (𝐵 ∩ 𝐶) .

This establishes that

𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶) .

Let us now establish that
𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶).

Let 𝑥 be an element of 𝐴 ∩ (𝐵 ∪ 𝐶). Note that 𝑥 lies in 𝐴 and also lies in 𝐵 ∪ 𝐶 . If 𝑥 lies in 𝐵, then 𝑥
lies in 𝐴 ∩ 𝐵, and hence 𝑥 belongs to (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶). It remains to consider the case that 𝑥 does
not lie in 𝐵, which we assume from now on. Since 𝑥 lies in 𝐵 ∪ 𝐶 and 𝑥 does not lie in 𝐵, it follows
that 𝑥 lies in 𝐶 . Using that 𝑥 lies in 𝐴, we obtain that 𝑥 lies in 𝐴 ∩ 𝐶 , and hence, 𝑥 lies in (𝐴 ∩ 𝐵) ∪
(𝐴 ∩ 𝐶). Combining these cases, we obtain

𝐴 ∩ (𝐵 ∪ 𝐶) ⊆ (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶) .

Note that if 𝑃  is a subset of 𝑄, then 𝐴 ∩ 𝑃  is contained in 𝐴 ∩ 𝑄. It follows that 𝐴 ∩ 𝐵 is a subset
of 𝐴 ∩ (𝐵 ∪ 𝐶), and 𝐴 ∩ 𝐶 is also a subset of 𝐴 ∩ (𝐵 ∪ 𝐶). This shows that

(𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶) ⊆ 𝐴 ∩ (𝐵 ∪ 𝐶) .

This proves that

𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶) .

□
Proof of Fact 1.28.  Note that
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(𝐴 ∪ 𝐵)𝑐 = 𝑋 ∖ (𝐴 ∪ 𝐵)
= {𝑥 ∈ 𝑋 : 𝑥 ∉ (𝐴 ∪ 𝐵)}
= {𝑥 ∈ 𝑋 : 𝑥 ∉ 𝐴 and 𝑥 ∉ 𝐵}
= {𝑥 ∈ 𝑋 : 𝑥 ∈ 𝐴𝑐 and 𝑥 ∈ 𝐵𝑐}
= {𝑥 ∈ 𝑋 : 𝑥 ∈ 𝐴𝑐 ∩ 𝐵𝑐}
= 𝐴𝑐 ∩ 𝐵𝑐

holds for any subsets 𝐴, 𝐵 of 𝑋.
As a consequence, we obtain

(𝐴𝑐 ∪ 𝐵𝑐)𝑐 = ((𝐴𝑐)𝑐 ∩ (𝐵𝑐)𝑐),
which yields

(𝐴𝑐 ∪ 𝐵𝑐)𝑐 = 𝐴 ∩ 𝐵.
This implies

((𝐴𝑐 ∪ 𝐵𝑐)𝑐)𝑐 = (𝐴 ∩ 𝐵)𝑐,
or equivalently,

(𝐴 ∩ 𝐵)𝑐 = 𝐴𝑐 ∪ 𝐵𝑐 .

□
Proof of Fact 1.30.  Let 𝑋 denote the underlying universal set. Note that

𝑋 ∖ (𝐵 ∪ 𝐶) = (𝐵 ∪ 𝐶)𝑐

= 𝐵𝑐 ∩ 𝐶𝑐

= (𝑋 ∖ 𝐵) ∩ (𝑋 ∖ 𝐶).
This shows that

𝐴 ∩ (𝑋 ∖ (𝐵 ∪ 𝐶)) = 𝐴 ∩ ((𝑋 ∖ 𝐵) ∩ (𝑋 ∖ 𝐶)),
which implies that

𝐴 ∩ (𝑋 ∖ (𝐵 ∪ 𝐶)) = (𝐴 ∩ (𝑋 ∖ 𝐵)) ∩ (𝐴 ∩ (𝑋 ∖ 𝐶)).
Note that for any subset 𝑌  of 𝑋, we have

𝐴 ∩ (𝑋 ∖ 𝑌 ) = {𝑥 ∈ 𝑋 : 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝑋 ∖ 𝑌 }
= {𝑥 ∈ 𝑋 : 𝑥 ∈ 𝐴 and 𝑥 ∉ 𝑌 }
= 𝐴 ∖ 𝑌 .

Consequently, we obtain

𝐴 ∖ (𝐵 ∪ 𝐶) = (𝐴 ∖ 𝐵) ∩ (𝐴 ∖ 𝐶) .

Similarly, we obtain
𝑋 ∖ (𝐵 ∩ 𝐶) = (𝐵 ∩ 𝐶)𝑐

= 𝐵𝑐 ∪ 𝐶𝑐

= (𝑋 ∖ 𝐵) ∪ (𝑋 ∖ 𝐶).
This shows that

𝐴 ∩ (𝑋 ∖ (𝐵 ∩ 𝐶)) = 𝐴 ∩ ((𝑋 ∖ 𝐵) ∪ (𝑋 ∖ 𝐶)).
Using the distributive property of intersection over union (see Fact 1.23), we obtain

𝐴 ∩ (𝑋 ∖ (𝐵 ∩ 𝐶)) = (𝐴 ∩ (𝑋 ∖ 𝐵)) ∪ (𝐴 ∩ (𝑋 ∖ 𝐶)).
Since for any subset 𝑌  of 𝑋, the equality
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𝐴 ∩ (𝑋 ∖ 𝑌 ) = 𝐴 ∖ 𝑌
holds, we conclude that

𝐴 ∖ (𝐵 ∩ 𝐶) = (𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶) .

□

Exercise 4.1 (*).  Do there exist three finite sets 𝐴, 𝐵, 𝐶 satisfying
|𝐴Δ𝐵| = 1, |𝐵Δ𝐶| = 2, |𝐶Δ𝐴| = 4?

Solution.  Note that for any three sets 𝐴, 𝐵, 𝐶 ,
𝐶 ∖ 𝐴 = (𝐶 ∖ 𝐴) ∩ (𝐵 ∪ 𝐵𝑐)

= ((𝐶 ∖ 𝐴) ∩ 𝐵) ∪ ((𝐶 ∖ 𝐴) ∩ 𝐵𝑐)
⊆ (𝐴𝑐 ∩ 𝐵) ∪ (𝐶 ∩ 𝐵𝑐)
= (𝐵 ∖ 𝐴) ∪ (𝐶 ∖ 𝐵)
⊆ (𝐴Δ𝐵) ∪ (𝐵Δ𝐶)

hold. Hence, for any three sets 𝐴, 𝐵, 𝐶 , we also obtain
𝐴 ∖ 𝐶 ⊆ (𝐶Δ𝐵) ∪ (𝐵Δ𝐴)

= (𝐴Δ𝐵) ∪ (𝐵Δ𝐶).
This shows that for any three sets 𝐴, 𝐵, 𝐶 , the union of 𝐴 ∖ 𝐶, 𝐶 ∖ 𝐴 is a subset of (𝐴Δ𝐵) ∪ (𝐵Δ𝐶),
that is, 𝐶Δ𝐴 is a subset of (𝐴Δ𝐵) ∪ (𝐵Δ𝐶). If 𝐴, 𝐵, 𝐶 are finite sets, it follows that

|𝐶Δ𝐴| ≤ |(𝐴Δ𝐵) ∪ (𝐵Δ𝐶)| ≤ |𝐴Δ𝐵| + |𝐵Δ𝐶| .

This shows that there are no three finite sets 𝐴, 𝐵, 𝐶 satisfying the given conditions. □

Exercise 4.2.  If 𝑧, 𝑤 are complex numbers, then show that
1. |𝑧 + 𝑤| ≤ |𝑧| + |𝑤| (triangle inequality).

Remark (**)

More formally, one defines ℂ, as the following set
{(𝑎, 𝑏) : 𝑎, 𝑏 ∈ ℝ},

equipped with addition and multiplication defined by
(𝑎, 𝑏) + (𝑐, 𝑑) ≔ (𝑎 + 𝑐, 𝑏 + 𝑑),
(𝑎, 𝑏) ⋅ (𝑐, 𝑑) ≔ (𝑎𝑐 − 𝑏𝑑, 𝑎𝑑 + 𝑏𝑐),

for any (𝑎, 𝑏), (𝑐, 𝑑) with 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ.
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Chapter 5. Induction principles

Theorem 5.1.  The well-ordering principle, the principle of mathematical induction, and the principle
of strong induction are equivalent.

Proof.
□

Exercise 5.2 (Infinitude of primes, by Saidak).  Let 𝑎1 = 2, and 𝑎𝑛+1 = 𝑎𝑛(𝑎𝑛 + 1) for any positive
integer 𝑛. For any 𝑛 ∈ ℕ, show that 𝑎𝑛 has at least 𝑛 distinct prime divisors.

Solution.  For a positive integer 𝑛, let 𝑃(𝑛) denote the statement that 𝑎𝑛 ≥ 1 and 𝑎𝑛 has at least 𝑛
distinct prime divisors.
Since 𝑎1 = 2, it follows that 𝑃(1) is true.
Let 𝑛 be a positive integer such that 𝑃(𝑛) holds. This gives that 𝑎𝑛 ≥ 1, and hence 𝑎𝑛 + 1 ≥ 2. Also

note that the integers 𝑎𝑛, 𝑎𝑛 + 1 have no common prime divisor, since any of their common divisors
divides their difference, which is equal to 1. Hence, no prime divisor of 𝑎𝑛 is a prime divisor of 𝑎𝑛 +
1. By the induction hypothesis, 𝑎𝑛 has at least 𝑛 distinct prime divisors. Since 𝑎𝑛 + 1 ≥ 2, it admits
at least one prime divisor. It follows that the product 𝑎𝑛(𝑎𝑛 + 1) has at least 𝑛 + 1 distinct prime
divisors. Also note that 𝑎𝑛(𝑎𝑛 + 1) ≥ 2 holds. This shows that 𝑃(𝑛 + 1) holds.
By induction, the statement 𝑃(𝑛) holds for all 𝑛 ∈ ℕ. In particular, 𝑎𝑛 has at least 𝑛 distinct prime

divisors. □

Exercise 5.3 (*).  Show that there are infinitely many prime numbers of the form 4𝑚 + 3, where 𝑚
is a nonnegative integer.

Solution.  Le 𝑎1, 𝑎2, … be a sequence of positive integers defined by
𝑎1 ≔ 7,

𝑎𝑛+1 ≔ 𝑎𝑛(4𝑎𝑛 + 3)

for all 𝑛 ∈ ℕ. For any 𝑛 ∈ ℕ, let 𝑃(𝑛) denote the statement that 𝑎𝑛 is a positive integer, 3 does not
divide 𝑎𝑛, and 𝑎𝑛 has at least 𝑛 distinct prime divisors of the form 4𝑚 + 3.
Since 𝑎1 = 7, it follows that 𝑃(1) holds.
Let 𝑘 be a positive integer such that 𝑃(𝑘) holds. Since 𝑎𝑘 is a positive integer, it follows that 4𝑎𝑘 +

3 is an odd positive integer ≥ 3. Hence it has¹² a prime divisor of the form 4𝑚 + 3. Since 3 does not
divide 𝑎𝑘, it follows¹³ that 3 does not divide 4𝑎𝑘 + 3. Also note that any common factor of the integers
𝑎𝑘 and 4𝑎𝑘 + 3 divides

(4𝑎𝑘 + 3) − 4𝑎𝑘,
which is equal to 3. Since 3 does not divide 𝑎𝑘, we obtain that the integers 𝑎𝑘 and 4𝑎𝑘 + 3 have no
common prime divisor. Hence, any prime divisor of 4𝑎𝑘 + 3 of the form 4𝑚 + 3 is different from the
prime divisors of 𝑎𝑘. This shows that 𝑎𝑘+1 is a positive integer, 3 does not divide 𝑎𝑘+1, and 𝑎𝑘+1 has
at least 𝑘 + 1 distinct prime divisors of the form 4𝑚 + 3. By induction, it follows that for any 𝑛 ∈ ℕ,
the integer 𝑎𝑛 has 𝑛 distinct prime divisors of the form 4𝑚 + 3.
This shows that there are infinitely many prime numbers of the form 4𝑚 + 3. □

Exercise 5.4.  Show that

¹²How does it follow? Prove it by induction that for any positive integer 𝑛, the product of any integers of the form
4𝑚 + 1 is also of the form 4𝑚 + 1.

¹³Why?
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22𝑛 − 1
has at least 𝑛 distinct prime divisors for all 𝑛 ∈ ℕ.

Solution.  For a positive integer 𝑛, let 𝑃(𝑛) denote the statement that 22𝑛 − 1 has at least 𝑛 distinct
prime divisors.
Since 221 − 1 = 3, it follows that 𝑃(1) holds.
Let 𝑘 be a positive integer such that 𝑃(𝑘) holds. Note that

22𝑘+1 − 1 = (22𝑘 − 1)(22𝑘 + 1).

Also note that the integers 22𝑘 − 1 and 22𝑘 + 1 have no common prime divisors, since these are odd
integers, and any of their common divisors divides their difference, which is equal to 2. By the induction
hypothesis, the integer 22𝑘 − 1 has at least 𝑘 distinct prime divisors. Since 22𝑘 + 1 ≥ 5, it admits at
least one prime divisor. It follows that the product (22𝑘 − 1)(22𝑘 + 1) has at least 𝑘 + 1 distinct prime
divisors. This shows that 𝑃(𝑘 + 1) holds.
By induction, the statement 𝑃(𝑛) holds for all 𝑛 ∈ ℕ. □

Remark

Note that it is false that
22𝑛 + 1

has at least 𝑛 distinct prime divisors for all 𝑛 ∈ ℕ. Indeed, the integer 222 + 1 = 17 is a prime.

Exercise 5.5.  Let 𝑆 be a finite set of size 𝑛. Show that the number of subsets of 𝑆 is 2𝑛.

Solution.  For a nonnegative integer 𝑛, let 𝑃(𝑛) denote the statement that if 𝐴 is a set with 𝑛 elements,
then the number of subsets of 𝐴 is 2𝑛.
Since the empty set has exactly one subset, namely itself, it follows that 𝑃(0) holds.
Let 𝑘 be a nonnegative integer such that 𝑃(𝑘) holds, that is, for any set with 𝑘 elements, the number

of its subsets is 2𝑘. We show that 𝑃(𝑘 + 1) holds.
Let 𝐴 be a set with 𝑘 + 1 elements. Choose an element 𝑎 ∈ 𝐴, and let 𝐵 = 𝐴 ∖ {𝑎}. Note that 𝐵 has

exactly 𝑘 elements. By the induction hypothesis, the number of subsets of 𝐵 is 2𝑘. Any subset of 𝐴
either contains 𝑎 or does not contain 𝑎. The number of subsets of 𝐴 that do not contain 𝑎 is equal to
the number of subsets of 𝐵, which is 2𝑘.
Note that any subset of 𝐴 that contains 𝑎 is of the form 𝐶 ∪ {𝑎}, where 𝐶 is a subset of 𝐵. Further,

different subsets of 𝐵 give rise to different subsets of 𝐴 that contain 𝑎. That is, if 𝐶1, 𝐶2 are different
subsets of 𝐵, then 𝐶1 ∪ {𝑎} ≠ 𝐶2 ∪ {𝑎}. This shows that the number of subsets of 𝐴 that contain 𝑎 is
also equal to the number of subsets of 𝐵, which is again 2𝑘. It follows that the total number of subsets
of 𝐴 is equal to

2𝑘 + 2𝑘 = 2𝑘+1.
This shows that 𝑃(𝑘 + 1) holds.
By induction, it follows that for any nonnegative integer 𝑛, if 𝐴 is a set of size 𝑛, then the number of

subsets of 𝐴 is 2𝑛. □

Exercise 5.6 (*).  Show that

(1 + 1
13 )(1 + 1

23 )(1 + 1
33 )⋯(1 + 1

𝑛3 ) < 3

holds for all 𝑛 ∈ ℕ.
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Remark (*)

Does taking 𝑃(𝑛) to be the statement that

(1 + 1
13 )(1 + 1

23 )(1 + 1
33 )⋯(1 + 1

𝑛3 ) < 3

help?

Solution.  For any 𝑛 ∈ ℕ, let 𝑃(𝑛) denote the statement that

(1 + 1
13 )(1 + 1

23 )(1 + 1
33 )⋯(1 + 1

𝑛3 ) ≤ 3 − 1
𝑛

.

Note that 𝑃(1) holds. Let 𝑘 be a positive integer such that 𝑃(𝑘) holds. Note that

(1 + 1
13 )(1 + 1

23 )(1 + 1
33 )⋯(1 + 1

𝑘3 )(1 + 1
(𝑘 + 1)3 )

≤ (3 − 1
𝑘
)(1 + 1

(𝑘 + 1)3 )

= 3 − 1
𝑘

+ 3
(𝑘 + 1)3 − 1

𝑘(𝑘 + 1)3

= 3 − 1
𝑘 + 1

+ 1
𝑘 + 1

− 1
𝑘

+ 3
(𝑘 + 1)3 − 1

𝑘(𝑘 + 1)3

= 3 − 1
𝑘 + 1

− 1
𝑘(𝑘 + 1)

+ 3
(𝑘 + 1)3 − 1

𝑘(𝑘 + 1)3

= 3 − 1
𝑘 + 1

− (𝑘 + 1)2 − 3𝑘 + 1
𝑘(𝑘 + 1)3

= 3 − 1
𝑘 + 1

− 𝑘2 − 𝑘 + 2
𝑘(𝑘 + 1)3

= 3 − 1
𝑘 + 1

− 𝑘(𝑘 − 1) + 2
𝑘(𝑘 + 1)3

< 3 − 1
𝑘 + 1

holds. This proves that if 𝑘 is a positive integer and 𝑃(𝑘) holds, then 𝑃(𝑘 + 1) also holds. By the
principle of induction, it follows that 𝑃(𝑛) holds for any positive integer 𝑛. This implies the given
inequality for all 𝑛 ∈ ℕ.

□

Exercise 5.7 (*).  Show that

1 + 1
23 + 1

33 + ⋯ + 1
𝑛3 < 3

2
for all 𝑛 ∈ ℕ.

Solution.  For any 𝑛 ∈ ℕ, let 𝑃(𝑛) denote the statement that

1 + 1
23 + 1

33 + ⋯ + 1
𝑛3 ≤ 3

2
− 1

2𝑛2 .

Note that 𝑃(1) holds. Let 𝑘 be a positive integer such that 𝑃(𝑘) holds. Note that
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1 + 1
23 + 1

33 + ⋯ + 1
𝑘3 + 1

(𝑘 + 1)3

≤ (3
2

− 1
2𝑘2 ) + 1

(𝑘 + 1)3 (using 𝑃(𝑘))

= 3
2

− 1
2𝑘2 + 1

(𝑘 + 1)3

= 3
2

− 1
2(𝑘 + 1)2 + 1

2(𝑘 + 1)2 − 1
2𝑘2 + 1

(𝑘 + 1)3

= 3
2

− 1
2(𝑘 + 1)2 − (𝑘 + 1)3 − 𝑘2(𝑘 + 1) − 2𝑘2

2𝑘2(𝑘 + 1)3

= 3
2

− 1
2(𝑘 + 1)2 − 𝑘3 + 3𝑘2 + 3𝑘 + 1 − 𝑘3 − 𝑘2 − 2𝑘2

2𝑘2(𝑘 + 1)3

= 3
2

− 1
2(𝑘 + 1)2 − 3𝑘 + 1

2𝑘2(𝑘 + 1)3

< 3
2

− 1
2(𝑘 + 1)2 .

This proves that if 𝑘 is a positive integer and 𝑃(𝑘) holds, then 𝑃(𝑘 + 1) also holds. By the principle
of induction, it follows that 𝑃(𝑛) holds for any positive integer 𝑛. This implies the given inequality
for all 𝑛 ∈ ℕ.

□

Exercise 5.8 (*).  Show that

(1 + 1
2
)(1 + 1

22 )(1 + 1
23 )⋯(1 + 1

2𝑛 ) < 5
2

holds for all 𝑛 ∈ ℕ.

Solution.  For any 𝑛 ∈ ℕ, let 𝑃(𝑛) denote the statement that

(1 + 1
2
)(1 + 1

22 )(1 + 1
23 )⋯(1 + 1

2𝑛 ) ≤ 5
2
(1 − 2

2𝑛+1 + 1
).

Note that 𝑃(1) holds. Let 𝑘 be a positive integer such that 𝑃(𝑘) holds. Note that

(1 + 1
2
)(1 + 1

22 )(1 + 1
23 )⋯(1 + 1

2𝑘 )(1 + 1
2𝑘+1 )

≤ 5
2
(1 − 2

2𝑘+1 + 1
)(1 + 1

2𝑘+1 )

≤ 5
2

× 2𝑘+1 − 1
2𝑘+1

≤ 5
2
(1 − 1

2𝑘+1 )

≤ 5
2
(1 − 1

2𝑘+2 + 1
).

This proves that if 𝑘 is a positive integer and 𝑃(𝑘) holds, then 𝑃(𝑘 + 1) also holds. By the principle
of induction, it follows that 𝑃(𝑛) holds for any positive integer 𝑛. This implies the given inequality
for all 𝑛 ∈ ℕ. □
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Chapter 6. Matrices
Let us revisit Exercise 3.16, in the light of Exercise 3.19.

Exercise 6.1.  Compute 𝐵2 where 𝐵 is the following 𝑛 × 𝑛 matrix

𝐵 =

(
((
((
((

0
0
⋮
1

⋯
⋯
⋰
⋯

0
1
⋮
0

1
0
⋮
0)
))
))
))

.

Solution.  Let 𝑒1, 𝑒2, …, 𝑒𝑛 denote the standard basis vectors of ℝ𝑛. Note that 𝐵 sends
𝑒1, 𝑒2, …, 𝑒𝑛−1, 𝑒𝑛 to the vectors 𝑒𝑛, 𝑒𝑛−1, …, 𝑒2, 𝑒1 respectively. That is,

𝐵𝑒𝑖 = 𝑒𝑛+1−𝑖

holds for all 1 ≤ 𝑖 ≤ 𝑛. Hence, for any integer 1 ≤ 𝑖 ≤ 𝑛, it follows that
𝐵2𝑒𝑖 = 𝐵(𝐵𝑒𝑖)

= 𝐵(𝑒𝑛+1−𝑖)
= 𝑒𝑛+1−(𝑛+1−𝑖)

= 𝑒𝑖.
This shows that¹⁴

𝐵2 = 𝐼𝑛.
□

Proof of Fact 3.20.  Using 𝐴𝐵 = 𝐼𝑛, we obtain
𝐶𝐴𝐵 = 𝐶𝐼𝑛 = 𝐶.

Using 𝐶𝐴 = 𝐼𝑛, we get
𝐶𝐴𝐵 = 𝐼𝑛𝐵 = 𝐵.

This shows that 𝐵 = 𝐶 . □

Remark

Note that if 𝐴 is a matrix and 𝑃  is an invertible matrix such that 𝑃𝐴𝑃−1 is a diagonal matrix,
then using Exercise 3.28, the powers of 𝐴 can be computed. Indeed, if

𝑃𝐴𝑃−1 =

(
((
((
((

𝜆1
0
⋮
0

0
𝜆2
⋮
0

⋯
⋯
⋱
⋯

0
0
⋮

𝜆𝑛)
))
))
))

,

then

𝐴𝑘 = 𝑃−1(𝑃𝐴𝑘𝑃−1)𝑃 = 𝑃−1(𝑃𝐴𝑃−1)𝑘𝑃 = 𝑃−1

(
((
((
((

𝜆𝑘
1
0
⋮
0

0
𝜆𝑘

2
⋮
0

⋯
⋯
⋱
⋯

0
0
⋮

𝜆𝑘
𝑛)
))
))
))

𝑃

holds for any positive integer 𝑘. Thus, Exercise 3.28 can be used to compute powers of matrices
which are similar to diagonal matrices.

Exercise 6.2.  Does the following hold?

¹⁴How does it follow? Does Exercise 3.19 help?
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(−
√

5+1
2

1

√
5−1
2
1

)
−1

(0
1

1
1)(−

√
5+1
2

1

√
5−1
2
1

) =
(
((

−
√

5+1
2

0
0

1+
√

5
2 )

))

Question

What can be said about the Fibonacci numbers using Exercise 3.15 and Exercise 3.28?

Proof of Lemma 3.30.  In the following, the first and the second column of 𝐴 are denoted by 𝐶1 and 𝐶2
respectively. Write

𝐴 = (𝑎
𝑐

𝑏
𝑑).

Let us first show that the first three statements are equivalent. Assume that 𝐴 is invertible. If (𝑥1
𝑦1

) is
a solution to Equation 11, then

𝐴(𝑥1
𝑦1

) = (0
0).

This shows that

𝐴−1𝐴(𝑥1
𝑦1

) = (0
0),

which yields

(𝑥1
𝑦1

) = (0
0).

This implies that the solution (0
0) is the only solution to Equation  11. This shows that the first

statement implies the second statement. Assume that the second statement holds, that is, Equation 11
admits no solution other than (0

0). If 𝑠, 𝑡 are real numbers such that

𝑠𝐶1 + 𝑡𝐶2 = (0
0),

then

𝐴(𝑠
𝑡) = 𝑠𝐶1 + 𝑡𝐶2 = (0

0).

This shows that (𝑠
𝑡) is a solution to Equation 11, and hence, 𝑠 = 𝑡 = 0. This shows that the second

statement implies the third statement. Assume that the third statement holds, that is, the trivial linear
combination of the columns of 𝐴 is the only linear combination of the columns of 𝐴 that is equal to
(0

0). If 𝐴 is not invertible, then by Lemma 3.22, we have 𝑎𝑑 − 𝑏𝑐 = 0, which implies that

𝑑𝐶1 − 𝑐𝐶2 = (𝑎𝑑 − 𝑏𝑐
0 ) = (0

0),

−𝑏𝐶1 + 𝑎𝐶2 = ( 0
𝑎𝑑 − 𝑏𝑐) = (0

0),

and consequently, 𝑎, 𝑏, 𝑐, 𝑑 are equal to 0, and hence, any linear combination of the columns of 𝐴 is
equal to (0

0), contradicting the third statement. This shows that if the third statement holds, then 𝐴
is invertible, and hence, the third statement implies the first statement. This proves the equivalence of
the first three statements.
For the equivalence of the next two statements, note that the following statements are equivalent.
• any element of ℝ2 is a solution to Equation 11
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• (1
0) and (0

1) are solutions to Equation 11
• the matrix 𝐴 is the zero matrix.

□
Proof of Fact 3.37.  Let 𝐴 be a square matrix. Note that

𝐴 = 1
2
(𝐴 + 𝐴𝑇 ) + 1

2
(𝐴 − 𝐴𝑇 ).

Note that the matrix 1
2(𝐴 + 𝐴𝑇 ) is symmetric, and that the matrix 1

2(𝐴 − 𝐴𝑇 ) is skew-symmetric.
This shows that 𝐴 can be expressed as the sum of a symmetric matrix and a skew-symmetric matrix.

Assume that
𝐴 = 𝑆1 + 𝐾1 = 𝑆2 + 𝐾2,

where 𝑆1, 𝑆2 are symmetric matrices, and 𝐾1, 𝐾2 are skew-symmetric matrices. It follows that
𝑆1 − 𝑆2 = 𝐾2 − 𝐾1.

Note that the left-hand side of the above equality is a symmetric matrix, and that the right-hand side
of the above equality is a skew-symmetric matrix. This shows that each of 𝑆1 − 𝑆2, 𝐾2 − 𝐾1 is both
symmetric and skew-symmetric. Since the only matrix that is both symmetric and skew-symmetric is
the zero matrix, we have 𝑆1 − 𝑆2 = 𝐾2 − 𝐾1 = 0. This yields

𝑆1 = 𝑆2,
𝐾1 = 𝐾2.

This implies that any square matrix 𝐴 can be uniquely expressed as the sum of a symmetric matrix
and a skew-symmetric matrix. □
Proof of Fact 3.51.  Note that

𝐴 = 1
2
(𝐴 + 𝐴∗) + 1

2
(𝐴 − 𝐴∗).

Note that the matrix 12(𝐴 + 𝐴∗) is hermitian, and that the matrix 12(𝐴 − 𝐴∗) is skew-hermitian. This
shows that 𝐴 can be expressed as the sum of a hermitian matrix and a skew-hermitian matrix.

Assume that
𝐴 = 𝐻1 + 𝐾1 = 𝐻2 + 𝐾2,

where 𝐻1, 𝐻2 are hermitian matrices, and 𝐾1, 𝐾2 are skew-hermitian matrices. It follows that
𝐻1 − 𝐻2 = 𝐾2 − 𝐾1.

Note that the left-hand side of the above equality is a hermitian matrix, and that the right-hand side
of the above equality is a skew-hermitian matrix. This shows that each of 𝐻1 − 𝐻2, 𝐾2 − 𝐾1 is both
hermitian and skew-hermitian. Since the only matrix that is both hermitian and skew-hermitian is the
zero matrix, we have 𝐻1 − 𝐻2 = 𝐾2 − 𝐾1 = 0. This yields

𝐻1 = 𝐻2,
𝐾1 = 𝐾2.

This implies that any square matrix 𝐴 with complex entries can be uniquely expressed as the sum of
a hermitian matrix and a skew-hermitian matrix. □
Proof of Lemma 3.63.  Let 𝐴 be an 𝑛 × 𝑚 matrix. If

𝐸 = 𝐼𝑛 + 𝜆𝑒𝑖𝑗 with 𝑖 ≠ 𝑗,

then
𝐸𝐴 = (𝐼𝑛 + 𝜆𝑒𝑖𝑗)𝐴 = 𝐴 + 𝜆𝑒𝑖𝑗𝐴

holds, and hence, the 𝑘-th row of 𝐸𝐴 is equal to the 𝑘-th row of 𝐴 if 𝑘 ≠ 𝑖, and is equal to the sum of
the 𝑖-th row of 𝐴 and the row vector obtained by multiplying the 𝑗-th row of 𝐴 by 𝜆 if 𝑘 = 𝑖.
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Moreover, if
𝐸 = 𝐼𝑛 − 𝑒𝑖𝑖 − 𝑒𝑗𝑗 + 𝑒𝑖𝑗 + 𝑒𝑗𝑖 with 𝑖 ≠ 𝑗,

then
𝐸𝐴 = (𝐼𝑛 − 𝑒𝑖𝑖 − 𝑒𝑗𝑗 + 𝑒𝑖𝑗 + 𝑒𝑗𝑖)𝐴 = 𝐴 − 𝑒𝑖𝑖𝐴 − 𝑒𝑗𝑗𝐴 + 𝑒𝑖𝑗𝐴 + 𝑒𝑗𝑖𝐴

holds, and hence, the 𝑘-th row of 𝐸𝐴 is equal to the 𝑘-th row of 𝐴 if 𝑘 ≠ 𝑖, 𝑗, and the 𝑖-th row of 𝐸𝐴
is equal to the 𝑗-th row of 𝐴, and the 𝑗-th row of 𝐸𝐴 is equal to the 𝑖-th row of 𝐴.
Finally, if

𝐸 = 𝐼𝑛 + (𝜆 − 1)𝑒𝑖𝑖 with 𝜆 ≠ 0,
then

𝐸𝐴 = (𝐼𝑛 + (𝜆 − 1)𝑒𝑖𝑖)𝐴 = 𝐴 + (𝜆 − 1)𝑒𝑖𝑖𝐴
holds, and hence, the 𝑘-th row of 𝐸𝐴 is equal to the 𝑘-th row of 𝐴 if 𝑘 ≠ 𝑖, and is equal to the vector
obtained by multiplying the 𝑖-th row of 𝐴 by the scalar 𝜆 if 𝑘 = 𝑖.
This shows that left multiplication by an elementary matrix on a matrix 𝐴 performs the corresponding

elementary row operation on the matrix 𝐴. □
Proof of Lemma  3.64.  Let 𝐸 be an elementary matrix. We consider the three types of elementary
matrices separately.
Suppose 𝐸 is the elementary matrix obtained by interchanging the 𝑖-th row and the 𝑗-th row of the

identity matrix. Since multiplying any matrix by 𝐸 from the left interchanges its 𝑖-th and 𝑗-th rows,
we obtain

𝐸2 = 𝐸𝐸 = 𝐼𝑛.
This shows that 𝐸 is invertible and that 𝐸−1 = 𝐸.
Now consider the case that 𝐸 is the elementary matrix obtained by multiplying the 𝑖-th row of the

identity matrix by a nonzero scalar 𝜆. Since multiplying any matrix 𝐴 by 𝐸 from the left has the same
effect of multiplying the 𝑖-th row of 𝐴 by the same nonzero scalar 𝜆, it follows that

𝐸(𝐼𝑛 + (1
𝜆

− 1)𝑒𝑖𝑖) = 𝐼𝑛.

Similarly, it follows that

(𝐼𝑛 + (1
𝜆

− 1)𝑒𝑖𝑖)𝐸 = 𝐼𝑛.

This shows that 𝐸 is invertible and that

𝐸−1 = 𝐼𝑛 + (1
𝜆

− 1)𝑒𝑖𝑖.

Finally, consider the case that 𝐸 is the elementary matrix obtained by adding a scalar multiple of the
𝑗-th row of the identity matrix to its 𝑖-th row, that is,

𝐸 = 𝐼𝑛 + 𝜆𝑒𝑖𝑗 with 𝑖 ≠ 𝑗,

where 𝜆 is a scalar. Using Exercise 3.61, it follows that
𝐸(𝐼𝑛 − 𝜆𝑒𝑖𝑗) = (𝐼𝑛 + 𝜆𝑒𝑖𝑗)(𝐼𝑛 − 𝜆𝑒𝑖𝑗) = 𝐼𝑛,

and
(𝐼𝑛 − 𝜆𝑒𝑖𝑗)𝐸 = (𝐼𝑛 − 𝜆𝑒𝑖𝑗)(𝐼𝑛 + 𝜆𝑒𝑖𝑗) = 𝐼𝑛,

which shows that 𝐸 is invertible and that
𝐸−1 = 𝐼𝑛 − 𝜆𝑒𝑖𝑗.

This shows that any elementary matrix is invertible, and its inverse is also an elementary matrix. □
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Proof of Theorem 3.66.  Let 𝑋0 be a solution to the system of equations 𝐴𝑋 = 𝑏, that is, 𝐴𝑋0 = 𝑏 holds.
It follows that

𝐴′𝑋0 = 𝐸𝐴𝑋0 = 𝐸𝑏 = 𝑏′

holds, which shows that 𝑋0 is a solution to the system of equations 𝐴′𝑋 = 𝑏′.
Conversely, let 𝑌0 be a solution to the system of equations 𝐴′𝑋 = 𝑏′, that is, 𝐴′𝑌0 = 𝑏′ holds. Since

the elementary matrices are invertible, and 𝐸 is a product of elementary matrices, it follows that 𝐸 is
invertible. This yields

𝐴𝑌0 = 𝐸−1𝐴′𝑌0 = 𝐸−1𝑏′ = 𝑏,
which shows that 𝑌0 is a solution to the system of equations 𝐴𝑋 = 𝑏. □
Proof of Fact 3.80.  Let 𝑀 = (𝐴 | 0) denote the augmented matrix corresponding to the homogeneous
system of equations 𝐴𝑋 = 0. Performing row reduction on 𝑀 , we obtain a matrix 𝑀 ′ = (𝐴′ | 0) in
row echelon form. Since 𝐴 has more columns than rows, the matrix 𝐴′ has more columns than rows.
Hence, the matrix 𝐴′ has at least one non-pivot column, which implies that the system of equations
𝐴′𝑋 = 0 has at least one free variable. Assigning an arbitrary nonzero value to this free variable, and
then solving for the other variables, we obtain a nonzero solution to the system of equations 𝐴′𝑋 =
0. Since 𝑀 ′ is obtained from 𝑀  by performing a sequence of elementary row operations, it follows
that the system of equations 𝐴𝑋 = 0 also admits a nonzero solution. Considering the scalar multiples
of any such nonzero solution (cf. Exercise 3.33), we see that the homogeneous system of equations
𝐴𝑋 = 0 admits infinitely many solutions. □
Proof of Fact 3.81.  Note that if 𝐴 can be transformed into the identity matrix by performing a sequence
of elementary row operations, then there are elementary matrices 𝐸1, 𝐸2, …, 𝐸𝑘 such that

𝐸𝑘…𝐸2𝐸1𝐴 = 𝐼𝑛,
which implies that

𝐴 = (𝐸𝑘…𝐸2𝐸1)
−1 = 𝐸−1

1 𝐸−1
2 …𝐸−1

𝑘 ,
and consequently, 𝐴 is a product of elementary matrices.
If 𝐴 is a product of elementary matrices, then using the fact that every elementary matrix is invertible,

it follows that 𝐴 is invertible.
Note that the vector 𝐴−1𝑏 is a solution to the 𝐴𝑋 = 𝑏 If 𝐴 is invertible, then for any solution 𝑋0

to the system of equations 𝐴𝑋 = 𝑏, we have 𝐴𝑋0 = 𝑏, which implies that 𝐴−1𝐴𝑋0 = 𝐴−1𝑏, which
yields 𝑋0 = 𝐴−1𝑏. This shows that the system of equations 𝐴𝑋 = 𝑏 admits a unique solution if 𝐴 is
invertible.
Finally, let us assume that the system of equations 𝐴𝑋 = 𝑏 admits a unique solution for every column

vector 𝑏 having 𝑛 entries. In particular, the homogeneous system of equations 𝐴𝑋 = 0 admits only the
zero solution. Performing row reduction on the augmented matrix (𝐴 | 0), we obtain a matrix (𝐴′ | 0)
in row echelon form. Since the homogeneous system of equations 𝐴𝑋 = 0 admits only one solution,
each column of 𝐴′ must contain a pivot of 𝐴′. This implies that the matrix 𝐴′ has no non-pivot column,
and hence, 𝐴′ has 𝑛 pivots. In other words, 𝐴′ is equal to the identity matrix 𝐼𝑛. Since (𝐴′ | 0) is
obtained from (𝐴 | 0) by performing a sequence of elementary row operations, it follows that 𝐴 can
be transformed into the identity matrix by performing a sequence of elementary row operations.
This proves the equivalence of the four statements. □

§6.1 Systems of linear equations in three variables and determinants of 3 × 3 matri9
ces

Let us revisit the solution to Exercise 3.88.
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Question

Can one come up with a formula for the inverse of an invertible 3 × 3 matrix? Can one also have
a notion of determinant of a 3 × 3 matrix, and use it to determine whether a 3 × 3 matrix is
invertible or not? Can one have an analogue of Lemma 3.22 and Exercise 3.23 for 3 × 3 matrices?

Consider the system of linear equations in three variables 𝑥, 𝑦, 𝑧:
𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 = 𝑑1, (13)
𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 = 𝑑2, (14)
𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑧 = 𝑑3, (15)

where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 are real numbers for 𝑖 = 1, 2, 3. This system of equations can be expressed in matrix
form as

(
((
(𝑎1

𝑎2
𝑎3

𝑏1
𝑏2
𝑏3

𝑐1
𝑐2
𝑐3)

))
)

(
((
(𝑥

𝑦
𝑧)
))
) =

(
((
(𝑑1

𝑑2
𝑑3)

))
).

The matrix

𝐴 =
(
((
(𝑎1

𝑎2
𝑎3

𝑏1
𝑏2
𝑏3

𝑐1
𝑐2
𝑐3)

))
)

is called the coefficient matrix of the system of equations, and the vector

(
((
(𝑑1

𝑑2
𝑑3)

))
)

is called the constant vector of the system of equations. The system of equations is said to be homoge9
neous if

(
((
(𝑑1

𝑑2
𝑑3)

))
) =

(
((
(0

0
0)
))
).

Otherwise, the system of equations is said to be non9homogeneous.

Remark

The discussion in Section 3.3 and Section 3.5 can be adapted to the case of systems of linear

equations in three variables. In particular, if (
𝑑1
𝑑2
𝑑3

) is a linear combination of the columns of the

coefficient matrix 𝐴, then the solutions to the system of equations

𝐴
(
((
(𝑥

𝑦
𝑧)
))
) =

(
((
(𝑑1

𝑑2
𝑑3)

))
)

are in one-to-one correspondence with the solutions to the system of equations

𝐴
(
((
(𝑥

𝑦
𝑧)
))
) =

(
((
(0

0
0)
))
).

Multiplying Equation 14 by 𝑐3 and Equation 15 by −𝑐2, and adding the results, we obtain the equation
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(𝑎2𝑐3 − 𝑎3𝑐2)𝑥 + (𝑏2𝑐3 − 𝑏3𝑐2)𝑦 = 𝑑2𝑐3 − 𝑑3𝑐2. (16)
Similarly, multiplying Equation 14 by −𝑏3 and Equation 15 by 𝑏2, and adding the results, we obtain
the equation

(𝑎2𝑏3 − 𝑎3𝑏2)𝑥 + (𝑐2𝑏3 − 𝑐3𝑏2)𝑧 = 𝑑2𝑏3 − 𝑑3𝑏2. (17)
Multiplying Equation 13 by 𝑏2𝑐3 − 𝑏3𝑐2 and Equation 16 by −𝑏1, and adding the results, we obtain the
equation

(𝑎1(𝑏2𝑐3 − 𝑏3𝑐2) − 𝑏1(𝑎2𝑐3 − 𝑎3𝑐2))𝑥 + (𝑐1(𝑏2𝑐3 − 𝑏3𝑐2))𝑧
= 𝑑1(𝑏2𝑐3 − 𝑏3𝑐2) − 𝑏1(𝑑2𝑐3 − 𝑑3𝑐2).

(18)

Multiplying Equation 17 by 𝑐1 and adding to Equation 18, we obtain the equation
(𝑎1(𝑏2𝑐3 − 𝑏3𝑐2) − 𝑏1(𝑎2𝑐3 − 𝑎3𝑐2) + 𝑐1(𝑎2𝑏3 − 𝑎3𝑏2))𝑥
= 𝑑1(𝑏2𝑐3 − 𝑏3𝑐2) − 𝑏1(𝑑2𝑐3 − 𝑑3𝑐2) + 𝑐1(𝑑2𝑏3 − 𝑑3𝑏2),

(19)

or equivalently, we obtain
(𝑎1(𝑏2𝑐3 − 𝑏3𝑐2) − 𝑏1(𝑎2𝑐3 − 𝑎3𝑐2) + 𝑐1(𝑎2𝑏3 − 𝑎3𝑏2))𝑥
= 𝑑1(𝑏2𝑐3 − 𝑏3𝑐2) − 𝑑2(𝑏1𝑐3 − 𝑏3𝑐1) + 𝑑3(𝑏1𝑐2 − 𝑏2𝑐1).

(20)

Similarly¹⁵, it follows that
(𝑏2(𝑐3𝑎1 − 𝑐1𝑎3) − 𝑐2(𝑏3𝑎1 − 𝑏1𝑎3) + 𝑎2(𝑏3𝑐1 − 𝑏1𝑐3))𝑦
= 𝑑2(𝑐3𝑎1 − 𝑐1𝑎3) − 𝑑3(𝑐2𝑎1 − 𝑐1𝑎2) + 𝑑1(𝑐2𝑎3 − 𝑐3𝑎2),

(21)

and
(𝑐3(𝑎1𝑏2 − 𝑎2𝑏1) − 𝑎3(𝑐1𝑏2 − 𝑐2𝑏1) + 𝑏3(𝑐1𝑎2 − 𝑐2𝑎1))𝑧
= 𝑑3(𝑎1𝑏2 − 𝑎2𝑏1) − 𝑑1(𝑎3𝑏2 − 𝑎2𝑏3) + 𝑑2(𝑎3𝑏1 − 𝑎1𝑏3).

(22)

This may indicate that it could be useful to consider the product of the matrix

(
((
( 𝑏2𝑐3 − 𝑏3𝑐2

𝑐2𝑎3 − 𝑐3𝑎2
−(𝑎3𝑏2 − 𝑎2𝑏3)

−(𝑏1𝑐3 − 𝑏3𝑐1)
𝑐3𝑎1 − 𝑐1𝑎3
𝑎3𝑏1 − 𝑎1𝑏3

𝑏1𝑐2 − 𝑏2𝑐1
−(𝑐2𝑎1 − 𝑐1𝑎2)

𝑎1𝑏2 − 𝑎2𝑏1 )
))
)

=
(
((
( 𝑏2𝑐3 − 𝑏3𝑐2

−(𝑐3𝑎2 − 𝑐2𝑎3)
𝑎2𝑏3 − 𝑎3𝑏2

−(𝑏1𝑐3 − 𝑏3𝑐1)
𝑐3𝑎1 − 𝑐1𝑎3

−(𝑎1𝑏3 − 𝑎3𝑏1)

𝑏1𝑐2 − 𝑏2𝑐1
−(𝑐2𝑎1 − 𝑐1𝑎2)

𝑎1𝑏2 − 𝑎2𝑏1 )
))
)

with the matrix 𝐴. Consider the product

𝑀 ≔
(
((
( 𝑏2𝑐3 − 𝑏3𝑐2

−(𝑐3𝑎2 − 𝑐2𝑎3)
𝑎2𝑏3 − 𝑎3𝑏2

−(𝑏1𝑐3 − 𝑏3𝑐1)
𝑐3𝑎1 − 𝑐1𝑎3

−(𝑎1𝑏3 − 𝑎3𝑏1)

𝑏1𝑐2 − 𝑏2𝑐1
−(𝑐2𝑎1 − 𝑐1𝑎2)

𝑎1𝑏2 − 𝑎2𝑏1 )
))
)

(
((
(𝑎1

𝑎2
𝑎3

𝑏1
𝑏2
𝑏3

𝑐1
𝑐2
𝑐3)

))
).

Question

Does it follow that if one of 𝑚12, 𝑚23, 𝑚31 is identically zero, then the remaining two are also
identically zero. Does it also follow that if one of 𝑚13, 𝑚21, 𝑚32 is identically zero, then the
remaining two are also identically zero. Does it follow that 𝑀  is a diagonal matrix? Does it also
follow that 𝑀  is a scalar matrix, that is, its diagonal entries are equal?

Fact 6.3.  The product 𝑀  is a diagonal matrix whose diagonal entries are equal to each other, and is
equal to

¹⁵How does it follow? What would be a useful similarity to consider?
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det(𝐴)𝐼3,
where

det(𝐴) ≔ 𝑎1(𝑏2𝑐3 − 𝑏3𝑐2) − 𝑏1(𝑎2𝑐3 − 𝑎3𝑐2) + 𝑐1(𝑎2𝑏3 − 𝑎3𝑏2).
Moreover, it follows that

(
((
( 𝑏2𝑐3 − 𝑏3𝑐2

−(𝑐3𝑎2 − 𝑐2𝑎3)
𝑎2𝑏3 − 𝑎3𝑏2

−(𝑏1𝑐3 − 𝑏3𝑐1)
𝑐3𝑎1 − 𝑐1𝑎3

−(𝑎1𝑏3 − 𝑎3𝑏1)

𝑏1𝑐2 − 𝑏2𝑐1
−(𝑐2𝑎1 − 𝑐1𝑎2)

𝑎1𝑏2 − 𝑎2𝑏1 )
))
)

(
((
(𝑎1

𝑎2
𝑎3

𝑏1
𝑏2
𝑏3

𝑐1
𝑐2
𝑐3)

))
)

=
(
((
(𝑎1

𝑎2
𝑎3

𝑏1
𝑏2
𝑏3

𝑐1
𝑐2
𝑐3)

))
)

(
((
( 𝑏2𝑐3 − 𝑏3𝑐2

−(𝑐3𝑎2 − 𝑐2𝑎3)
𝑎2𝑏3 − 𝑎3𝑏2

−(𝑏1𝑐3 − 𝑏3𝑐1)
𝑐3𝑎1 − 𝑐1𝑎3

−(𝑎1𝑏3 − 𝑎3𝑏1)

𝑏1𝑐2 − 𝑏2𝑐1
−(𝑐2𝑎1 − 𝑐1𝑎2)

𝑎1𝑏2 − 𝑎2𝑏1 )
))
)

= det(𝐴)𝐼3.

Definition

Let 𝐴 be a 3 × 3 matrix. Write 𝐴 = (
𝑎1
𝑎2
𝑎3

𝑏1
𝑏2
𝑏3

𝑐1
𝑐2
𝑐3

). The determinant of 𝐴 is denoted by det(𝐴),

and is defined to be
det(𝐴) ≔ 𝑎1(𝑏2𝑐3 − 𝑏3𝑐2) − 𝑏1(𝑎2𝑐3 − 𝑎3𝑐2) + 𝑐1(𝑎2𝑏3 − 𝑎3𝑏2).

The adjoint of 𝐴 is denoted by adj(𝐴), and is defined to be the matrix

adj(𝐴) ≔
(
((
( 𝑏2𝑐3 − 𝑏3𝑐2

−(𝑐3𝑎2 − 𝑐2𝑎3)
𝑎2𝑏3 − 𝑎3𝑏2

−(𝑏1𝑐3 − 𝑏3𝑐1)
𝑐3𝑎1 − 𝑐1𝑎3

−(𝑎1𝑏3 − 𝑎3𝑏1)

𝑏1𝑐2 − 𝑏2𝑐1
−(𝑐2𝑎1 − 𝑐1𝑎2)

𝑎1𝑏2 − 𝑎2𝑏1 )
))
).

Using the fact above, the following analogue of Lemma 3.22 for 3 × 3 matrices can be established¹⁶.

Lemma 6.4.  Let 𝐴 be a 3 × 3 matrix. The following statements are equivalent.
1. The matrix 𝐴 is invertible.
2. The determinant det(𝐴) of 𝐴 is nonzero.
3. Every vector

(
((
(𝑒

𝑓
𝑔)
))
)

can be expressed as a linear combination of the columns of 𝐴. Moreover, if 𝐴 is invertible, then

𝐴−1 = 1
det(𝐴)

adj(𝐴)

holds.

Note that the above lemma is same as Lemma 3.96.
Proof of Lemma 3.96.  If det(𝐴) is nonzero, then using

𝐴 ⋅ adj(𝐴) = adj(𝐴) ⋅ 𝐴 = det(𝐴)𝐼3,
it follows that 𝐴 is invertible.
If 𝐴 is invertible, then every vector

¹⁶In fact, the first few steps of the proof of Lemma 3.22 is precisely the analogue of Fact 3.94 for 2 × 2 matrices.
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(
((
(𝑒

𝑓
𝑔)
))
)

can be expressed as a linear combination of the columns of 𝐴, since the standard basis vectors can be
expressed as a linear combination of the columns of 𝐴.
Moreover, if every vector can be expressed as a linear combination of the columns of 𝐴, then in

particular, the standard basis vectors can be expressed as a linear combination of the columns of 𝐴.
This shows that there are real numbers 𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2, 𝑥3, 𝑦3, 𝑧3 such that

𝐴
(
((
(𝑥1

𝑦1
𝑧1

𝑥2
𝑦2
𝑧2

𝑥3
𝑦3
𝑧3)

))
) = 𝐼3.

This implies that 𝐴 has nonzero determinant by Fact 3.95. □
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