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§1 Coloring problems

Exercise 1.1 (IOQM 2023 P16, AoPS, cf. ARML 2010 Team Problems P4).
The six sides of a convex hexagon A1A2A3A4A5A6 are colored red. Each of
the diagonals of the hexagon is colored either red or blue. If N is the number
of such colorings such that every triangle AiAjAk, where 1 ≤ i < j < k ≤ 6,
has at least one red side, find the sum of the squares of the digits of N .

Summary — It suffices to (observe and then!!) show that for a coloring of the
diagonals of the hexagon using red and blue, if each of the triangles A1A2A3

and A2A4A6 has at least one red side, then each of the triangles AiAjAk, where
1 ≤ i < j < k ≤ 6, has at least one red side too. Count the number of colorings
of the diagonals of the hexagon using red and blue such that each of the triangles
A1A3A5 and A2A4A6 has at least one red side.
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Figure 1: India IOQM 2023 P16, Exercise 1.1

Walkthrough —

(a) The sides of the hexagon has been colored red.

(b) Note that if AiAjAk is such that some two of its vertices are consecutive,
then it has at least one red side.

(c) If AiAjAk is such that no two of its vertices are consecutive, then any
two of its vertices are exactly one vertex apart. Note that there precisely
two such triangles, namely, A1A3A5 and A2A4A6.

(d) Observe that if each of these two triangles have at least one red side, then
the required condition is satisfied.

(e) Moreover, if the required condition is satisfied, then each of these two
triangles has at least one red side.

(f) It follows that N is equal to the number of colorings of the diagonals of
the hexagon using red and blue such that each of the triangles A1A2A3

and A2A4A6 have at least one red side.

(g) This shows that

N = (23 − 1)(23 − 1)(2(
6
2)−6−(3+3)) = 7 · 7 · 8 = 392.

(h) The sum of the squares of the digits of N is equal to 32 + 92 + 22 =
9 + 81 + 4 = 94.

Solution 1. Consider one coloring of the diagonals of the hexagon using red
and blue. If this coloring satisfies the given condition, then each of the triangles
A1A2A3 and A2A4A6 has at least one red side. Let us establish the claim

Some style files, prepared by Evan Chen, have been adapted here. 3

https://github.com/vEnhance/dotfiles/blob/main/texmf/tex/latex/evan/evan.sty
https://web.evanchen.cc/otis.html


23 September 2025 https://jpsaha.github.io/MOTP/

below.

Claim — For any coloring of the diagonals of the hexagon using red and
blue, if each of the triangles A1A2A3 and A2A4A6 has at least one red
side, then each of the triangles AiAjAk, where 1 ≤ i < j < k ≤ 6, has at
least one red side.

Proof of the Claim. Consider a triangle AiAjAk with 1 ≤ i < j < k ≤ 6. Note
that if AiAjAk is such that some two of its vertices are consecutive, then it
has at least one red side. If AiAjAk is such that no two of its vertices are
consecutive, then any two of its vertices are exactly one vertex apart. Note
that there precisely two such triangles, namely, A1A3A5 and A2A4A6. This
proves the Claim.

Hence, it follows that N is equal to the number of colorings of the diagonals
of the hexagon using red and blue such that each of the triangles A1A2A3 and
A2A4A6 have at least one red side. Note that the sides of A1A2A3 can be
colored in 23 − 1 = 7 ways such that at least one of its sides is red. Similarly,
the sides of A2A4A6 can be colored in 23 − 1 = 7 ways such that at least one
of its sides is red. Note that there are precisely

(
6
2

)
− 6− 3− 3 diagonals in the

hexagon which are not a side of these two triangles. Hence, the number of ways
to color these 15 diagonals using red and blue satisfying the given condition is
equal to

N = (23 − 1)(23 − 1)(2(
6
2)−6−(3+3)) = 7 · 7 · 215 = 392.

The sum of the squares of the digits of N is equal to

32 + 92 + 22 = 9 + 81 + 4 = 94.

■

Exercise 1.2 (RMO 2013d P6, AoPS). Suppose that the vertices of a regular
polygon of 20 sides are coloured with three colors red, blue and green, such that
there are exactly three red vertices. Prove that there are three vertices A,B,C
of the polygon having the same colour such that triangle ABC is isosceles.

Walkthrough — Decompose the set of vertices of the 20-gon using the
vertices of the pentagons as in Fig. 2. Apply the pigeonhole principle. It would
be useful to note that any three vertices of a regular pentagon form the vertices
of an isosceles triangle.

Solution 2. Since there are exactly three red vertices and any of the remaining
17 vertices are blue or green, it follows that at least 9 of these 17 vertices are
of the same color, say blue. Note that the set of vertices of a regular 20-gon

4 The content posted here and at this blog by Evan Chen are quite useful.
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Figure 2: India RMO 2013, Exercise 1.2

can be written as the union of the four pairwise disjoint sets, each of them
consisting of the vertices of a regular pentagon (as in Fig. 2). Since there are
nine blue vertices, by the pigeonhole principle, at least one of these four sets
contains three blue points. Since any three points on a regular pentagon form
the vertices of an isosceles triangle, the statement follows. ■

Example 1.3 (Putnam 2002 A2). Given any five points on a sphere, show
that some four of them must lie on a closed hemisphere.

Walkthrough —

(a) Draw a great circle passing through at least two of the five points.

(b) At least one closed hemisphere contains at least two of the remaining
three points.

(c) Conclude!

Solution 3. Draw a great circle passing through at least two of the five points.
Then at least one closed hemisphere contains at least two of the remaining
three points. This proves the result. See [AN10, Example 3.2]. ■

Exercise 1.4 (RMO 2018a P4, AoPS). Let E denote the set of 25 points
(m,n) in the xy-plane, where m,n are natural numbers, 1 ≤ m ≤ 5, 1 ≤ n ≤ 5.

Some style files, prepared by Evan Chen, have been adapted here. 5
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(a) (b)

(c) (d)

Figure 3: USA Putnam 2002 A2, Example 1.3

Suppose the points of E are arbitrarily coloured using two colours, red and
blue. Show that there always exist four points in the set E of the form
(a, b), (a+ k, b), (a+ k, b+ k), (a, b+ k) for some positive integer k such that at
least three of these four points have the same colour. (That is, there always
exist four points in the set E which form the vertices of a square and having
at least three points of the same colour.)

Walkthrough —

(a) Assume that the conclusion is false, and by interchanging the colors (if
necessary), assume that there are more red points than the blue ones.

(b) Show that one of the four corners is red, and assume without loss of
generality that the point E (as in Fig. 4) is red.

(c) Considering the number of red points in each of the sets {A,A′}, {B,B′},
{C,C′}, {D,D′}, prove that these four sets together contain at most 4
red points, and conclude that the green square (as in Fig. 4) contains at

6 The content posted here and at this blog by Evan Chen are quite useful.
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Figure 4: India RMO 2018, Exercise 1.4

least 8 red points.

(d) Consider the blue squares in the green square, to show that the green
square contains exactly 8 red points.

(e) Conclude that there are exactly 13 red points, and each of the sets {A,A′},
{B,B′}, {C,C′}, {D,D′} contains exactly one red point, and the green
square contains exactly 8 red points.

(f) For each point on the dashed diagonal (as in Fig. 4), consider the square
having this point and E as the endpoints of one of its diagonals to show
that the points on the dashed diagonal are blue.

(g) Note that each point within the green square lying outside the dashed
diagonal, is a vertex of a square having two of its remaining vertices on
the dashed diagonal. Conclude that each such point is red.

(h) Obtain a contradiction to conclude that the assumption is false.

Solution 4. On the contrary, let us assume that there is no axes-parallel
square having at least three vertices of the same color.

Note that at least 13 among those 25 points are of the same color. Without
loss of generality, assume that those are red. By our hypothesis, it follows
that among the four vertices at the corners, there is at least one red vertex.
Without loss of generality1, let us assume that the bottom-right vertex is red,
and denote this vertex by E (as in Fig. 4).
Note that each of the sets {A,A′}, {B,B′}, {C,C ′}, {D,D′} (as in Fig. 4)

contains at most one red point, otherwise, we can form an axes-parallel square
with at least three vertices of the same color. Consequently, the green square
(as in Fig. 4) contains at least 13− 5 = 8 red points.

If the green square contains at least 9 red points, then at least one of the four
blue squares (as in Fig. 4) contains at least three red points, which is not the

1Convince yourself that there is indeed no loss of generality in assuming so.
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case by our hypothesis. Hence, the green square contains exactly 8 red points.
Consequently, there are precisely 13 red points among the 25 points, and each
of the sets {A,A′}, {B,B′}, {C,C ′}, {D,D′} contains exactly one red point.

For any given point on the dashed diagonal (as in Fig. 4), consider the square
having this point and E as the endpoints of one of its diagonals. Note that
one of the other two vertices of this square is red. By our hypothesis, it follows
that all the points on the gray diagonal (as in Fig. 4) are blue.
Note that each point within the green square lying outside the dashed

diagonal, is a vertex of a square having two of its remaining vertices on the
dashed diagonal. This shows that all the points within the green square, lying
outside the gray diagonal, are red. Hence, there exists an axes-parallel square,
all whose vertices are red. This contradicts our hypothesis, and hence, it follows
that there exists an axes-parallel square having at least three vertices of the
same color. ■

Exercise 1.5 (USAMO 2000 P4, AoPS). Find the smallest positive integer
n such that if n squares of a 1000× 1000 chessboard are colored, then there
will exist three colored squares whose centers form a right triangle with sides
parallel to the edges of the board.

Walkthrough —

(a) Does Fig. 5 help?

(b) Consider a suitable coloring to show that n ≥ 1999.

(c) Does coloring 1999 squares suffice?

(d) What happens when there are two columns, each containing at least two
colored squares, and some row contains one colored square from each of
these columns?

(e) Consider the columns which contain at least two colored squares. How
many colored squares can they contain together?

(f) What about the remaining colored squares? How many are they in total?

Solution 5. Note that if all the squares on the top row and on the left column,
excluding the square common to them, are colored, then the required condition
is not satisfied. This shows that n is at least 1999.
Suppose precisely 1999 squares of the chessboard have been colored. Note

that there are columns containing at least two colored squares. Consider the
columns containing at least two colored squares. If there are two among these
columns, such that some row contains one colored square from each of these
columns, then we are done. It remains to consider the case that no two of these
columns have this property, which we assume from now on. Hence, the colored
squares lying on these columns, lie in different rows. This shows that these
columns together contain at most 1000 colored squares. Consequently, there

8 The content posted here and at this blog by Evan Chen are quite useful.
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The above chessboards have 7 of its squares colored

The above chessboards have 8 of its squares colored

The above chessboards have 9 of its squares colored

Figure 5: USAMO 2000 P4, Exercise 1.5
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are at least 999 colored squares, each lying on a colum containing no more
colored squares. This implies that there are precisely 999 such colored squares.
Moreover, there is only one column containing at least two colored squares, and
it contains the remaining 1000 colored squares. One among the 999 colored
squares, together with two suitable squares from these 1000 squares, have the
required property. This shows that n = 1999. ■

Exercise 1.6 (SMMC 2017 A1, AoPS). The five sides and five diagonals of
a regular pentagon are drawn on a piece of paper. Two people play a game,
in which they take turns to colour one of these ten line segments. The first
player colours line segments blue, while the second player colours line segments
red. A player cannot colour a line segment that has already been coloured. A
player wins if they are the first to create a triangle in their own colour, whose
three vertices are also vertices of the regular pentagon. The game is declared
a draw if all ten line segments have been coloured without a player winning.
Determine whether the first player, the second player, or neither player can
force a win.

P1

P2

P3 P4

P5

(a)

P1

P2

P3 P4

P5

(b)

P1

P2

P3 P4

P5

(c)

Figure 6: SMMC 2017 A1, Exercise 1.6, First two colored segments share a
common vertex

Walkthrough — To force a win, the first player colors a side of the pentagon
in blue in the first move.

Let us first consider the case that the two edges coloured in the first two
moves have a common endpoint.

(a) Show that there is no loss of generality in assuming that the first player
colours P1P2 in blue and the second player colours P2P3 in red, where
P1P2P3P4P5 denotes the pentagon.

(b) Next, the first player colours P2P4 in blue.

(c) If the second player does not color P1P4, then in the next move the first
player colours P1P4 in blue and wins. It remains to consider the case that
the second player colours P1P4 in red, which we assume from now on.

(d) The first player colours P2P5 in blue.

10 The content posted here and at this blog by Evan Chen are quite useful.
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(c)
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P3 P4
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(d)

Figure 7: SMMC 2017 A1, Exercise 1.6, First two colored segments share no
common vertex

(e) During the next turn of the first player, one of the edges P1P5 and P4P5

is coloured in blue, thus creating a blue triangle.

We are still left with the case that the two edges coloured in the first two moves
do not have a common endpoint.

(a) Show that there is no loss of generality in assuming that the first player
colours P1P2 in blue and the second player colours P3P4 in red.

(b) Next, the first player colours P1P5 in blue.

(c) If the second player does not color P2P5, then in the next move the first
player colours P2P5 in blue and wins. It remains to consider the case that
the second player colours P2P5 in red, which we assume from now on.

(d) The first player colours P1P3 in blue.

(e) During the next turn of the first player, one of the edges P2P3 and P3P5

is coloured in blue, thus creating a blue triangle.

Solution 6. ■

Exercise 1.7 (RMO 2023b P6, AoPS). Consider a set of 16 points arranged in
a 4× 4 square grid formation. Prove that if any 7 of these points are coloured
blue, then there exists an isosceles right-angled triangle whose vertices are all
blue.

The following is from AoPS, is due to Rohan (Goyal?) as mentioned here by
L567.
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(a) (b)

Figure 8: India RMO 2023, Exercise 1.7

Walkthrough —

(a) Show that if the small square (as in Fig. 8a) does not contain a blue
point, then we are done.

(b) It remains to consider the case when the small square (as in Fig. 8a)
contains at least one blue point.

(c) Rotating the configuration about the center of the small square (if neces-
sary), assume that the top-left vertex of the small square (as in Fig. 8a)
is blue.

(d) Prove that the gray square contains at most three blue points.

• Consider the case when at least two blue points lie on the bigger
dashed circle. Show that the smaller dashed circle does not contain
any blue point, in this case. Hence, the gray square contains at
most three blue points.

• Similarly, if the smaller dashed circle contains at least two blue
points, then the gray square (as in Fig. 8b) contains at most three
blue points.

(e) It suffices to consider that each one of the red, purple, and green L-shapes,
has at most one end-point which is blue (otherwise, we are done).

(f) Use the above to show that the bottom-right point (as in Fig. 8b) is blue.

(g) Consider the point at the bottom-right corner, and the center of the
gray square, and a blue end-point of an L-shape, to show that these
three points form the vertices of an isosceles triangle having the required
properties.

Solution 7. Note that the 16 points are the vertices of the four squares as
in Fig. 8a. If no vertex of the small square is blue, then by the pigeonhole
principle, at least one of the remaining three squares has at least three blue

12 The content posted here and at this blog by Evan Chen are quite useful.
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vertices, and hence there exists an isosceles right-angled triangle with blue
vertices.

Let us assume that the small square (as in Fig. 8a) has a blue vertex. Rotating
the configuration about the center of the small square (if necessary), we may
and do assume that the top-left vertex of the small square is blue. Henceforth,
on the contrary, let us assume that there are no isosceles right-angled triangles
with blue vertices.

Claim — The gray square (as in Fig. 8a) contains at most three blue
points.

Proof of the Claim. Note that the points within the gray square lies on the
two dashed circles (as in Fig. 8a). Therefore, to prove the Claim, it suffices to
show that if one of the dashed circles (as in Fig. 8a) contains at least two blue
points, then the other dashed circle does not contain any blue point.
If at least two blue points lie on the bigger dashed circle, then using the

assumption, it follows that no more blue points lies on it, and hence these two
blue points lie along a diameter. It follows that no blue point lies on the other
dashed circle.
If at least two blue points lie on the smaller dashed circle, then using a

similar argument, it follows that no blue point lies on the bigger dashed circle.
The Claim follows.

Note that if both the end-points of one of the red, purple, and green L-shapes
(as in Fig. 8b) are blue, then these points together with the center of gray
square form the vertices of an isosceles right-angled triangle, contradicting the
assumption. Hence, each one of these three L-shapes has at most one end-point
which is blue. Since there are 7 blue points, using the Claim, it follows that
the bottom-right point is blue. Note that the center of the gray square, the
bottom-right point, and a blue end-point of the “purple” L-shape, form the
vertices of a triangle having the required properties. ■

§2 Combinatorics again

Example 2.1 (Moscow MO 2015 Grade 11 Day 1 P5). Prove that it is
impossible to put the integers from 1 to 64 (using each integer once) into an

8× 8 table so that for any 2× 2 square c
b
d

a

, the difference ad− bc is equal to
1 or −1.

Remark.
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Figure 9: ad− bc = ±1, ps− qr = ±1, Example 2.1
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Figure 10: ad− bc = ±1, ps− qr = ±1, Example 2.1

• Given a 2× 2 square c
b
d

a

, the difference ad− bc is equal to

the product of the diagonal terms

− the product of the anti-diagonal terms.

Let us call this difference the determinant of the 2× 2 square.

• For instance,

–

(
1 2
3 4

)
has determinant equal to −2,

–

(
8 9
7 12

)
has determinant equal to 96− 63 = 33,

–

(
13 14
5 7

)
has determinant equal to 91− 70 = 21.

– Did you notice that if the determinant is odd, then the diagonal
entries are odd or the anti-diagonal entries are odd?

• We need to show that there is no filling of an 8×8 table using the integers
from 1 to 64, using each integer once, such that any 2× 2 square (such
squares have been marked in Fig. 9, Fig. 10, note that there 9 + 16 = 25
such 2×2 squares.) has a determinant equal to 1 or −1. Equivalentlya, no
matter how one may fill an 8× 8 table using using the integers from 1 to
64, using each integer once, some 2× 2 square has to have a determinant
other than 1,−1.

14 The content posted here and at this blog by Evan Chen are quite useful.
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aIs the equivalence clear? Try to think about it!

Summary — If such a filling exists, then divide the 8 × 8 table into 16
pairwise disjoint 2× 2 squares (as in Fig. 11). Due to parity constraints, each
square contains precisely two evens along its diagonal or anti-diagonal, and their
product is at most one more than the product of the odd entries. Consequently,
for any of these 16 squares, the product of its even entries is less than the
product of the successors of its odd entries. Multiplying across the squares gives
a contradiction.

Walkthrough —

(a) Assume that such a filling exists.

Figure 11: Moscow MO 2015 Grade 11 Day 1 P5, Example 2.1

(b) Recall that the determinant of a 2× 2 square c
b
d

a

is

the product of the diagonal terms

− the product of the anti-diagonal terms.

(c) Note that even− even ̸= ±1, odd− odd ̸= ±1 , and hence any square

contains two odd numbers along the diagonal or on the anti-diagonal

.

(d) Divide the 8× 8 table into 16 pairwise disjoint 2× 2 squares.

(e) Each of these 16 squares contains at least two odd integers, and hence,
they together contain at least 32 odd integers.

(f) Conclude that each of these 16 squares contains precisely two odd integers,
and precisely two even integers.

(g) Consider a square among them. It is of the form

c
b
d

a

with a, d both odd, and b, c both even,

Some style files, prepared by Evan Chen, have been adapted here. 15

https://github.com/vEnhance/dotfiles/blob/main/texmf/tex/latex/evan/evan.sty
https://web.evanchen.cc/otis.html


23 September 2025 https://jpsaha.github.io/MOTP/

or of the form

d
a
c

b
with a, d both odd, and b, c both even.

(h) The product of its even entries is at most one more than the product of
its odd entries.

(i) Note that for any two odd positive integers b, c, the inequality bc+ 1 <
(b+ 1)(c+ 1) holds.

(j) This shows that

the product of two evens between 1 and 64

< the product of

two (possibly different) evens between 1 and 64.

(k) Multiply all the even entries of the 16 squares to obtain

2 · 4 · . . . · 64 < (1 + 1) · (3 + 1) · . . . · (63 + 1) = 2 · 4 · . . . · 64.

Solution 8. Let us assume that an 8× 8 table admits a filling by the integer
from 1 to 64, using each integer once, such that each 2× 2 square, considered
as a matrix, has determinant equal to 1 or −1.

Claim — Any 2× 2 square contains at least two odd integers.

Proof of the claim. Since the difference of two integers can be odd only when
they are of different parity (i.e. one of them is odd, and the other is even), it
follows that for any 2× 2 square, the product of its diagonal entries and the
product of its anti-diagonal entries are of different parity, and hence of these
two products is odd, and consequently, the diagonal entries are odd or the
anti-diagonal entries are odd. In particular, any 2× 2 square contains at least
two odd integers.

Let us divide the 8× 8 table into 16 pairwise disjoint 2× 2 squares (as in
Fig. 11).

Claim — Each of these 16 squares contains exactly two even integers,
lying along its diagonal or anti-diagonal.

Proof of the claim. By the previous Claim, each of these 16 squares contains
at least two odd integers, and they contain at least 16× 2 = 32 odd integers.
Since there are precisely 32 odd integers between 1 and 64, it follows that each
of these 16 squares contains exactly two odd integers along its diagonal or
anti-diagonal, and hence exactly two even integers along its anti-diagonal or
diagonal.
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Since the determinant of any 2× 2 square is 1 or −1, it follows that for any
of the 16 squares as in Fig. 11, the product of its even entries is at most one
more than the product of its odd entries. Note that for any two odd positive
integers b, c, the inequality bc+ 1 < (b+ 1)(c+ 1) holds. Consequently, for any
of the 16 squares as in Fig. 11, the product of its even entries is less than the
product of the successors of its odd entries. This implies that the product of
the even entries of all the 16 squares is less than the product of the successors
of the odd entries of these boxes. Note that the even entries of these squares
are the even integers lying between 1 and 64, so are the successors of the odd
entries of these squares. It follows that

2 · 4 · . . . · 64 < (1 + 1) · (3 + 1) · . . . · (63 + 1) = 2 · 4 · . . . · 64.

This contradicts the assumption that an 8 × 8 table admits a filling by the
integer from 1 to 64, using each integer once, such that each 2 × 2 square,
considered as a matrix, has determinant equal to 1 or −1. Hence, no such
filling is possible. ■

Exercise 2.2 (IMOSL 1995 N5, AoPS). At a meeting of 12k people, each
person exchanges greetings with exactly 3k+6 others. For any two people, the
number who exchange greetings with both is the same. How many people are
at the meeting?

Walkthrough —

(a) Count the number of triples (a, b, c) where a exchanges greetings with b
and c in two different ways.

(b) Show that 12k − 1 divides 525 and deduce the value of k.

Solution 9. Let λ denote the integer such that for any two people, precisely λ
persons exchange greetings with them. Counting the number of triples of the
form (a, b, c) where a exchanges greetings with b and c, we obtain

12k

(
3k + 6

2

)
= λ

(
12k

2

)
,

which yields

λ =
(3k + 5)(3k + 6)

12k − 1

=
1

4

36k2 + 132k + 120

12k − 1

=
1

4

(
3k + 11 +

3k + 131

12k − 1

)
=

3k + 11

4
+

1

16

(
1 +

525

12k − 1

)
.
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This shows that 12k−1 divides 525 and the quotient 525/(12k−1) is congruent
to 3 modulo 4, that is, for some integer ℓ ≥ 0, we have

525 = (12k − 1)(4ℓ+ 3).

Noting that 525 = 3 · 52 · 7, it follows that one of 12k − 1, 4ℓ+ 3 is a multiple
of 3 and the other one is a multiple of 7. This shows that 12k − 1 is equal to
one of

3, 15, 45, 7, 35, 105,

and hence 12k − 1 = 35, which gives k = 3. It follows that there are 36 people
at the meeting. ■

Exercise 2.3 (Tournament of Towns Fall 2013, Senior A Level P4, AoPS).
Integers 1, 2, . . . , 100 are written on a circle, not necessarily in that order. Can
it be that the absolute value of the difference between any two adjacent integers
is at least 30 and at most 50?

Walkthrough —

(a) Assume that such an arrangement is possible.

(b) Consider the integers 1, 2, . . . , 25, 76, 77, . . . , 100.

(c) Show that no two of these integers are adjacent.

(d) Conclude that the integers 1, 2, . . . , 25, 76, 77, . . . , 100 and 26, 27, . . . , 75
are placed alternately along the circle.

(e) Show that 26 is adjacent to 76 only.

(f) Derive a contradiction.

Solution 10. Let us assume that the integers 1, 2, . . . , 100 can be arranged
along the circumference of a circle in some order such that the absolute value
of the difference between any two adjacent integers is at least 30 and at most
50.
Since the difference of any two of the integers 1, 2, . . . , 25, 76, 77, . . . , 100 is

less than 30 or greater than 50 it follows that no two of these integers are
adjacent. Consequently, the elements of the sets

{1, 2, . . . , 25, 76, 77, . . . , 100}, {26, 27, . . . , 75}

are placed alternately along the circle. However, 26 is adjacent to 26 only,
which is impossible. This shows that there is no arrangement of the integers
1, 2, . . . , 100 along the circumference of a circle satisfying the given condition.

■

Exercise 2.4 (SMMC 2020 A1, AoPS). There are 1001 points in the plane
such that no three are collinear. The points are joined by 1001 line segments
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such that each point is an endpoint of exactly two of the line segments. Prove
that there does not exist a straight line in the plane that intersects each of the
1001 line segments in an interior point. An interior point of a line segment is a
point of the line segment that is not one of the two endpoints.

Walkthrough —

(a) On the contrary, let us assume that there exists a straight line L in the
plane that intersects each of the 1001 line segments in an interior point.

(b) Show that L cannot pass through any of the 1001 points.

(c) Color the points on one side of L red, and the points on the other side of
L blue.

(d) Show that the number of the line segments is equal to twice the number
of red points, to obtain a contradiction.

Solution 11. On the contrary, let us assume that there exists a straight line
L in the plane that intersects each of the 1001 line segments in an interior
point. Note that L cannot pass through any of the 1001 points. Indeed, if L
passes through one of the 1001 points, then the two line segments that have
this point as an endpoint, cannot intersect L at their interior points, since no
three of the given points are collinear. Let us color the points on one side of L
red, and the points on the other side of L blue. Since L intersects each of the
1001 line segments in an interior point, each of the 1001 line segments has one
red endpoint and one blue endpoint. Moreover, each of the 1001 points is an
endpoint of exactly two of the line segments. Therefore, the number of line
segments is equal to twice the number of red points, which is imposssible since
1001 is odd. This completes the proof. ■

§3 Tiling problems

Example 3.1. Show that for any integer n ≥ 1, a 2n× 2n chessboard with one
square removed can be tiled by non-overlapping trominos, that is, L-shaped
pieces consisting of three squares.

(a)

Figure 12: Tiling a 2n×2n chessboard with one square removed using trominos.
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(a) Tiling using 6 squares. (b) Tiling using 7 squares. (c) Tiling using 8 squares.

Figure 13: Tiling a square using 6, 7, and 8 squares.

Walkthrough —

(a) Can a 2× 2 chessboard with one square removed be tiled by trominos?

(b) Can a 4× 4 chessboard with one square removed be tiled by trominos?

(c) Can a 8× 8 chessboard with one square removed be tiled by trominos?

(d) What about tiling a 2n × 2n chessboard with one square removed using
trominos for n ≥ 4? Does induction help?

Solution 12. ■

Example 3.2. For any integer n ≥ 6, show that a square can be cut into n
squares, not necessarily of the same size.

Walkthrough —

(a) Try to work it out for small values of n, for instance n = 6, 7, 8, 9.

(b) What happens if you want to go from n to n+ 3?

Solution 13. Note that if we can do it for n, then we can do it for n+ 3 by
cutting one of the squares into four smaller squares. So it suffices to do it for
n = 6, 7, 8, which is shown in Fig. 13. By induction, we are done. ■

Example 3.3. Can a 12 × 15 chessboard be covered by non-overlapping
trominos? A tromino is an L-shaped piece consisting of three squares, where
these squares are of the same size as the smallest squares in the chessboard.

Walkthrough —

(a) Does Fig. 14 help?

Solution 14. Note that a 2× 3 rectangle can be tiled by two non-overlapping
trominos. Since a 12× 15 chessboard can be covered by non-overlapping 2× 3

20 The content posted here and at this blog by Evan Chen are quite useful.
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Figure 14: Tiling a 12× 15 chessboard using trominos.

rectangles, it follows that a 15× 15 chessboard can be tiled by non-overlapping
trominos. ■

Exercise 3.4 (SMMC 2018 A1). Call a rectangle dominant if it is similar to
a 2× 1 rectangle. For which integers n ≥ 5 is it possible to tile a square with
n dominant rectangles, which are not necessarily congruent to each other?

Walkthrough —

(a)

Solution 15. ■

§4 Rationals

Exercise 4.1 (British Mathematical Olympiad Round 1 2004/5 P5). Let S
be a set of rational numbers with the following properties:

1. 1
2 ∈ S,

2. If x ∈ S, then both 1
x+1 ∈ S and x

x+1 ∈ S.

Prove that S contains all rational numbers in the interval 0 < x < 1.

Walkthrough —

(a) Since 1
2
lies in S, by the second condition, it follows that 2

3
lies in S and

so does 1
3
.

(b) Taking x = 1
3
, it follows that

3

4
,
1

4

lie in S. Note that we have showed that S contains all the rationals
between 0 and 1 with denominator at most 4.
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(c) Taking x = 2
3
, it follows that

2

5
,
3

5

lie in S. We are not in a position to conclude that S contains all the
rationals between 0 and 1 with denominator at most 5.

(d) Taking x = 1
4
, it follows that

1

5
,
4

5
lie in S. It follows that S contains all the rationals between 0 and 1 with
denominator at most 5.

(e) Does the above provide any insight to conclude that S contains all the
rationals between 0 and 1? For instance, can one expect the following
(and then prove, or realize that it is false, or argue along different lines)?

For a rational number x lying in S, the rationals

1

x+ 1
,

x

x+ 1

have denominators largera than that of x.

aOften, while being naive, one takes the liberty to write larger to mean
no smaller, that is, greater than or equal to. But this is NOT allowed
while writing down a solution.

Or, stated in a different way,

A rational number lying in (0, 1) can be obtained from a rational
number lying in (0, 1) with smaller denominator by applying one of
the maps

x 7→ 1

x+ 1
, x 7→ x

x+ 1
.

Solution 16. It suffices to establish the following.

Claim — For any integer k ≥ 2, all the rationals lying in (0, 1) with
denominators not exceeding k lie in S, that is, we have{

1

ℓ
,
2

ℓ
, . . . ,

ℓ− 2

ℓ
,
ℓ− 1

ℓ

}
⊆ S for all 2 ≤ ℓ ≤ k. (1)

Proof of the Claim. Eq. (1) holds for k = 2 from condition (1). Suppose Eq. (1)
holds for k = n − 1 for some integer n ≥ 3. Let m be an integer satisfying
1 ≤ m < n. Using the induction hypothesis, we will show that m

n lies in S.
Note that for 0 < x < 1, the inequalities

0 <
x

x+ 1
<

1

2
,
1

2
<

1

x+ 1
< 1
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hold. Using Condition (1), it follows that m
n lies in S if m

n = 1
2 . If 0 < m

n < 1
2 ,

then
x

x+ 1
=

m

n

holds for x = m
n−m , which is a rational number lying in (0, 1) with denominator

≤ n − 1, and by induction hypothesis, the set S contains m
n . Moreover, if

1
2 < m

n < 1, then
1

x+ 1
=

m

n

holds for x = n−m
m , which is a rational number lying in (0, 1) with denominator

≤ n− 1, and by induction hypothesis, the set S contains m
n . We conclude that

for any integer n ≥ 3, Eq. (1) holds for k = n if it holds for k = n− 1.

■

§5 Polynomials

Exercise 5.1 (SMMC 2018 A2). Ada and Byron play a game. First, Ada
chooses a non-zero real number a and announces it. Then Byron chooses a
non-zero real number b and announces it. Then Ada chooses a non-zero real
number c and announces it. Finally, Byron chooses a quadratic polynomial
whose three coefficients are a, b, c in some order.

(a) Suppose that Byron wins if the quadratic polynomial has a real root and
Ada wins otherwise. Determine which player has a winning strategy.

(b) Suppose that Ada wins if the quadratic polynomial has a real root and
Byron wins otherwise. Determine which player has a winning strategy.

Walkthrough — Without loss of generality, we may assume that a = 1.

(a) In (a), Byron has a winning strategy by choosing b = −1, and then
considering the polynomial ax2 + cx+ b.

(b) In (b), Ada has a winning strategy by choosing c{
−4

√
b if b > 0,

b2

8
if b < 0.

In any of the above cases, one can check that the discriminant of each of
the three possible polynomials is positive.

Solution 17. ■

Exercise 5.2 (Putnam 1999 A2, AoPS). Show that for some fixed positive
integer n, we can always express a polynomial with real coefficients which is
nowhere negative as a sum of the squares of n polynomials.
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Walkthrough —

(a) Show that the real roots of P have even multiplicity.

(b) Conclude that P can be expressed as a product of monic quadratic
polynomials with real coefficients having nonreal roots, and even powers
of linear polynomials with real coefficients.

(c) Show that a monic quadratic polynomial with real coefficients having
nonreal roots is the sum of the squares of two polynomials with real
coefficients.

Solution 18. Note that if P is a constant polynomial, then it is clear.
Henceforth, let us assume that P is a nonconstant polynomial.

Claim — The polynomial P can be written as the product of polynomials,
each of which can be expressed as the sum of the squares of two polynomials
with real coefficients.

Proof of the Claim. Since P has real coefficients, it follows that if α ∈ C \R is
a root of P , then so is α. Thus, the nonreal complex roots of P form pairs of
complex conjugates. Note that

(x− α)(x− α) = (x− Re(α))2 + Im(α)2.

Decomposing P over the pairs of nonreal complex conjugate roots, and the
real roots, it follows that P can be expressed as the product

cf(x)
∏
a∈A

(x− a)ma ,

where c denote the leading coefficient of P , f(x) denotes the product of (possibly
no) quadratic polynomials of the form (x−a)2+b2 with a ∈ R, b ∈ R\{0}, and
A denotes the set of real roots of P , and for an element a ∈ A, the multiplicity
of a is denoted by ma.
Evaluating P at a suitable real number (for instance, at 1 +

∑
a∈A a (resp.

1) if A is nonempty (resp. empty)), it follows that c > 0.
Let a be an element of A. Since A is finite, there exists a real number ε > 0

such that the interval (a− ε, a+ ε) contains no real roots of P other than a.
If ma were odd, then the sign of P (x) would not remain constant as x ranges
over in (a− ε, a+ ε) \ {a}. Hence, it follows that ma is even.
Since c > 0 amd ma is even for any a ∈ A, the Claim follows.

Claim — Let f1(x), g1(x), f2(x), g2(x) be polynomials with real coeffi-
cients. Then the following holds.

(f1(x)
2 + g1(x)

2)(f2(x)
2 + g2(x)

2)
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= (f1(x)f2(x)− g1(x)g2(x))
2 + (f1(x)g2(x)− f2(x)g1(x))

2

Proof of the Claim. Note that

(f1(x)
2 + g1(x)

2)(f2(x)
2 + g2(x)

2)

= f1(x)
2f2(x)

2 + g1(x)
2g2(x)

2 − 2f1(x)f2(x)g1(x)g2(x)

+ f1(x)
2g2(x)

2 + f2(x)
2g1(x)

2 + 2f1(x)g2(x)f2(x)g1(x)

= (f1(x)f2(x)− g1(x)g2(x))
2 + (f1(x)g2(x) + f2(x)g1(x))

2.

Combining the above Claims, and using induction, the result follows. ■

Exercise 5.3 (Tournament of Towns Spring 2014, Senior A Level P7, by D. A.
Zvonkin). Consider a polynomial P (x) such that

P (0) = 1, (P (x))2 = 1 + x+ x100Q(x),

where Q(x) is also a polynomial. Prove that in the polynomial (P (x) + 1)100,
the coefficient of x99 is zero.

Walkthrough —

(a) Since P (x)2 is congruent to 1+ x modulo x100, show that (P (x) + 1)100 +
(1− P (x))100 is congruent to a polynomial of degree 50 in 1 + x modulo
x100.

(b) Prove that (P (x) + 1)100 is congruent to a polynomial of degree 50 in
1 + x modulo x100.

Solution 19. Note that

(P (x) + 1)100 + (1− P (x))100

is a polynomial in P (x)2 of degree 50. Given three polynomials f(x), g(x), h(x)
having complex coefficients, with h(x) ̸= 0, we say that f(x) is congruent
to g(x) modulo h(x) if h(x) divides f(x) − g(x), that is, f(x) − g(x) is the
product of h(x) and a polynomial in x with complex coefficients. Since P (x)2

is congruent to 1+x modulo x100, it follows that (P (x)+ 1)100 +(1−P (x))100

is congruent to a polynomial of degree 50 in 1 + x modulo x100. Using that
P (x) ≡ 1 mod x, we obtain that (P (x) + 1)100 is congruent to a polynomial
of degree 50 in 1 + x modulo x100. This shows that the coefficient of x99 in
(P (x) + 1)100 is zero. ■

Exercise 5.4 (SMMC 2024 C2). Define the function f : R → R by

f(x) = x3 − 3x2 +
7

2
x− 1

2
.

Determine all real numbers r such that f(f(r)) = r.
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Walkthrough —

(a) Show that f is an increasing function.

Solution 20. ■

Here is a problem that can be solved using Gauss’s lemma.

Exercise 5.5 (ELMO 2009, AoPS, proposed by Evan O’Dorney). Let a, b, c
be positive integers such that a2 − bc is a square. Prove that 2a+ b+ c is not
prime.

Walkthrough —

(a) Consider the quadratic polynomial p(x) = bx2 + 2ax+ c.

(b) Show that its discriminant is a perfect square.

(c) Use Gauss’s lemma to show that p(x) can be factored into linear polyno-
mials with integer coefficients.

(d) Note that the roots of p(x) are negative rationals.

(e) Conclude that p(x) can be factored into linear polynomials with positive
integer coefficients.

(f) Conclude that p(1) = 2a+ b+ c is not a prime.

Solution 21. Consider the quadratic polynomial p(x) = bx2 + 2ax+ c with
integer coefficients. Since its discriminant is a perfect square, it follows that its
roots are rational, that is, it can be factored over the rationals. By Gauss’s
lemma, p(x) can be factored into linear polynomials with integer coefficients.
Since the leading coefficient of p(x) is positive, it follows that it can be factored
into linear polynomials with integer coefficients and having positive leading
coefficients. Note that the roots of p(x) are negative rationals. This proves that
p(x) can be factored into linear polynomials with positive integer coefficients.
Noting that p(1) = 2a+ b+ c, it follows that 2a+ b+ c is not a prime. ■

Remark. Note that in the above, one may prove that p(x) can be factored
into linear polynomials with integer coefficients without using Gauss’s lemma,
possibly by establishing the lemma in this specific case. In fact, the above
problem could serve as an introduction to Gauss’s lemma.

§6 Crossing the x-axis/Intermediate value theorem

Example 6.1. Suppose P (x) is a polynomial with real coefficients such that
P (x) = x has no real solution. Show that P (P (x)) = x has no real solutions.
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Example 6.2. Let P (x) and Q(x) be monic polynomials of degree 10 having
real coefficients. Assume that the equation P (x) = Q(x) has no real roots.
Prove that the equation P (x+ 1) = Q(x− 1) has at least one real root.

Walkthrough —

(a) Consider the difference P (x)−Q(x) to show that the coefficient of x9 in
these polynomials are equal.

(b) Prove that the polynomial P (x+ 1)−Q(x− 1) is of degree 9.

Solution 22. Note that P (x) − Q(x) is a polynomial of degree at most 9
having real coefficients. Since P (x)−Q(x) has no real root, it follows that it
has degree at most 8. In other words, the coefficients of x9 in P (x), Q(x) are
the same. Note that P (x+1)−Q(x− 1) is of degree ≤ 9, and the coefficient of
x9 in P (x+1)−Q(x−1) is equal to the coefficient of x9 in (x+1)10− (x−1)10,
which is equal to 20. This shows that P (x+ 1)−Q(x− 1) is a polynomial of
degree 9 with real coefficients. Consequently, it has at least one real root. ■

Example 6.3. Let P (x) be a nonconstant polynomial with real coefficients
having a real root. Suppose it does not vanish at 0. Show that the monomial
terms appearing in P (x) can be erased one by one to obtain its constant term
such that the intermediate polynomial have at least one real root.

Walkthrough —

(a)

Solution 23. Write P (x) = anx
n + · · · + a0 with an . . . , a0 lying in R, and

ana0 ̸= 0. Since any polynomial of odd degree has a real root, it follows that if
the degree of P (x) is odd, then the nonconstant monomials, other than the
leading term, can be erased one by one, and then, the leading term can be
erased to obtain a0, and the intermediate polynomials have a real root. If an, a0
are of opposite signs and n is even, then the same process can be followed, and
note that any of the intermediate polynomials takes values of opposite signs at
0 and at a large enough integer, and hence has a real root.

Let us assume that n is even, and an, a0 are of the same sign. Let α denote
a real root of P (x). Let Q(x) denote the polynomial P (x)− anx

n. Note that
Q(0) = a0 and Q(α) = −anα

n. Since a0 is nonzero, it follows that α ̸= 0, and
hence, Q(0), Q(α) are of opposite signs. This shows that Q(x) is a nonconstant
polynomial with real coefficients having a real root, and it does not vanish at
0. Since the degree of Q(x) is smaller than that of P (x), by induction, we are
done. ■
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Exercise 6.4 (China TST 1995 Day 2 P2, AoPS). Alice and Bob play a game
with a polynomial of degree at least 4:

x2n +□x2n−1 +□x2n−2 + · · ·+□x+ 1.

They take turns to fill the empty boxes. If the resulting polynomial has no real
root, Alice wins, otherwise, Bob wins. If Alice goes first, who has a winning
strategy?

Walkthrough —

(a) There are more odds than evens among the integers 1, 2, . . . , 2n− 1.

(b) Can Bob have a winning strategy using the odds in his favour?

Solution 24. Bob has a winning strategy, as described below.
Bob makes sure that at the end of each of his turns except the last one, the

number of even powers of x whose coefficients have been provided by some of
them is equal to the number of odd powers of x whose coefficients have been
provided by some of them. This can be done, for instance, if during a turn
of Bob, other than the last turn, Bob provides the coefficient of an odd (resp.
even) power of x if Alice has provided the coefficient of an even (resp. odd)
power of x in the preceeding turn.
Since n ≥ 2, it follows that Bob gets at least one turn. At the beginning of

the final turn of Bob, there are two powers of x whose coefficients are to be
determined, denote them by xi, xj , their coefficients by ci, cj respectively. Let
Q(x) denote the polynomial, obtained by the erasing the terms corresponding
to xi, xj from the polynomial that Bob had at the beginning of his final turn.
Note that

P (x) = Q(x) + cix
i + cjx

j .

Note that at least of i, j is odd. Interchanging i, j if necessary, let us assume
that i is odd. We descrie the strategy that Bob follows in the two cases below.
Let us consider the case that j is even. Bob determines cj in such a way

that for any choice of ci, the completed polynomial P (x) is guaranteed to have
at least one real root. This can be done, for instance, by taking cj satisfying

Q(1) +Q(−1) + 2cj = 0.

For any choice of ci, the above choice of cj shows that P (1)+P (−1) = 0, which
implies that P (x) has a root in the interval [−1, 1].

Let us consider the case that j is odd. Bob determines cj in such a way that
for any choice of ci by Alice in the next turn, the completed polynomial P (x)
is guaranteed to have at least one real root. This can be done, for instance, by
taking cj satisfying

Q(2) + cj2
j + 2iQ(−1)− cj2

i = 0.
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Since i ̸= j, the above holds for some cj ∈ R. For any choice of ci, note that

P (2) + 2iP (−1) = 0

holds, which implies that P (x) has a root in [−1, 2]. ■

§7 Roots of unity

Exercise 7.1 (USAMO 1976 P5, AoPS). If P (x), Q(x), R(x), and S(x) are
all polynomials such that

P (x5) + xQ(x5) + x2R(x5) = (x4 + x3 + x2 + x+ 1)S(x),

prove that x− 1 is a factor of P (x).

Summary — The primitive 5-th roots of unity can be used to show that
P (1) = 0.

Walkthrough —

(a) Substituting primitive 5-th roots of unity (that is, the 5-th roots of unity
other than 1) for x, yields several linear equations in P (1), Q(1), R(1).

(b) Can Q(1) and R(1) be eliminated to obtain that P (1) = 0?

Solution 25. Denote the 5-th root of unity cos 2π
5 + i sin 2π

5 by ζ. Substituting
x = ζ, ζ2, ζ3, we obtain

P (1) + ζQ(1) + ζ2R(1) = 0,

P (1) + ζ2Q(1) + ζ4R(1) = 0,

P (1) + ζ3Q(1) + ζ6R(1) = 0.

Eliminating R(1) from the first two equations yields

(1− ζ2)P (1) + ζ2(1− ζ)Q(1) = 0,

and eliminating R(1) from the last two equations yields

(1− ζ2)P (1) + ζ3(1− ζ)Q(1) = 0.

Eliminating Q(1) from the above two equations, we obtain (1 − ζ)P (1) = 0,
which gives P (1) = 0. This shows that x− 1 is a factor of P (x). ■
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Exercise 7.2 (Leningrad Math Olympiad 1991). A finite sequence a1, a2, . . . , an
is called p-balanced if any sum of the form

ak + ak+p + ak+2p + . . .

is the same for any k = 1, 2, 3, . . . , p. For instance the sequence

a1 = 1, a2 = 2, a3 = 3, a4 = 4, a5 = 3, a6 = 2

is a 3-balanced. Prove that if a sequence with 50 members is p-balanced for
p = 3, 5, 7, 11, 13, 17, then all its members are equal zero.

Summary — Consider the polynomial
∑50

i=1 aix
i.

Walkthrough —

(a) Show that the polynomial vanishes at any p-th root of unity, other than
1, for p ∈ {3, 5, 7, 11, 13, 17}.

(b) How many such roots of unity are there in total?

Solution 26. Let a1, a2, . . . , a50 be a sequence of complex numbers. Assume
that it is p-balanced for p ∈ {3, 5, 7, 11, 13, 17}. For an integer n ≥ 1, denote
the root of unity cos 2π

n + i sin 2π
n by ζn. Let P (x) denote the polynomial∑n

i=1 aix
i.

Let 3 ≤ p ≤ 17 be a prime. Since a1, a2, . . . , a50 is p-balanced, for any
1 ≤ ℓ < p, we obtain

P (ζℓp) =

p∑
k=1

(ak + ak+p + . . . )ζkℓp

= (a1 + a1+p + . . . )

p∑
k=1

ζkℓp

= 0,

where the final equality follows since ζℓp ̸= 1. This shows that the polynomial
P (x) vanishes at the elements of the set

∪p∈{3,5,7,11,13,17}{ζℓp | 1 ≤ ℓ < p},

which contains ∑
p∈{3,5,7,11,13,17}

(p− 1) = 2 + 4 + 6 + 10 + 12 + 16 = 50

elements. Moreover, P (x) also vanishes at 0. Note that P (x) is a polynomial
of degree 50, and it has at least 51 zeroes. This gives that P (x) = 0, and hence,
the terms of the sequence a1, a2, . . . , a50 are all equal to zero. ■
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a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

Figure 15: USAMO 2018 P4, Exercise 8.1

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

Figure 16: USAMO 2018 P4, Exercise 8.1

§8 Congruences

Exercise 8.1 (USAMO 2018 P4, AoPS, proposed by Ankan Bhattacharya).
Let p be a prime, and let a1, a2, . . . , ap be integers. Show that there exists an
integer k such that the numbers

a1 + k, a2 + 2k, . . . , ap + pk

produce at least p/2 distinct remainders upon division by p.

The following uses the fact that every integer not divisible by a prime p is
invertible modulo p, which can be proved from first principles!

Walkthrough —

(a) Note that it suffices to show that some integer k among 1, 2, . . . , p has
the required property.
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a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

Figure 17: USAMO 2018 P4, Exercise 8.1

(b) Consider the integers a1, a2, . . . , ap, and we join each of them using an
arc as in Fig. 15.

(c) For any two distinct integers i, j among 1, 2, . . . , p, show that the i-th
and the j-th ones among the numbers

a1 + k, a2 + 2k, . . . , ap + pk,

that is, the numbers ai + ik, aj + jk leave the same remainder upon
division by p precisely for one value of k.

(d) Let us color the arcs (see Fig. 15). We join ai, aj by an arc if the numbers
ai + ik, aj + jk leave the same remainder upon division by p. We write
k on that arc. See Fig. 16, where instead of writing the corresponding
integers on the arcs, we have colored them. Thinking of the integers
1, 2, . . . , p as p colors, and we have colored the arcs instead of labelling
the arcsa.

(e) Note that there are precisely p(p−1)
2

unordered pairs of the form {ai, aj},
that is, there are precisely p(p−1)

2
arcs (see Fig. 15). Moreover, on each

of these arcs, one of the integers 1, 2, . . . , p is written. In Fig. 16, these
arcs are colored using at most p colors.

(f) Conclude that for some integer k among 1, 2, . . . , p, at most (p−1)/2 arcs
have the integer k written on them, that is, there are at most (p− 1)/2
unordered pairs of the form {ai, aj} such that ai + ik, aj + jk produce
the same remainder upon division by p. In Fig. 16, for some color, there
are at most (p− 1)/2 arcs of that color.

(g) Show thatb for this integer k, the numbers

a1 + k, a2 + 2k, . . . , ap + pk

produce at least p/2 distinct remainders upon division by p.

aObserve that all the p colors might not have been used, for instance, if any two of
a1, . . . , ap differ by a multiple of p.
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bA graph on n vertices with m edges has at least n−m connected components. This
can be proved by induction on m, and observing that introducing a new edge
reduces the number of connected components at most by 1.

Exercise 8.2 (Tournament of Towns Fall 2019, Junior, O Level P4, by
Boris Frenkin). There are given 1000 integers a1, . . . , a1000. Their squares
a21, . . . , a

2
1000 are written along the circumference of a circle. It so happened

that the sum of any 41 consecutive numbers on this circle is a multiple of 412.
Is it necessarily true that every integer a1, . . . , a1000 is a multiple of 41?

Remark. Replace 1000 by 10 and 41 by 7, and try to work on the problem.

Solution 27. For any integer m, let m denote the integer lying between 1 and
1000, which is congruent to m modulo 1000. Note that

a2i ≡ a2j mod 412

holds for any integers i, j lying between 1 and 1000, and satisfying i ≡ j mod 41.
It follows that

a21 ≡ a2
41k+1

mod 412

for any integer k. Since the integers 41, 1000 are relatively prime, it follows
that the integers

41, 41 · 2, 41 · 3, . . . , 41 · 1000

are pairwise distinct modulo 1000, that is, these integers are congruent to
1, 2, . . . , 1000 modulo 1000 in some order. This shows that a21 is congruent to
a2i modulo 412 for any integer 1 ≤ i ≤ 1000. It follows that

41a21 ≡ a21 + a22 + · · ·+ a241 mod 412

Since the sum a21 + a22 + · · ·+ a241 is divisible by 412, this shows that 41 divides
a1. For any integer 1 ≤ i ≤ 1000, 412 divides a21−a2i , and using that 41 divides
a1, we obtain 41 divides ai.

This proves that it is necessary that every integer a1, . . . , a1000 is a multiple
of 41. ■

Example 8.3 (India RMO 2017a P2). Show that the sum of the cubes of any
seven consecutive integers cannot be expressed as the sum of the fourth powers
of two consecutive integers.

Walkthrough — Read it modulo !
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Solution 28. Note that the fourth powers of the integers 0, 1, 2, 3, 4, 5, 6 are
congruent to 0, 1, 2, 4, 4, 2, 1 modulo 7 respectively. The shows that the sum of
the fourth powers of two consecutive integers is congruent to one of

0 + 1, 1 + 2, 2 + 4, 4 + 2, 2 + 1, 1 + 0

modulo 7. Hence, the sum of the fourth powers of two consecutive integers
is not divisible by 7. Also note the cubes of seven consecutive integers is
congruent to

03 + 13 + 23 + 33 + 43 + 53 + 63

modulo 7, which is congruent to

13 + 23 + 33 + (−3)3 + (−2) + (−1)3 = 0

modulo 7. This shows that the sum of the cubes of seven consecutive integers
is not equal to the sum of the fourth powers of two consecutive integers. This
completes the proof. ■

Exercise 8.4 (USAJMO 2013 P1, AoPS, proposed by Titu Andreescu). Are
there integers a, b such that a5b + 3 and ab5 + 3 are both perfect cubes of
integers?

Summary — Consider the integer ab modulo 3, and read a5b + 3, ab5 + 3
modulo 9.

Walkthrough —

(a) If 3 divides ab, then consider one of the integers a5b+ 3, ab5 + 3 modulo
9.

(b) If 3 does not divide ab, then assuming the integers a5b+ 3, ab5 + 3 to be
perfect cubes, determine the integers a5b, ab5 modulo 9.

Solution 29. Let us assume that there are integers a, b satisfying the given
condition. First, let us consider that 3 divides ab. Without loss of generality2,
let us assume that 3 divides a. Then

a5b+ 3 ≡ 3 (mod 9).

Since a5b+ 5 is a perfect cube and is divisible by 3, it follows that

a5b+ 3 ≡ 0 (mod 9),

implying 3 ≡ 0 (mod 9), which is impossible.

2Show that there is indeed no loss of generality in assuming what follows.
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Next, let us consider the case that 3 does not divide ab. Since a5b+ 3 is a
cube and is not divisible by 3, we obtain a5b+ 3 ≡ ±1 (mod 9), which implies
that a5b is congruent to one of 5, 7 modulo 9. Using a similar argument, it
follows that ab5 is also congruent to one of 5, 7 modulo 9. Hence, (ab)6 is
congruent to one of 5 · 5, 5 · 7, 7 · 7 modulo 9. So, (ab)6 is not congruent to 1
modulo 9. Since 3 does not divide ab, it follows that (ab)6 is congruent to 1
modulo 9.

It follows that there are no integers a, b satisfying the given conditions. ■

Exercise 8.5 (China TST 1995 Day 1 P1, AoPS). Find the smallest prime
number p that cannot be represented in the form |3a − 2b|, where a and b are
non-negative integers.

Walkthrough —

(a) Any prime smaller than 41 can be expressed as the absolute value of the
difference of a nonnegative power of 3 and a nonnegative power of 2.

(b) If 41 = 2b−3a, then b ≥ 3 and hence 3a ≡ −1 mod 8, which is impossible.

(c) Assume that 41 = 3a − 2b. Considering congruence modulo 3, show that
b is an even positive integer. Reduce modulo 4 to show that a is even.

(d) Write a = 2x, b = 2y, and factorize 41.

(e) Conclude by obtaining a contradiction.

Solution 30. Note that any prime smaller than 41 can be expressed as the
absolute value of the difference of a nonnegative power of 3 and a nonnegative
power of 2, as shown below.

2 = 3− 1,

3 = 4− 1,

5 = 9− 4,

7 = 8− 1,

11 = 27− 16,

13 = 16− 3,

17 = 81− 64,

19 = 27− 8,

23 = 32− 9,

29 = 32− 3,

31 = 32− 1,

37 = 64− 27.

Let us prove the following claim.
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Claim — The prime number 41 cannot be expressed as the absolute
value of the difference of a nonnegative power of 3 and a nonnegative
power of 2.

Proof of the Claim. On the contrary, let us assume that

41 = |3a − 2b|

holds for some nonnegative integers a, b.
First, let us consider the case that 41 = 2b − 3a. Note that b ≥ 3 holds,

and reducing the above modulo 8, it follows that 3a ≡ −1 (mod 8), which is
impossible.
Now, let us consider the case that 41 = 3a − 2b. Reducing modulo 3, it

follows that 2b ≡ 1 (mod 3), which shows that b is even. Note that b is nonzero.
Next, reducing modulo 4, we obtain 3a ≡ 1 (mod 4), which implies that a is
even. Writing a = 2x, b = 2y for some positive integers x, y, we obtain

41 = 32x − 22y = (3x − 2y)(3x + 2y)

with 1 ≤ 3x − 2y < 3x + 2y, which yields

3x − 2y = 1, 3x + 2y = 41,

which is impossible.
Considering the above cases, the claim follows.

This proves that 41 is smallest prime that cannot be expressed in the given
form. ■

Exercise 8.6 (SMMC 2017 B2, AoPS). Determine all pairs (p, q) of positive
integers such that p and q are primes, and pq−1 + qp−1 is the square of an
integer.

Walkthrough —

(a) Check that (p, q) = (2, 2) works.

(b) If p, q are odd, show that pq−1 + qp−1 ≡ 2 (mod 4), so it cannot be a
perfect square.

(c) Without loss of generality, let p be an odd prime, and q = 2. Then
pq−1 + qp−1 = 2p−1 + p.

(d) Write 2p−1 + p = m2.

(e) Factorize to obtain (m− 2
p−1
2 )(m+ 2

p−1
2 ) = p, which gives

m+ 2
p−1
2 = p.

(f) Note that p < 2
p−1
2 holdsa for p ≥ 7.
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(g) Conclude that p can only be 3 or 5.

aTry to show that 2
n−1
2 > n holds for all integers n ≥ 7.

Solution 31. First, note that (p, q) = (2, 2) works since 22−1 + 22−1 = 4 = 22.
If p and q are odd primes, then both p− 1 and q − 1 are even, and hence,

pq−1 + qp−1 ≡ 1 + 1 ≡ 2 (mod 4)

holds. Since no perfect square is congruent to 2 modulo 4, it follows that not
both of p and q are odd.
Without loss of generality3, let p be an odd prime, and q = 2. Then

pq−1 + qp−1 = p2−1 + 2p−1 = p+ 2p−1.

Write
p+ 2p−1 = m2

for some positive integer m. Rearranging gives

m2 − 2p−1 = p,

which yields the factorization

(m− 2
p−1
2 )(m+ 2

p−1
2 ) = p.

Since p is prime and

m− 2
p−1
2 < m+ 2

p−1
2 ,

we obtain that
m+ 2

p−1
2 = p,

Using the following claim, we conclude that p can only be 3 or 5. If p = 3,
then pq−1 + qp−1 = 32−1 + 23−1 = 3 + 4 = 7. If p = 5, then pq−1 + qp−1 =
52−1 + 25−1 = 5 + 16 = 21. Thus, the only solution is (p, q) = (2, 2).

Claim — For any positive integer n ≥ 7, the inequality

2
n−1
2 > n

holds.

Proof. We prove this by induction. For n = 7, we have 2
7−1
2 = 23 = 8 > 7.

Now, assume that the inequality holds for some k ≥ 7. Note that

2
(k+1)−1

2 = 2
k−1
2 + 1

2 =
√
2 · 2

k−1
2 >

√
2 · k

3Why there is no loss of generality?
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holds. Observe that

(
√
2k)2 − (k + 1)2 = 2k2 − (k2 + 2k + 1)

= k2 − 2k − 1

= (k − 1)(k − 3)− 2

≥ (7− 1)(7− 3)− 2

> 0.

This shows that
2

(k+1)−1
2 >

√
2 · k > k + 1.

Thus, by induction, the claim holds for all integers n ≥ 7.

■
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