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§1 Warm up

Exercise 1.1 (Tournament of Towns Spring 2020, Junior O Level P4, by
Alexandr Yuran). For some integer n, the equation 2 4-y%+2%2 —zy—yz—2x =n
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has an integer solution x, ¥, z. Prove that the equation 22 + y? — zy = n also
has an integer solution z, y.

Walkthrough —
(a) Note that the identity

PP+ —ay—yr—zw=(a-y)’ - (@ —yi-y)+(z—y)°
holds.

Solution 1. [

§2 Polynomials

For further problems, we refer to [Goy21].

§2.1 Warm up

Exercise 2.1 (MMO 2015 Grade 9 P6). Do there exist two polynomials with
integer coefficients such that each of them has a coefficient with absolute value
exceeding 2015, but no coefficient of their product has absolute value exceeding
17

Summary — Try to come up with enough polynomials g1(z), g2(z), g3s(z), . ..
and hi(z), ha(z), hs(z),... such that each of the products gi1g2gs... and

hihz2hs ... have at least one coefficient which is large in absolute value, and all
the coefficients of the product (g1g2gs . ..)(hihahs...) are at most 1 in absolute
value.

Walkthrough —

(a) Try to come up with a polynomial P(z) whose coefficients are at most
1 in absolute value, and it can be written as a product of enough fac-
tors (say fi(x), f2(x),...) such that each of such factor f;(z) admits a
decomposition into the product of two polynomials g;(z) and h;(x).

(b) Can you make sure that the product of the g;’s, and the product of the
hi’s have to have at least one large coefficient?

(c) For instance, would taking ¢1(z) = g2(z) = gs(z) = --- =1 — z work for
some suitable choice of hi(z), ha(x),...7

(d) Does taking
hi(z) =14z,
ho(z) =1+ + 2°,

4 The content posted here and at this blog by Evan Chen are quite useful.
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2 Polynomials Typos may be reported to jpsaha@iiserb.ac.in.

ha(z) =1+ + z° + 2°,

etc. work?

(e) Note that the product of enough g¢;’s would have a large coefficient
(namely, the coefficient of the second largest power of z). On the other
hand, the product of enough h;’s would have a large coefficient (namely,
the coefficient of the power of z).

(f) What can be said about the absolute value of the coefficients of the
product of these two products?

The above seems to work except that having a control on the coefficients of
the product (919293 ... )(h1h2hs...) seems hard!.

Solution 2. Consider the polynomial

22016

Pa)=1—-2)1-2?)1—-zH1 -28)---(1 -2 ).

Since
142422428 4. 4 on7l <om)

it follows that the coefficients of P(x) are at most 1 in absolute value. Note
that

holds where

Q) = (1— 2,
Ra)=QQ+2)1+z+22+2%) - Q+z+2>+-- +2

92016 _

).
The coefficient of 22016 in Q(z) is equal to 2017, and the coefficient of z in

R(x) is equal to 2016. This completes the proof. [ |

§2.2 Even and odd polynomials

Exercise 2.2 (MMO 1946 Grades 7-8 P5). Prove that after completing the
multiplication and collecting the terms

Q-2+ -2+ 2P 4+ 200+ + 22+ 2%+ 219)

has no monomials of odd degree.

I Summary — What happens if z is replaced by —z?

s it because it fails?

Some style files, prepared by Evan Chen, have been adapted here. 5
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Walkthrough —
(a)

Solution 3. Let P(z) denote the polynomial
I—z+a? -2+ =22 4+ 20 o+ 22+ + 2% 4 2100,

Note that P(z) = P(—=z). By the Claim below, it follows that P(z) has no
monomials of odd degree.

Claim — Let Q(x) be a polynomial satisfying Q(x) = Q(—z). Then
Q(z) has no monomials of odd degree.

Proof of the Claim. Note that
Qlr)+ Q=)  Qz)—Q(-z)

holds. Using Q(z) = Q(—z), it follows that Q(x) = w Consequently,
Q(z) has no monomials of odd degree. O
|

Remark. The above decomposition of Q(x) is a special case of general phe-
nomena“.

¢Can you think of a few? Which general phenomena is referred to?!

Remark. The above solution is more elegant, and less cumbersome. Moreover,
it also highlights the underlying reason, whereas the solution below obscures
the conceptual viewpoint.

Solution 4. One can multiply the polynomials to note that
1 waa?g® g% 100
=l-z+221-o)+z'Q-o)+2°0Q-a)+ - +2%0 -2)+2
=1-o)A+z> +2* + 2%+ +2%) + 2%

100

Using this, we obtain

Q-zt+a®—2® 4+ — 22421 Fz+2® 4+ 2%+ 2%

=((1-2)1+2®+z* +2°+ - +22) + 2" )1+ +2>+ - +2¥ + 2
=(1-2)1+z”+z*+2%+-- - +2®) Q1+ +2° +-- +2%° +2'9)

F 20tz 42?4t 2 42
=(1+z*+z* 42+ +2)1 -z

100)

101
)
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100( 100)

+2' %0 +z+2®+ - +2¥ 42
:(1+x2+x4+x6+...+m98)(1_x101)
+x100(m+x3+x5+~-+x99)
+2' 1 +2* +2'+ o+ 2P+
:(1+x2+x4+x6+”.+$98)(1_xl()l)
+x101(1+m2+m4+m6+---+x98)
+2'%1 + 2% + 2+ + 2% + 21
=1+’ +2* +2° 4+ + 2 + 20 + 2% + 2t + - + 2% + 21,

100( IOO)

100(

which has no monomial of odd degree. |

Example 2.3. Let n be an even positive integer, and let p(z) be a polynomial
of degree n such that p(k) = p(—k) for k = 1,2,...,n. Prove that there is a
polynomial ¢(z) such that p(z) = q(z?).

Walkthrough —

(a) Note that the polynomial p(z) — p(—x) has degree < n because n is even.
Observe that it has at least n roots.

I Remark. What would happen if n is not assumed to be even?

Solution 5. Note that the polynomial p(x) — p(—x) has degree at most n,
and it vanishes at the integers —n,...,—2,1,0,1,2,...,n. Thus, it has at least
2n + 1 roots. It follows that the polynomial is identically zero, that is, the
polynomials p(x), p(—z) are equal. This implies that p(z) is equal to g(z?) for
some polynomial ¢(z). [ ]

Exercise 2.4 (Tournament of Towns Spring 2014, Senior A Level P7, by D. A.
Zvonkin). Consider a polynomial P(x) such that

P(0)=1, (P(x))’=1+z+2'"Q(),
100

where Q(z) is also a polynomial. Prove that in the polynomial (P(x) + 1),
the coefficient of 299 is zero.

Walkthrough —

(a) Since P(x)? is congruent to 1+ modulo z'°°, show that (P(x) + 1) +
(1 — P(2))'® is congruent to a polynomial of degree 50 in 14 2 modulo
100
x

Some style files, prepared by Evan Chen, have been adapted here. 7
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(b) Prove that (P(z) 4+ 1)'°° is congruent to a polynomial of degree 50 in
1 + = modulo 2%,

Solution 6. Note that
(P(z) +1)"° + (1 — P(x))'®

is a polynomial in P(z)? of degree 50. Given three polynomials f(z), g(z), h(x)
having complex coefficients, with h(z) # 0, we say that f(z) is congruent
to g(x) modulo h(z) if h(x) divides f(x) — g(x), that is, f(x) — g(z) is the
product of h(x) and a polynomial in x with complex coefficients. Since P(x)?2
is congruent to 1+ modulo 210 it follows that (P(x)+ 1) 4 (1 — P(x))'00
is congruent to a polynomial of degree 50 in 1 + x modulo z'°°. Using that
P(r) =1 mod x, we obtain that (P(z) + 1)'°° is congruent to a polynomial
of degree 50 in 1 4+ = modulo z'%. This shows that the coefficient of 2°° in
(P(x) + 1)1% is zero. [ ]

§2.3 Factorization and roots

Example 2.5. Let a,b, c be three distinct real numbers. Show that

(a—x2)b—z) (B—-—2a)(c—2z) (c—x)(a—2) _1
@—at-0 " b-a-a " c=h@-b "

Walkthrough — Can a polynomial having degree at most two admit more
than two distinct roots?

Exercise 2.6 (USAMO 1975 P3, AoPS). [GA17, Problem 151] A polynomial
P(z) of degree n satisfies

P(k) = for k=0,1,2,...,n.
Find P(n + 1).

Walkthrough —
(a) Consider the polynomial (z + 1)P(z) — .

Solution 7. Note that 2 P(x 4+ 1) — z is a polynomial of degree n + 1, and it

vanishes at the n + 1 integers 0,1,2,...,n. It follows that

(z+DH)P(z)—z=cx(z—1)(z—2)...(x —n)

8 The content posted here and at this blog by Evan Chen are quite useful.
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for some nonzero real number ¢. Substituting = —1 yields
—1=(-1)"te(n+1),

which gives ¢ = % This implies that

n+2)P(n+1)=n+1+(-1)",
and consequently,
n+14(-1)"
P )=——+—.
(n+1) )
|

Example 2.7. Determine the remainder when z + x° + 22 + 2% 4 281 4 12!
is divided by z*® — x.

Example 2.8. Let g(x) and h(z) be polynomials with real coefficients such
that

g(x)(2? — 32 +2) = h(z)(z* + 3z +2)
and f(z) = g(x)h(x) + (z* — 522 + 4). Prove that f(z) has at least four real
roots.

Example 2.9. Let P(x) be a polynomial of degree < n having rational
coefficients. Suppose P(k) = ¢ holds for 1 < k < n+ 1. Determine P(0).

Example 2.10. Let P(x) be a polynomial with real coefficients such that
P(sina) = P(cosa) for all @ € R. Show that P(z) = Q(z? — z*) for some
polynomial Q(x) with real coefficients.

Walkthrough —
(a) Show that P(x) = P(—x) for any —1 < 2 < 1, and hence P(z) = f(2?).
(b) Deduce that f(x) = f(1 —x) for any 0 < x < 1.

(c) Using induction or otherwise, prove that f(z) = g(x — %) for some
polynomial g(x) with real coefficients.

Example 2.11. Let p1,...,p, denote n > 1 distinct integers. Show that the
polynomial

(@ —p1)* (@ —p2)* - (x = pa)* +1
cannot be expressed as the product of two non-constant polynomials with
integral coefficients.

Example 2.12. Show that any odd degree polynomial with real coefficients
has at least one real root.

Exercise 2.13 (Putnam 1999 A2, AoPS). Show that for some fixed positive
integer n, we can always express a polynomial with real coefficients which is
nowhere negative as a sum of the squares of n polynomials.

Some style files, prepared by Evan Chen, have been adapted here. 9
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Walkthrough —
(a) Show that the real roots of P have even multiplicity.

(b) Conclude that P can be expressed as a product of monic quadratic
polynomials with real coefficients having nonreal roots, and even powers
of linear polynomials with real coefficients.

(c¢) Show that a monic quadratic polynomial with real coefficients having
nonreal roots is the sum of the squares of two polynomials with real
coefficients.

Solution 8. Note that if P is a constant polynomial, then it is clear. Henceforth,
let us assume that P is a nonconstant polynomial.

Claim — The polynomial P can be written as the product of polynomials,
each of which can be expressed as the sum of the squares of two polynomials
with real coefficients.

Proof of the Claim. Since P has real coefficients, it follows that if « € C\ R is
a root of P, then so is &@. Thus, the nonreal complex roots of P form pairs of
complex conjugates. Note that

(x —a)(z —a) = (z — Re())? + Im(a)?.

Decomposing P over the pairs of nonreal complex conjugate roots, and the
real roots, it follows that P can be expressed as the product

ef(@) [] (@ - )™,

acA

where ¢ denote the leading coefficient of P, f(x) denotes the product of (possibly
no) quadratic polynomials of the form (x —a)? +b? with a € R,b € R\ {0}, and
A denotes the set of real roots of P, and for an element a € A, the multiplicity
of a is denoted by my.

Evaluating P at a suitable real number (for instance, at 143, 4 a (resp.
1) if A is nonempty (resp. empty)), it follows that ¢ > 0.

Let a be an element of A. Since A is finite, there exists a real number € > 0
such that the interval (a — ¢, a + €) contains no real roots of P other than a.
If m, were odd, then the sign of P(z) would not remain constant as x ranges
over in (a —¢,a +¢) \ {a}. Hence, it follows that m, is even.

Since ¢ > 0 amd m, is even for any a € A, the Claim follows. O

Claim — Let f1(z),g1(x), f2(x), g2(z) be polynomials with real coeffi-
cients. Then the following holds.

(f1(2)* + g1(2)*) (f2(2)* + g2(2)?)

10 The content posted here and at this blog by Evan Chen are quite useful.
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= (fi(2) fo(@) = 91(2)92())* + (f1(2)g2(2) — fo(a)g1(x))?
Proof of the Claim. Note that

(f1(2)? + 01(2)*) (f2(2)? + g2 ()?)
= f1(@)* fo(2)* + g1(2)* g2 (2)? — 2f1(2) fa(2) g1 (2)ga()

+ f1(2)?g2(2)? + fa(2)?91(2)? + 21 (2) g2 (@) fa(2) g1 (2)
= (f1(2) fa(x) = g1(2)g2(2))? + (f1(2)ga(x) + fa(2)g1 ().

Combining the above Claims, and using induction, the result follows. |

§3 Differentiation and double roots

Lemma 1

Let P(z) be a polynomial with complex coefficients, and « be a complex
number. Then « is a root of P(x) having multiplicity at least » > 2 (i.e.,
(z — )" divides P(z)) if and only if it is a root of P(z), P'(x),..., P")(x),
where P(")(z) denotes the r-fold derivative of P(z).

Solution 9.

To solve the problem below, it suffices to have following weaker version.

Lemma 2

Let P(x) be a polynomial with complex coefficients, and a be a complex
number. Then « is a double root of P(z) (i.e., (x — a)? divides P(x)) if
and only if it is a root of P(x) and P'(z).

Example 3.1 (Putnam 1956 B7, IMOSL 1981 Cuba). The polynomials P(z)
and Q(z) with complex coefficients have the same set of numbers for their
zeroes but possibly different multiplicities. The same is true of the polynomials
P(z)4+1 and Q(z)+1. Assume that at least one of P(z),Q(z) is nonconstant.
Prove that P(z) = Q(z).

Walkthrough —

(a) Assume that deg P > deg Q.
(b) Denote these two set of roots by S1,S2. Considering multiplicities, show

Some style files, prepared by Evan Chen, have been adapted here. 11
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that
2deg P — |S1| — |S2| < deg P’ = deg P — 1,

which yields
|S1] + |S2| > deg P.

(¢) Note that P — @ vanishes at the elements of S US2, which has size larger
than the degree of P — Q.

Solution 10. On the contrary, let us assume that P # . Without loss of
generality, let us assume that deg P > deg Q. Let Sy (resp. S3) denote the
common set of zeroes of P,Q (resp. P+ 1,Q + 1). For a polynomial f(x), let
us denote its multiset of zeroes by Z(f).

Note that Z(P’) contains Z(P) \ S1, and Z(P’) also contains Z(P + 1) \ Sa.
Since Z(P) and Z(P + 1) are disjoint, it follows that

2deg P — |S1| — |S2| < deg P’ < deg P — 1,

where the final step holds since deg P > deg @), and one of P, () is nonconstant.
This gives that |S1] 4+ |S2| > deg P.
Note that S7, S5 are disjoint, and

P(z) =Q(z) = (P(z) +1) = (Q(z) + 1)

holds. It follows that P — @ vanishes at S7 U Sa, and hence deg P > |S1| + |Sa|.
This contradicts the inequality |S1| + |S2| > deg P. Consequently, we obtain
P=0. m

84 Finite differences

Example 4.1 (India RMO 2013b P3). Consider the expression
2013% 4 2014% + 2015% + - -+ + n®.

Prove that there exists a natural number n > 2013 for which one can change a
suitable number of plus signs to minus signs in the above expression to make
the resulting expression equal 9999.

I Summary — “Differentiating” a polynomial enough times makes it linear.
Walkthrough —
(a) Consider the polynomial P(k) = k?, and the polynomial Q(k) := P(k) —
(k—1).

(b) Since Q(k) is a linear polynomial in k, the difference R(k) := Q(k) —
Q(k — 2) is a constant, that is, it does not depend on k.

(¢) Note that R(k) is a +1-linear combination® of four consecutive squares.

12 The content posted here and at this blog by Evan Chen are quite useful.


https://jpsaha.github.io/MOTP/
https://artofproblemsolving.com/community/c6h566736p3319153
https://web.evanchen.cc/
https://blog.evanchen.cc/
https://www.youtube.com/c/vEnhance

4 Finite differences Typos may be reported to jpsaha@iiserb.ac.in.

(d) Does this help?

“What does it mean?

Solution 11. Consider the polynomial P(k) = k?, and the polynomial

Q(k) := P(k) — (k — 1). Since Q(k) is a linear polynomial in k, the difference

R(k) := Q(k) — Q(k —2) is a constant, that is, it does not depend on k. Indeed,

Q(k) = 2k—1, and R(k) = 4. Note that R(k) = k> —(k—1)?—(k—2)*+(k—3)%.
Note that

20132 4 20142 + 20152 + 20162 + 20172 > 9999

holds, and the integers 20132 +20142 +20152 420162 +20172, 9999 are congruent
modulo 4, that is, they differ by a multiple of 4. Let m > 1 be an integer such
that

9999 = 20132 + 2014% + 20157 + 2016 + 2017% — 4m

holds. Since
—k*+ (k+1)? + (k+2)* — (k+3)° = —4,

it follows that
9999

= 20132 + 20142 + 20152 + 20162 + 20172
— 20182 + 20192 + 20202 — 20212

— ((2018 + 4(m — 1))* + (2019 + 4(m — 1))?
+ (2020 + 4(m — 1))* — (2021 4 4(m — 1))?).

It follows that there exists a natural number n = 2021 + 4(m — 1) > 2013, for
which one can change a suitable number of plus signs to minus signs in the
expression

2013% 4 2014 + 2015% + - - - + n?

to make the resulting expression equal to 9999. ]

Exercise 4.2 (Bay Area MO 12 2016 P4). Find a positive integer N and
ai,as,...,an, where a, =1 or ap, = —1 for each k =1,2,..., N, such that

ar -1 4ay-224a3-33+ - +an - N* = 20162016,

or show that this is impossible.

I Summary — “Differentiating” a polynomial enough times makes it linear.
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Walkthrough —

(a) Consider the polynomial P(k) := k®. Note that R(k) := P(k) — P(k — 1)
is a quadratic polynomial in k.

(b) Also note that S(k) := R(k) — R(k — 2) is a linear polynomial in k.

Solution 12. Consider the polynomial P(k) := k3. Note that R(k) :=
P(k)—P(k—1) is equal to 3k* —3k+1. Also note that S(k) := R(k) — R(k —2)
is equal to 6(2k — 2) — 6. This gives S(k) — S(k —4) = 48. It follows that
some *1-linear combination of any given eight consecutive cubes is equal to
48. More specifically,

k= (k—1)*—(k—2)3+(k—3)> = (k—4)* + (k—5)" + (k—6)* — (k—7)® = 48,
or equivalently,
—E+ (k+ 1)+ (k+2)* — (k+3) — (k+4)* + (k+5)>+ (k+6)* — (k+7)° = 48.

Note that 20162016 is divisible by 3 and 16. Since 3,16 do not have any
common prime factor, it follows that 20162016 is a multiple of 48. Write

(k) = =+ (k+1)%+ (k4+2)3 — (k+3)> — (k+4)® + (k+5)%+ (k46)3 — (k+7)3.
Note that
F) 4 £(9) 4+ f(AT) + -+ + f(8m — T7) = 20162016,

where m denotes the integer 20162016/48. We conclude that one may take
N = 8m = 20162016/6 = 3360336 so that the given condition holds. |

85 Growth of polynomials

Example 5.1. Does there exist a polynomial P(x) with rational coefficients
such that sinz = P(z) for all x > 1007

Example 5.2 (India RMO 2015b P3). Find all integers a,b,c such that
a®? = bc+ 4 and b? = ca + 4.

Summary — In absolute value, a higher degree polynomial dominates a
smaller degree polynomial at arguments which are large enough in absolute
value.

Solution 13. Let a, b, ¢ be integers satisfying the given equations.
Let us first consider the case that a = b. Note that a(a — ¢) = 4 holds, which
shows that (a,a — ¢) is equal to one of the elements of

{(d,d —4/d)|d is a divisor of 4},

14 The content posted here and at this blog by Evan Chen are quite useful.
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and hence (a, b, ¢) is equal to one of
(1,1,-3), (~1,-1,3), (2,2,0), (=2, —2,0), (4,4,3), (—4, —4, —3).
Now, let us consider the case that a # b. Note that
a® —b® =a(bc+4) — b(ca +4) = 4(a — b)

holds, which yields
a®+ ab+ b = 4.

It follows that at least one of a,b is even, and hence, both of them are even.

Observe that
b\’ b\ >
Z ) —4
<a+2> +3(2)

holds, which shows that (a + b/2,b/2) is equal to one of
(2,0),(=2,0), (1,1), (1, =1), (=1, 1), (=1, 1),
and hence (a, b) is equal to one of
(2,0),(-2,0),(0,2),(2,-2),(-2,2), (0, —2).
This implies that (a, b, ¢) is equal to one of
(2,0,-2),(-2,0,2),(0,2,-2),(2,-2,0),(-2,2,0), (0, -2, 2).
Considering the above cases, it follows that (a, b, ¢) is equal to one of
(1,1,-3),(-1,-1,3),(2,2,0), (-2,-2,0), (4,4, 3), (-4, —4, —-3),

(2,0,-2),(—2,0,2),(0,2,-2), (2, -2,0), (=2,2,0), (0, 2, 2).

Note that any of the above pairs satisfy the given equations. This proves that
the above tuples are precisely all the solutions of the given equation over the
integers. |

§6 Rational and irrational numbers

Example 6.1. Show that for any n > 2, the rational number
LTI
2 3 n

is not an integer.

Example 6.2 (Moscow Math Circles). Does there exist irrational numbers
x,y with > 0 such that z¥ is rational?
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Summary — Consider ﬂ\/ﬁ

Walkthrough —
(a) Consider \/5\/5
(b) If \/5\/§ is rational, then we are done by taking z = y = /2.

(c) If \/5\/§ is irrational, then can you find out suitable z, y?

Example 6.3 (Junior Balkan MO TST 1999). Let S be a set of rational
numbers with the following properties:

1
1. 5€58,

2. IfmeS,thenboth%eSand%HES.

Prove that S contains all the rational numbers from the interval (0,1).

Exercise 6.4 (British Mathematical Olympiad Round 1 2004/5 P5). Let S
be a set of rational numbers with the following properties:

1
1. 5 €8,

2. Ifz € S, then both 25 € S and ;%5 € S.

Prove that S contains all rational numbers in the interval 0 < z < 1.

Walkthrough —

(a) Since % lies in S, by the second condition, it follows that % lies in S and

so does %

(b) Taking x = %, it follows that
31
14
lie in S. Note that we have showed that S contains all the rationals
between 0 and 1 with denominator at most 4.
(c) Taking z = 2, it follows that
2 3
55
lie in S. We are not in a position to conclude that S contains all the
rationals between 0 and 1 with denominator at most 5.

(d) Taking z = %, it follows that

I

Ut —
[STIEN

lie in S. It follows that S contains all the rationals between 0 and 1 with
denominator at most 5.

16 The content posted here and at this blog by Evan Chen are quite useful.
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(e) Does the above provide any insight to conclude that S contains all the
rationals between 0 and 1?7 For instance, can one expect the following
(and then prove, or realize that it is false, or argue along different lines)?

For a rational number z lying in S, the rationals

1L =z
z+1 z+1

have denominators larger” than that of x.

2Often, while being naive, one takes the liberty to write larger to mean
no smaller, that is, greater than or equal to. But this is NOT allowed
while writing down a solution.

Or, stated in a different way,

A rational number lying in (0,1) can be obtained from a rational
number lying in (0,1) with smaller denominator by applying one of
the maps

a3

T —.
x+1’$ 41

Solution 14. It suffices to establish the following.

Claim — For any integer k > 2, all the rationals lying in (0,1) with
denominators not exceeding k lie in S, that is, we have

1 2 -2 (-1
e A Y <l{<Ek
{é’é’ T T }_S forall2<¢<k (1)

Proof of the Claim. Eq. (1) holds for k = 2 from condition (1). Suppose Eq. (1)
holds for k = n — 1 for some integer n > 3. Let m be an integer satisfying
1 < m < n. Using the induction hypothesis, we will show that “* lies in S.
Note that for 0 < z < 1, the inequalities

T <1 1< 1 <1
r+1 2’2 T x+1

0<

hold. Using Condition (1), it follows that  liesin Sif 2 = 1. If 0 < 2 <

then
T m

m—i—lzn

holds for # = " which is a rational number lying in (0, 1) with denominator
< n — 1, and by induction hypothesis, the set S contains 7*. Moreover, if
% < 7 <1, then

1 _m
r+1 n
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holds for x = ®~™ which is a rational number lying in (0, 1) with denominator
<n —1, and by induction hypothesis, the set S contains . We conclude that
for any integer n > 3, Eq. (1) holds for k = n if it holds for k =n — 1. O

§7 Size of the roots

Example 7.1. Let f(z) and g(z) be nonconstant polynomials with real
coefficients such that f(z? + 2 + 1) = f(2)g(z). Show that f(z) has even
degree.

Walkthrough — If the polynomial f(x) admits a real root «, then note that
o® + a +1is also a real root of f(z) and o® + a+1 > a.

Example 7.2. Find all polynomials P(z) (with complex coefficients) satisfying
P(z)P(z +2) = P(z?).

Summary — Note that if « is a root of P, then so are o® and (o — 2)2.
Considering absolute values, show that P cannot have a root other than 1.
Conclude that P(z) = c¢(z — 1)".

Walkthrough —
(a)

Solution 15. Let P(z) be a polynomial with complex coefficients satisfying
the given condition.

Claim — If P has a root a # 1, then P has a root which has absolute
larger than the absolute value of .

Proof of the Claim. Note that if |o| < 1, then
(a0 =2)*[ > (2 = |al)?
>1
> |al.
Moreover, if |(a — 2)?| = |a| holds, then |a| = 1 and a = 2r for some real
number r > 0, and hence, a = 1. This shows that if & # 1, and |a| < 1, then

|(cv — 2)?| > || holds. Also note that if || > 1, then |a?| > |a| holds. Since
a?, (o — 2)? are also roots of P, the Claim follows. O

18 The content posted here and at this blog by Evan Chen are quite useful.
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If P has a root other than 1, then applying the above Claim to a root of P
having the largest absolute value yields a contradiction. Hence, P is a constant
polynomial, or the only root of P is equal to 1.

If P is a constant, then P is equal to 0 or 1. If P is a nonconstant polynomial,
then P is equal to c¢(x — 1)™ for some ¢ € C\ {0}, and an integer n > 1. Using
the hypothesis, it follows that ¢ = 1.

Observing that the polynomials 0, 1, (x — 1)™ satisfy the given condition, we
conclude that there are all the required polynomials. |

Exercise 7.3 (Problem 4.12, Putnam training problems by Miguel A. Lerma).
Does there exist a polynomial f(x) satisfying

ef(x—1) = (z+1)f(2)?

Walkthrough —
(a)

Solution 16. Note that the zero polynomial is the only constant polynomial
which satisfies the given condition.

Suppose there exists a nonconstant polynomial f(x) satisfying the given
condition.

Claim — Any root of f(z) is an integer.

Proof of the Claim. On the contrary, let us assume that « is root of f(z), and
that « is not an integer. Note that for any root of 8 of f(z) in C\ Z, the
element §—1 is also a root of f(z) lying in C\ Z. Tt follows that for any integer
k > 1, the element o — k is also a root of f(z). Taking k to be an integer larger
than |o| + 3. cc (y)=0 7], We obtain

|Oé—k| ZI{;—IO&| > |7|a
and hence f(x) has a root having absolute value larger than that of any of its
roots, which is impossible. O

A similar argument can be used to prove that f(z) does not vanish at any
negative integer. Moreover, noting that if f(z) vanishes at an integer n > —1,
then f(z) also vanishes at n4+1 > —1, it can be proved using a similar argument
that the roots of f(z) are < —2. This contradicts the assumption that there
exists a nonconstant polynomial satisfying the given condition. Consequently,
the zero polynomial is the only polynomial that satisfies the given condition. W

Example 7.4 (Problem 2 of the Problem session for October 28, Fall 2020,
Putnam Club). Find all polynomials P(x) satisfying

xP(x —1) = (z — 20)P(x).
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Example 7.5 (India INMO 2018 P4). Find all polynomials P(x) with real
coefficients such that P(z? 4+ x + 1) divides P(z3 — 1).

Walkthrough —

(a) Show that if « is a root of P(z), then P(x) vanishes at (81 — 1)a and
(B2 — 1)a, where B, B2 are the roots of 22 +z +1 = a.

(b) If « is nonzero, then show that one of (81 — 1)a and (82 — 1)« is larger
than o in absolute value.

Solution 17. Let us establish the following claim.

Claim — Let a denote a nonzero root of P(z) in C. Then for some
B € C satisfying % + 8+ 1 = «, the element (8 — 1)« is a root of P(z)
and is larger than « in absolute value.

Proof of the Claim. Let 1,32 denote the roots of 2 +x + 1 = a in C. Since
P(2?+x+1) divides the polynomial P(z3—1), it follows that for any 1 < i < 2,

Bl —1=Bi-1)(B+Bi+1) = (B — Da
is a root of P(x). Noting that
|1 — 1|+ B2 — 1| > |81 + B2 — 2]
=|-1-2]
> 2,
we obtain that at least one of 57 — 1,82 — 1 has absolute value larger than

1. Consequently, |(8; — 1)a| > |a| holds for some 1 <4 < 2. This proves the
Claim. O

If P(z) has a nonzero root in C, then applying the above Claim to a root
of P(z) of largest absolute value, we would obtain a contradiction. Hence,
P(z) is equal to cz™ for some ¢ € R and an integer n > 0. Moreover, any
polynomial of this form satisfies the given condition. Consequently, these are
all the polynomials satisfying the given condition. |

Remark. Note that proving |(81 — 1)(82 — 1)| > 1, in order to conclude that
at least one of B1 — 1, 82 — 1 has absolute value larger than 1, does not seem
to work. Moreover, |(81 — 1)(82 — 1)| is smaller than (|81 — 1| + |82 — 1]).
Unsurprisingly, a lower bound for the bigger quantity can easily be obtained.

Exercise 7.6 (IMOSL 1979, AoPS, Bulgaria). Find all polynomials f(z) with
real coefficients satisfying

F(2)f(22%) = f(2° + ).
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Walkthrough —
(a)

Solution 18. Note that 0,1 are the only constant polynomials satisfying the
given condition.

Let f(x) be a nonconstant polynomial with real coefficients satisfying the
given condition.

Claim — The roots of f(z) in C are of absolute value at most 1.

Proof of the Claim. If a is a root of f(x) in C, then 2a3 + « is a root of f(x).
If || > 1, then
1202 4+ a| > 2|af® — |a| > |af

holds. If some root of f(z) has absolute value larger than 1, then taking « to
be a root of f(x) with largest absolute value, we would obtain a contradiction.
This proves the Claim. O

Claim — The equality f(0) =1 holds.

Proof of the Claim. Substituting z = 0, it follows that f(0)? = £(0), and hence
f(0)=0or f(0) =1.

On the contrary, suppose f(0) = 0 holds. Write f(x) = 2¥g(x) where k is a
positive integer, and g(z) is a polynomial with real coeflicients with g(0) # 0.
The given condition translates to

2t (22%) g (2)g(227) = (22° + 2)*g(22° + x),
which yields
(22%)*g(x)g(22%) = (22° + 1)*g(22° + x).

Substituting x = 0, we obtain ¢g(0) = 0, which is impossible. This proves the

By the above Claim, the product of the absolute values of the roots of f(x)
is equal to 1. By the first Claim, these absolute values are at most 1. It follows
that the roots of f(x) are of absolute value 1.

Let a be a root of f(x). Note that 2a3 + « is also a root of f(x), and we
have that

la| = 2% + a| =1,

which yields [2a? + 1| = |a| = 1. This gives

(202 +1)(2a2 +1) = 1.
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Combining it with |a|] = 1, we obtain

Since |a| = 1, it follows that a? = —1, and hence, a = i or a = —i. So, the
polynomial f(z) is equal to c(x + i)%(x — i)® for some ¢ € C \ {0}, and some
nonnegative integers a,b. Since f(x) has real coefficients, it follows that a = b,
and c lies in R. This gives that f(z) = c(x? + 1)¢. Using f(0) = 1, we obtain
c=1, and hence f(z) = (22 + 1)%.

Note that if g(x) denotes the polynomial (x2 + 1)*, where k is a positive
integer, then

We conclude that the polynomials satisfying the given condition are precisely
the constant polynomial 0,1, and the polynomials of the form (z2 + 1)* for
some positive integer k. |

§8 Roots of unity

Example 8.1 (India Pre-RMO 2012 P17). Let x1, 29, x5 be the roots of the
equation 3 + 3z + 5 = 0. What is the value of the expression

1 1 1
T+ — To + — 3+ — |7
X1 Xro I3

See also 77, USAMO 2014 P1.
Solution 19. Let P(z) denote the polynomial 23 + 3z + 5. Note that

1 1 1
xr1 + — To + — xr3 + —
X1 To T3

1
e CRIDIC R CRRY

= 33121,3 (z1 + 1) (z2 +9) (23 + 1) (21 — 1) (22 — 1) (23 — 1)
S P(—i)P(i)
T1X2T3

= LGP
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1
= _—5|5—2z'|2
_2®
=
]

Remark. The above argument is elegant and quite useful. One could have also
argued that

1 1 1

1+ — ) |lx2+— ) |23+ —

X1 i) T3
X1 i) 1 1
—\iza+— —F — [ {ips - —
X2 x1 T1T2 €3

1
— $yTacs + X1X3 + o3 XT3 T1X2 1 + ) +
T2 1 T1T2 x3 T2X3 T3T1 T1X2X3
1 8199 ToT 3T az x az
= m1@aws + + e e el e
r1T2x3 X3 X1 T2 T2X3 Tr3T1 T1x2
1 1 1
=—-5—=+—— (xfx% + x%xg + x%x%) + (m% + m% + mg)
5  xi1x2T3 T1T2X3
1
sl (122 + 2223 + 2371)% — 2312273 (T1 + 22 + 73))
1
5 ((331 +x2 +x3)° — 2(z122 + T2T3 + -T3-T1))
1 1, 1
=-5—-—=-—=—=-(3)—=(-2-3
5 5 ( ) 5 ( )
1 9 6
=-5—-—Z4-
5 5 + 5
4
=-5— =
5
_ 2
=

Note that this way of arguing would get complication if we had a higher degree
polynomial to start with.

Exercise 8.2 (USAMO 2014 P1, AoPS). Let a,b, ¢, d be real numbers such
that b — d > 5 and all zeros 1, T2, T3, T4 of the polynomial P(z) = x* + ax® +
bx? + cx + d are real. Find the smallest value the product

(] + 1)(a5 4+ 1)(a3 + 1)(2F + 1)
can take.

See also Example 8.1, India Pre-RMO 2012 P17.
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Walkthrough —
(a)

Solution 20. Note that

(27 + 1)(23 + 1)(23 + 1)(aF + 1) = P(i) P(~)
=(1-b+d)?>+ (a—c)?
=(b—-d—1)?+(a—c)?
> 16.

Taking a = c and b = 5,d = 0, we obtain
(23 + 1) (23 + 1) (25 + 1)(2] + 1) = 16.

Hence, the smallest value the product (z? +1)(23 + 1)(2z% +1)(2% + 1) can take
is equal to 16. [ |

Exercise 8.3 (USAMO 1976 P5, AoPS). If P(z), Q(z), R(z), and S(z) are
all polynomials such that

P(2°) + 2Q(2°) + 2*R(2°) = (2* + 2® + 2* + x + 1)S(z),
prove that z — 1 is a factor of P(x).

Summary — The primitive 5-th roots of unity can be used to show that
P(1)=0.

Walkthrough —

(a) Substituting primitive 5-th roots of unity (that is, the 5-th roots of unity
other than 1) for z, yields several linear equations in P(1),Q(1), R(1).

(b) Can Q(1) and R(1) be eliminated to obtain that P(1) = 07

Solution 21. Denote the 5-th root of unity cos 2= =+ sin ¢ = by (. Substituting
z =, (2, ¢3, we obtain

P(1)+¢Q(1) + ¢*R(1)
P(1) +¢*Q(1) + ¢*R(1)
P(1)+¢*Q(1) + ¢°R(1)

Eliminating R(1) from the first two equations yields

(1-¢*)P1)+¢*1-0)Q1) =0,

0
0,
0
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and eliminating R(1) from the last two equations yields
(1=¢*)P1)+ (1 - 0Q(1) =0.

Eliminating Q(1) from the above two equations, we obtain (1 — ¢)P(1) = 0,
which gives P(1) = 0. This shows that  — 1 is a factor of P(x). |

Exercise 8.4 (Leningrad Math Olympiad 1991). A finite sequence a1, as, ..., ay
is called p-balanced if any sum of the form

ax + Qg4p + At2p + - - -
is the same for any k = 1,2,3,...,p. For instance the sequence
a1 =1,a2 =2,a3 =3,a4 =4,a5 = 3,a6 =2
is a 3-balanced. Prove that if a sequence with 50 members is p-balanced for

p=3,5,7,11,13,17, then all its members are equal zero.

Summary — Consider the polynomial 3°0, a;a’.

Walkthrough —

(a) Show that the polynomial vanishes at any p-th root of unity, other than
1, for p € {3,5,7,11,13,17}.

(b) How many such roots of unity are there in total?

Solution 22. Let aq,as,...,a5y be a sequence of complex numbers. Assume
that it is p-balanced for p € {3,5,7,11,13,17}. For an integer n > 1, denote
the root of unity cos%7r + isin 27” by (.. Let P(z) denote the polynomial

Yoy @i’
Let 3 < p < 17 be a prime. Since aq,as,...,asy is p-balanced, for any
1 < /¢ < p, we obtain

p
ke
= (ar+ axip+ .- )G
k=1

P
=(m+ap+..) > ¢

k=1
= 07

where the final equality follows since Cﬁ = 1. This shows that the polynomial
P(z) vanishes at the elements of the set

Up€{3,5,7,11,13,17}{<£ |1 << p},
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which contains

> (p—1)=2444+64+10+12+16 =50
pe{3,5,7,11,13,17}

elements. Moreover, P(z) also vanishes at 0. Note that P(z) is a polynomial
of degree 50, and it has at least 51 zeroes. This gives that P(x) = 0, and hence,
the terms of the sequence ay,as,...,asy are all equal to zero. |

Example 8.5. Let P(z) be a monic polynomial with integer coefficients such
that all its zeroes lie on the unit circle. Show that all the zeroes of P(z) are
roots of unity, that is, P(z) divides (z™ — 1)* for some positive integers n, k.

The author has learnt the following argument from Mainak Ghosh, during
the INMO Training Camp 2025, held at IISER Bhopal.

Walkthrough —

(a) Use the fundamental theorem of symmetric polynomials, to prove the
following claim.

Claim — Let f(z) be a monic polynomial of degree n with integer
coefficients. Let a1, ..., ay denote its roots, counting multiplicities.
Then for any integer k > 1, there is a monic polynomial of degree n

with integer coefficients, having af, ok, ..., ok as its roots.

(b) Applying the Claim, for each integer k > 1, obtain a monic polynomial
Py (z) with integer coefficients, having degree same as that of P(z), whose
roots, counted with multiplicities, are the k-th powers of the roots of
P(x).

(¢) Note that the polynomials Pi(z), Px(z),... are of the same degree, and
the absolute values of the coefficients of any of them are bounded from
the above by suitable binomial coefficients, which is smaller than 2",
where n denotes the degree of P(z). Since these polynomials have integer
coefficients, by the pigeonhole principle, it follows that there is a positive
integer ko such that Px(z) = Pk, (x) holds for infinitely many positive
integers k.

(d) Enumerate the roots of P(z), and matching the roots of Py(x) with those
of Py, (z) (for suitable k’s), we obtain a permutation of n letters. By
the pigeonhole principle, infinitely many £’s yield the same permutation,
which implies that there are positive integers k # ¢ such that for any root
of P(z), its k-th and the ¢-th powers are equal.

Solution 23. [}

89 Crossing the z-axis

Here are a few problems from this notes, and this one.
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Example 9.1. Suppose P(z) is a polynomial with real coefficients such that
P(z) = x has no real solution. Show that P(P(z)) = x has no real solutions.

Walkthrough —
(a)

Solution 24. Since x — P(z) defines a continuous map from R — R, by
the intermediate value theorem, it follows that P(x) > « holds for all z € R
or P(z) < x holds for all z € R. If P(z) > x holds for all z € R, then
P(P(z)) > P(x) > x holds for all x € R, and hence P(P(z)) = x has no real
solutions. Similarly, if P(x) < x holds for all z € R, then P(P(z)) = x has no
real solutions. |

Example 9.2. Show that any polynomial of odd degree with real coefficients
has a real root.

Example 9.3. Let P(z) and Q(z) be monic polynomials of degree 10 having
real coefficients. Assume that the equation P(x) = Q(«) has no real roots.
Prove that the equation P(xz + 1) = Q(z — 1) has at least one real root.

Walkthrough —

(a) Consider the difference P(z) — Q(z) to show that the coefficient of z° in
these polynomials are equal.

(b) Prove that the polynomial P(x + 1) — Q(x — 1) is of degree 9.

Solution 25. Note that P(z) — Q(x) is a polynomial of degree at most 9
having real coefficients. Since P(x) — Q(x) has no real root, it follows that it
has degree at most 8. In other words, the coefficients of 29 in P(z),Q(z) are
the same. Note that P(z +1) — Q(z — 1) is of degree < 9, and the coefficient of
2% in P(z+1)—Q(x —1) is equal to the coefficient of 2% in (x+1)0 — (z —1)19,
which is equal to 20. This shows that P(x + 1) — Q(xz — 1) is a polynomial of
degree 9 with real coefficients. Consequently, it has at least one real root. W

Example 9.4. Let P(x) be a nonconstant polynomial with real coefficients
having a real root. Suppose it does not vanish at 0. Show that the monomial
terms appearing in P(z) can be erased one by one to obtain its constant term
such that the intermediate polynomial have at least one real root.

Exercise 9.5 (China TST 1995 Day 2 P2, AoPS). Alice and Bob play a game
with a polynomial of degree at least 4:

22" 4 O 02?2 o+ Oz 4 1.

They take turns to fill the empty boxes. If the resulting polynomial has no real
root, Alice wins, otherwise, Bob wins. If Alice goes first, who has a winning
strategy?
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Walkthrough —
(a) There are more odds than evens among the integers 1,2,...,2n — 1.

(b) Can Bob have a winning strategy using the odds in his favour?

Solution 26. Bob has a winning strategy, as described below.

Bob makes sure that at the end of each of his turns except the last one, the
number of even powers of x whose coefficients have been provided by some of
them is equal to the number of odd powers of x whose coefficients have been
provided by some of them. This can be done, for instance, if during a turn
of Bob, other than the last turn, Bob provides the coefficient of an odd (resp.
even) power of z if Alice has provided the coefficient of an even (resp. odd)
power of z in the preceeding turn.

Since n > 2, it follows that Bob gets at least one turn. At the beginning of
the final turn of Bob, there are two powers of x whose coefficients are to be
determined, denote them by z, 27, their coefficients by ¢;, ¢; respectively. Let
Q(z) denote the polynomial, obtained by the erasing the terms corresponding
to x%, 27 from the polynomial that Bob had at the beginning of his final turn.
Note that

P(z) = Q(x) + c;z* + cjad.
Note that at least of 4, j is odd. Interchanging 7, j if necessary, let us assume
that ¢ is odd. We descrie the strategy that Bob follows in the two cases below.
Let us consider the case that j is even. Bob determines c¢; in such a way

that for any choice of ¢;, the completed polynomial P(z) is guaranteed to have
at least one real root. This can be done, for instance, by taking c; satisfying

Q(1)+ Q(—1) +2¢; =0.

For any choice of ¢;, the above choice of ¢; shows that P(1)+ P(—1) = 0, which
implies that P(z) has a root in the interval [—1, 1].

Let us consider the case that j is odd. Bob determines c; in such a way that
for any choice of ¢; by Alice in the next turn, the completed polynomial P(x)
is guaranteed to have at least one real root. This can be done, for instance, by
taking c; satisfying

Q(2) +¢;27 +2'Q(—1) — ¢;2' = 0.
Since ¢ # j, the above holds for some ¢; € R. For any choice of ¢;, note that
P(2) +2'P(-1) =0

holds, which implies that P(x) has a root in [—1, 2]. |
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§10 Lagrange interpolation

4 N\
Lemma 3

Let x1,...,x, be pairwise distinct real numbers, and y1,...,y, be real
numbers. Then there exists a unique polynomial P(z) of degree at most
n — 1 having real coefficients such that P(z;) = y; for all 1 < i < n.
Moreover, this statement also holds if the reals are replaced by rationals
or complex numbers all throughout.

- J

Proof. Note that there is at most one polynomial satisfying the required
condition. Observe that the polynomial P(z), defined by

n .
P =3 ull =2
i J

i=1  j#i

satisfies the required condition. O

Exercise 10.1. If a polynomial of degree n takes rationals to rationals on
n + 1 points, then show that it is a rational polynomial.

4 N\
Lemma 4

Let z1,...,z, be pairwise distinct real numbers, and y1,...,y, be real
numbers. Then there exists a unique monic polynomial P(x) of degree n
having real coefficients such that P(x;) = y; for all 1 <4 < n. Moreover,
this statement also holds if the reals are replaced by rationals or complex

numbers all throughout.
. J

Proof. Note that such a polynomial is unique if it exists. By the above lemma,
there exists a polynomial Q(x) of degree at most n — 1 with real coefficients
such that Q(z;) = y; — ) for all 1 < ¢ <n. Write P(z) = 2™+ Q(z). Note that
P(x) is a monic polynomial of degree n with real coefficients and P(x;) = y;
forall 1 <i<n. O

Here is an alternate argument.

Proof. Note that such a polynomial is unique if it exists. By the above lemma,
there exists a polynomial Q(x) of degree at most n — 1 such that Q(z;) = y;
for any 1 <4 < n. Consider the polynomial

(x—z)(z—29)...(x —z,) + Q(z),

which a monic polynomial of degree n, and sends z; to y; forall 1 <i<n. 0O
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Example 10.2. Suppose P(z) is a monic polynomial of degree n — 1 with real
coefficients. Let aq,as,...,a, be distinct real numbers. Show that

n

P(ai)

=1
P Hj;éi(aj - a;)

Solution 27. For 1 < i < n, write y; = P(a;). Note that

@) =3 wll =5

i=1 i

Comparing the leading coefficients, the result follows. |

Example 10.3. Let P(z) be a monic polynomial of degree n. Show that

=0

I Walkthrough — Is the above of some use?

Exercise 10.4 (USAMO 2002 P3, AoPS). Prove that any monic polynomial
(a polynomial with leading coefficient 1) of degree n with real coefficients is
the average of two monic polynomials of degree n with n real roots.

Walkthrough —

(a) Let F(z) be a monic polynomial of degree n with real coefficients. We

would like to write
2F(z) = P(x) + Q(x),
where P(x),Q(z) are polynomials with certain properties.

(b) Let us take P(z) to be a polynomial which changes sign very often, so
that it is likely to have n real roots. To do so, choose n real numbers
satisfying

1 < w2 < -0 < T,
and let y1,...,yn be real numbers (to be specified later). Apply the La-

grange interpolation formula to obtain a monic polynomial P(z) satisfying
P(x;) = y; for all 3.

(c) Define the polynomial Q(z) using
2F(z) = P(z) + Q(z).

Note that Q(z) is a monic polynomial with real coefficients.
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(d) Can one impose suitable conditions on y1, ..., y, such that Q(x) changes
sign often?

Solution 28. Let F(x) be a monic polynomial od degree n with real coefficients.
Let xy < --- < x, be real numbers. Note that there exist real numbers
Y1, -, Yn satisfying

(=1)'; >0, (=1)'""(2F(z:) — i) > 0

for any 1 < i < n. Indeed, y;’s can be taken satisfying (—1)%y; > |F(z;)|.
Let P(x) be a monic polynomial of degree n with real coefficients such that
P(x;) = y; for all 1 <i < n. Let Q(x) denote the polynomial such that F'(x)
is the average of P(z) and Q(x). Since F(z), P(x) are monic, it follows that so
is Q(z). For any 1 <14 < n, note that Q(x;) = 2F(x;) — P(z;) = 2F (x;) — y;
holds, and hence Q(x;) has sign as that of (—1)%. It follows that each of the
polynomials P(z),Q(x) has at least one root in each of the intervals

(x17l'2)7 (I271'3), RS} (xn—lvxn)-

Since these polynomials are of degree n with real coefficients and each of them
has at least n — 1 real roots, all of their roots are real. |

Exercise 10.5 (Putnam 1968 A6, AoPS). Find all polynomials whose coeffi-
cients are all 1 and whose roots are all real.

Walkthrough —

(a) Consider the average of the squares of the roots, and show that it is small
(and consequently, smaller than their geometric mean) if the polynomial
has degree > 4.

(b) Repeat the argument for degree three polynomials.

(c¢) Finding the degree one and degree two polynomials is easy.

Solution 29. Let P(x) be a polynomial of degree n having real roots. Assume
that its coefficients are equal to +1. Denote its roots by aq, ..., ay,, counting
multiplicities. Noting
a%+...+ai:(a1+...—|—an)2—2 Z ;Q,
1<i<j<n

it follows that
a%+-~-+a721:3.

Applying the AM-GM inequality, we obtain

a%—!—---—kaiZn,
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which implies that n < 3.

If P(x) is a monic linear polynomial, then it is equal to one of z — 1,2 + 1.

If P(x) is a monic quadratic polynomial, then considering discriminants, it
follows that its constant term is equal to 1, and hence P(x) is equal to one of
22 +r—1,22—2—1.

Let us consider the case that P(z) is a monic cubic polynomial, and the
coefficient of 2% in P(z) is equal to 1. Note that #* 4+ 22 + 2 — 1 vanishes at
x = 0. For any real number o <0,

PFratta—l=ala+1)?-1-a*<-1

holds, which implies that any real root of 23 + z2 + x — 1 is positive. Since
23+ 22 +x—11is of odd degree, it has a real root, and since z — z3+22+2x—1is
an increasing function on the set of positive reals, it follows that z3 4+ 22 +x —1
has only one real root. This gives P(x) # 23 + 2 + z — 1.
Let us consider the case that P(z) = 23 + 2% — x + 1 Using

P(z) = (z2* —x) + 1+ 23,

P(z) =a2* + 2%+ (1 — x),

Pz) =23+ (2® —2) + 1,
it follows that P(z) has no root in [—1,00). Note that for —1 > a > b, we have

P(a) - P(b) = (a—b)(a®* +ab+b*+a+b—1)
= (a—b)((a® +a) + (b" +b) + (ab— 1))
> 0.

This shows that 23 +2? —2+1 has no real root, and hence P(z) # z3+2?—x+1.
Note that not all the roots of

By tr+l=(x+1)(*+1)

are real. Consequently, if P(x) is a monic cubic polynomial and the coefficient
of 22 in P(x) is equal to 1, then P(z) is equal to 3 + 2% —x — 1.

If P(z) is a monic cubic polynomial and the coefficient of 22 in P(x) is
—1, then —P(—2) is equal to 2® + 22 — 2 — 1, and hence P(z) is equal to
23— 2% —x+1.

This shows that P(z) is equal to one of

x—1,:v+1,x2+sc—1,x2—x—l,az3+m2—x—1,:63—:102—;10—1—1.

Note that the discriminants of the quadratic polynomial 22+ — 1,22 — 2 — 1
are nonnegative, and also note that

P2z —1=(x—1)(z+1)>%
-2~z +1=(r—1*z+1).
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Consequently, the roots of the polynomials
at—1,J;+1,x2+x—1,302—x—l,x3+m2—m—1,x3—x2—x+1

are all real. Hence, the required polynomials are
c—lz+1l,22+z—-1,2°2—2—-1,2+2> -2z —1,2°— 2> -z +1,

—(z—1), —(z+1), —(x®+2-1), — (2 —z—1), = (3422 —2—1), — (2® —2?—2+1).
]

8§11 Integer divisibility

Example 11.1. If P is a polynomial with integer coefficients and a,b are
integers, then P(a) — P(b) is a multiple of a — b.

Walkthrough —

(a) Show that it suffices to prove it for monomials.

Solution 30. [ |

Example 11.2. Let P(x) be a polynomial with integer coefficients such that
P(0), P(1) are odd. Show that P(z) does not have any integer root.

Example 11.3 (India RMO 2016g P8). At some integer points a polynomial
with integer coeflicients take values 1,2 and 3. Prove that there exist not more
than one integer at which the polynomial is equal to 5.

Solution 31. Denote the polynomial by P(z). On the contrary, let us assume
that there are at least two distinct integers where P(z) takes the value 5.
Let a, b, ¢ be integers such that

P(a) =1, P(b) =2,P(c) = 3.

Note that a — b divides P(a) — P(b), b — ¢ divides P(b) — P(c). It follows
that a — b= +1,b — ¢ = £1. Since a, b are of opposite parity, and so are the
integers b, c, we obtain that a,c are of the same parity. Noting that ¢ — a
divides P(c) — P(a) = 2, it follows that ¢ — a = £2. Combining this with
a—b=4+1,b—c==41l,wegeta—b=b—c=1lora—-b=b—c=—1.

This shows that P(b—1) =1,P(b) =2,P(b+ 1) =3 holds or P(b+1) =
1,P(b) = 2,P(b— 1) = 3 holds. Note that in the first case, the polynomial
R(z) := P(xz — b) takes the values 1,2,3 at the integers —1,0, 1 respectively.
In the second case, the polynomial S(z) = P(—x + b) takes the values 1,2, 3 at
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the integers —1,0, 1 respectively. This proves that there is a polynomial Q(z)
with integer coefficients which takes the values 1,2,3 at —1,0, 1 respectively.
From the hypothesis, it follows that there are distinct integers ,j such
that Q(i) = Q(j) = 5. Note that ¢ — 1 divides Qi) — Q(1) = 2, ¢ divides
Qi) — Q(0) =3, i + 1 divides Q(i) — Q(—1) = 4. Since i divdes 3, we obtain
i = =+1,43. Using Q(—1) = 1,Q(1) = 3, we get ¢ # —1,4 # 1. This gives
i = +3. Noting that ¢ — 1 divides 2, we obtain ¢ # —3, and hence i = 3.
Similarly, it follows that j = 3. |

Example 11.4. Let P(x) be a polynomial with integer coefficients such that
P(20), P(25) are of absolute value equal to 1. Show that P(z) does not vanish
at any integer.

Walkthrough —

(a) If P(x) vanishes at an integer «, then oo — 20 divides P(20) and o — 25
divides P(25).

Solution 32. On the contrary, let us assume that P(x) vanishes at an integer
«. Note that o —20 divides 1, and so does a—25. This shows that o —20, a—25
are of absolute value equal to 1. Applying triangle inequality, we obtain

5 <l|a—20]+|a—5| <2,
which is impossible. |
Exercise 11.5 (USAMO 1974 P1, AoPS). Let a, b, and ¢ denote three distinct

integers, and let P denote a polynomial having all integral coefficients. Show
that it is impossible that P(a) = b, P(b) = ¢, and P(c) = a.

Walkthrough —

(a) Show that each of the integers a — b,b — ¢,c — a is a multiple of the
remaining two integers.

(b) Prove that this implies that a, b, ¢ are equal.

Solution 33. Note that
a—b|P(a)—Pb)y=b—c|P(b)—Plc)|c—a|P(c)— Pla) =a—b.

Consequently, the integers a — b,b — ¢,c — a are of the same absolute value.
Denote their absolute value by k. Note that their sum is zero. However, the
sum is equal to mk, for some m € {+1,+3}. Hence, k is equal to zero. This
yields that a = b = c. |

Here is a more general result.
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Example 11.6. Let P(x) be a polynomial with integer coefficients, and let n
be an odd positive integer. Suppose that x1,xs,...,x, is a sequence of integers
such that xo = P(z1), 23 = P(x2),...,2n = P(x,—1), and 1 = P(z,,). Prove
that all the z;’s are equal.

Walkthrough — Show that

ar—az|az—az|azs—as |- |an —a1 | ar — as.

Note that sum of these differences is an odd multiple of their absolute value.

Exercise 11.7 (Tournament of Towns Spring 2014, Senior A Level P4, by G.K.
Zhukov). In the plane, the points with integer coordinates (x,y) satisfying
0 < y < 10 are marked. Consider a polynomial of degree 20 with integer
coefficients. Determine the maximum possible number of marked points which
can lie on its graph.

Walkthrough —
(a)

Solution 34. Note that the polynomial
(x—=1)(z—2)(x—3)...(x—20)

of degree 20 has integer roots. Let us prove that the graph of no polynomial
of degree 20 with integer coefficients passes through more than 20 marked
points.

Claim — Let P(x) be a polynomial of degree 20 with integer coefficients.
No more than 20 marked points lie on the graph of P(x).

Proof of the Claim. On the contrary, let us assume that there are integers
T < X9 < -+ < x91 such that

0< P(z;) < 10

holds for all 1 < ¢ < 21. For any integer 1 < ¢ < 10, the inequality xo; —x; > 11
holds, and using that x9; — z; divides the integer P(x91) — P(x;), which lies in
[—10,10], it follows that P(x21) = P(x;). Similarly, for any integer 12 < ¢ < 21,
it follows that P(z1) = P(x;). This shows that P(x;) = P(z;) for any integer
i€{1,2,...,10} U{12,13,...,21}. Since P(z) is a polynomial of degree 20, it
follows that

P(z) — P(x1) = c(x —z1)(x — x2) ... (x — x10)(x — x12)(x — x13) ... (x — T21)
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holds for some nonzero integer a. This yields that
|P(z11) — P(x1)] > (10)?,
which is impossible. O

This proves that the maximum possible number of marked points which can
lie on the graph of a polynomial of degree 20 with integer coefficients is equal
to 20. m

Lemma 5

Let P be a polynomial with integer coefficients. Suppose a is an integer
and k is a positive integer such that P*(a) = a, where P* denotes the
k-fold composite map from Z — Z. Show that P?(a) = a.

Proof. Let ¢ denote the smallest positive integer such that P‘(a) = a. If £ =1
or { = 2, then we are done. Henceforth, we assume that ¢ > 3.
Note that

P(a) —a| P*(a) = P(a) | --- | P(a) = P"(a) = a— P*"'(a) | P(a) - a.

Since a — P*~'(a) is nonzero, it follows that the above differences are nonzero.
Consequently, for any 1 <i < ¢,

P (a) — P'(a) = £(P'(a) — P (a)).

If Pi*'(a) = P""!(a) holds for some 1 < i < £, then applying P/~**! to both
sides, we obtain P?(a) = a, which contradicts the assumption that ¢ > 3. It
follows that for any 1 < i < /¢,

P (a) — P'(a) = P(a) — a
holds, which implies that

-1

Y (P(a) — P'(a)) = U(P(a) - a).

i=0
This gives P(a) = a, which contradicts the assumption that ¢ > 3. This
completes the proof. O

Exercise 11.8 (IMO 2006 P5, AoPS, by Dan Schwarz, Romania). Let P(x)
be a polynomial of degree n > 1 with integer coefficients, and let k£ be a
positive integer. Consider the polynomial Q(x) = P(P(... P(P(z))...)), where
P occurs k times. Prove that there are at most n integers ¢ such that Q(t) = t.
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Walkthrough —

(a) Does the above lemma help?

Solution 35. By the above lemma, it reduces to considering the case Q(z) =
P?(x).

Suppose @ has more than n fixed points. Since P is not linear, it follows
that P cannot have n fixed points, and hence not all the fixed points of @) are
fixed points of P. Let b be a non-fixed point of P, and Q(b) = b. Suppose a be
a fixed point of @, other than b.

Let us first consider the case that P(a) # a. Note that

P(b) —a|P(a)—b| P(b) —a

holds, and
a—b|Pla)—P(b)|a—0

holds too. This yields that
[P(a) = bl = [P(b) —al, [|P(a) = P(b)] =[a—b|.

If
P(a) —b=a— P(b), and P(a) — P(b)=a—1

hold, then b would be a fixed point of P. It follows that at least one of
P(a) —b=—(a— P(b)),P(a) — P(b) = —(a—10)

holds. Consequently, we obtain

P(a) +a= P(b)+ 0.

Next, let us consider the case that P(a) = a. Note that
Pb)—a|b—a|P() —a.
Since b is not a fixed point for P, it follows that
Pb)—a=a—b,

which yields
P(a) +a = P(b) +b.

This proves that all the roots of Q(x) = x are the roots of P(z)+x = P(b)+b.
Since P(z) has degree n > 1, it follows that the polynomial P(x)+x — P(b) —b
is of degree n, and it has more than n roots, which is impossible.

Hence, there are at most n integers ¢t such that Q(¢t) = ¢ holds. ]
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§12 Primes, divisors, and congruences

Example 12.1 (Infinitude of primes). [Sai06] Let a1 = 2 and a1 = an(an+1).
Show that a,, has at least n distinct prime factors.

Exercise 12.2 (Tournament of Towns Fall 2019, Junior, O Level P4, by
Boris Frenkin). There are given 1000 integers aq,...,a1000. Their squares
a3, ... a3y are written along the circumference of a circle. It so happened
that the sum of any 41 consecutive numbers on this circle is a multiple of 412.
Is it necessarily true that every integer ai, ..., a1000 is a multiple of 417

I Remark. Replace 1000 by 10 and 41 by 7, and try to work on the problem.

Solution 36. For any integer m, let ™ denote the integer lying between 1 and
1000, which is congruent to m modulo 1000. Note that

a? = a? mod 412

holds for any integers i, j lying between 1 and 1000, and satisfying ¢ = j mod 41.
It follows that

al = ailkﬁ mod 41?
for any integer k. Since the integers 41,1000 are relatively prime, it follows
that the integers

41,41-2,41-3,...,41- 1000

are pairwise distinct modulo 1000, that is, these integers are congruent to
1,2,...,1000 modulo 1000 in some order. This shows that a? is congruent to
a? modulo 412 for any integer 1 < i < 1000. It follows that

41a? = af + a3 + -+ + a3y mod 413

Since the sum af + a3 + - - - 4 a3, is divisible by 412, this shows that 41 divides
ai. For any integer 1 < i < 1000, 412 divides af — a?, and using that 41 divides
a1, we obtain 41 divides a;.

This proves that it is necessary that every integer aq, ..., a1goo is a multiple
of 41. |

Example 12.3 (Tournament of Towns, India RMO 1995 P3). [Tao06, Problem
2.1] Prove that among any 18 consecutive three digit numbers there is at least
one number which is divisible by the sum of its digits.

Walkthrough —
(a) Show that one among any such consecutive integers is divisible by 18.

(b) Prove that its sum of digits, is a multiple of 9, and conclude that it is
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equal to one of 9,18, 27.
(c) Show that the sum of its digits is not 27.

Solution 37. Note that among 18 consecutive three digit numbers, there
is an integer divisible by 18. Denote it by n = 100a + 10b + ¢ with a,b, c
denoting integers lying between 0 and 9. It follows that 9 divides n, and hence
9 divides a + b + ¢. This shows that a 4+ b + ¢ is equal to one of 9, 18,27. Note
that a + b+ ¢ = 27 holds only if n = 999. Since 18 divides n, it follows that
a+ b+ c# 27, and hence, a + b+ ¢ is equal to one of 9,18. This proves that
a + b+ c divides n. ]

Exercise 12.4 (China TST 1995 Day 1 P1, AoPS). Find the smallest prime
number p that cannot be represented in the form [3% — 2°|, where a and b are
non-negative integers.

Walkthrough —

(a) Any prime smaller than 41 can be expressed as the absolute value of the
difference of a nonnegative power of 3 and a nonnegative power of 2.

(b) If 41 = 2° — 3%, then b > 3 and hence 3% = —1 mod 8, which is impossible.

(c) Assume that 41 = 3% — 2°. Considering congruence modulo 3, show that
b is an even positive integer. Reduce modulo 4 to show that a is even.

(d) Write a = 2z,b = 2y, and factorize 41.

(e) Conclude by obtaining a contradiction.

Solution 38. Note that any prime smaller than 41 can be expressed as the
absolute value of the difference of a nonnegative power of 3 and a nonnegative
power of 2, as shown below.

2=3-1,
3=4-1,

5=9—4,

7=8-1,

11 = 27 — 16,
13 =16 — 3,
17 = 81 — 64,
19 =27 — 8,
23 =32 -0,
29 =32 — 3,
31=32-1,
37 = 64 — 27.

Let us prove the following claim.
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Claim — The prime number 41 cannot be expressed as the absolute
value of the difference of a nonnegative power of 3 and a nonnegative
power of 2.

Proof of the Claim. On the contrary, let us assume that
41 = |37 — 2°|

holds for some nonnegative integers a, b.

First, let us consider the case that 41 = 2° — 3%. Note that b > 3 holds,
and reducing the above modulo 8, it follows that 3* = —1 (mod 8), which is
impossible.

Now, let us consider the case that 41 = 3% — 2°. Reducing modulo 3, it
follows that 2° = 1 (mod 3), which shows that b is even. Note that b is nonzero.
Next, reducing modulo 4, we obtain 3* = 1 (mod 4), which implies that a is
even. Writing a = 2z,b = 2y for some positive integers z,y, we obtain

41 = 3% — 22 = (37 — 2¥) (3% + 2Y)
with 1 < 3% — 2¥ < 3% 4 2¥, which yields
3% —2Y =1,3% +2¥ =41,

which is impossible.
Considering the above cases, the claim follows. O

This proves that 41 is smallest prime that cannot be expressed in the given
form. |

Example 12.5 (Bay Area MO 2000 P1). Prove that any integer greater than
or equal to 7 can be written as a sum of two relatively prime integers, both
greater than 1.

Walkthrough — Consider the case of an odd integer, the case of a multiple
of 4, and the case of an even integer, which is not a multiple of 4.

Solution 39. Note that any odd integer can be expressed as the sum of two
relatively prime integers. Indeed, for any integer n, the integer 2n + 1 is the
sum of the relatively prime integers n,n + 1.

For any integer k, note that

4k =2k —-1)+ (2k+1)

holds, and the integers 2k — 1,2k + 1 are relatively prime since any of their
common divisors is odd and divides (2k + 1) — (2k — 1) = 2.
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For any integer ¢, note that
404+2=(20—-1)+ (2(+3)

holds, and the integers 2¢ — 1,2¢ 4 3 are relatively prime since any of their
common divisors is odd and divides (2¢ 4 3) — (20 — 1) = 4. |

8§13 Gauss’s lemma

Exercise 13.1 (ELMO 2009, AoPS, proposed by Evan O’Dorney). Let a,b, ¢
be positive integers such that a® — be is a square. Prove that 2a + b + ¢ is not
prime.

Walkthrough —
(a) Consider the quadratic polynomial p(z) = bz? 4 2ax + c.
(b) Show that its discriminant is a perfect square.

(c) Use Gauss’s lemma to show that p(z) can be factored into linear polyno-
mials with integer coefficients.

(d) Note that the roots of p(x) are negative rationals.

(e) Conclude that p(z) can be factored into linear polynomials with positive
integer coefficients.

(f) Conclude that p(1) = 2a + b+ ¢ is not a prime

Solution 40. Consider the quadratic polynomial p(x) = bz? + 2ax + ¢ with
integer coefficients. Since its discriminant is a perfect square, it follows that its
roots are rational, that is, it can be factored over the rationals. By Gauss’s
lemma, p(z) can be factored into linear polynomials with integer coefficients.
Since the leading coefficient of p(x) is positive, it follows that it can be factored
into linear polynomials with integer coefficients and having positive leading
coefficients. Note that the roots of p(x) are negative rationals. This proves that
p(z) can be factored into linear polynomials with positive integer coefficients.
Noting that p(1) = 2a + b+ ¢, it follows that 2a + b + ¢ is not a prime. |

Remark. Note that in the above, one may prove that p(z) can be factored
into linear polynomials with integer coefficients without using Gauss’s lemma,
possibly by establishing the lemma in this specific case. In fact, the above
problem could serve as an introduction to Gauss’s lemma.

§14 Irreducibility
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Theorem 6 (Eisenstein’s criterion)
Let
f(@) =anz™ +---+ a1 +ag

be a polynomial with integer coefficients. Let p be a prime number and
assume that

an Z 0 mod p,
Ap—1y---,00 = 0 mod p,
ao # 0 mod p?

holds. Then f(x) cannot be expressed as a product of two non-constant
polynomials with rational coeflicients.

J

Example 14.1. [Art91, Chapter 11, Exercise 4.10, p. 444] Let
(@) = agn12*™ ™ + agpa®™ + -+ arz + ap

be a polynomial of degree 2n + 1 with integer coefficients. Let p be a prime
number and assume that

azn+1 #Z 0 mod p,

_ 2
ag, @i, ..., a0y, =0 mod p~,
Ant1,y- -, 02, = 0 mod p,

ao # 0 mod p°.

Show that f(x) cannot be expressed as a product of two non-constant polyno-
mials with rational coefficients.

Example 14.2. For any prime p, show that there exist non-constant monic
polynomials f,(z), gp(x) with integer coefficients such that

z* —102% + 1 = f,(x)g,(x) mod p

holds. Can the polynomial z* — 1022 4 1 be expressed as the product of two
non-constant polynomials with rational coefficients?

§15 Order

Let p be a prime, and a be an integer, not divisible by p. The order of a modulo
p, denoted by ord,(a), is defined to be the smallest positive integer such that
a®* (@) = 1 mod p.

42 The content posted here and at this blog by Evan Chen are quite useful.


https://jpsaha.github.io/MOTP/
https://web.evanchen.cc/
https://blog.evanchen.cc/
https://www.youtube.com/c/vEnhance

15 Order Typos may be reported to jpsaha@iiserb.ac.in.

Example 15.1 (Tournament of Towns, India RMO 2014a P3). [Tao06, Prob-
lem 2.2] [AE11, Problem 3.81] Suppose for some positive integers r and s, 2"
is obtained by permuting the digits of 2° in decimal expansion and 2", 2% have
same number of digits. Prove that r = s.

Solution 41. Since a positive integer is congruent to the sum of its digits
modulo 9, it follows that 2" and 2° are congruent modulo 9.

Let us consider the case that » < s. Note that 9 divides 2°~" — 1. Since the
order of 2 modulo 9 is equal to 6, it follows that 6 divides s — r, and hence
2% > 64-2", which is impossible. This shows that r > s holds. Similarly, it also
follows that s > r holds. This proves that s = r, as required. |

Example 15.2 (Mathematical Ashes 2011 P2). Find all pairs (m,n) of non-
negative integers for which

m?+2-3" =m(2"T —1).

Walkthrough —

a) Let m,n be nonnegative integers satisfying the given equation. Consider-
g g ying g
ing the roots of 2% — z(2""! — 1) +2-3", it follows that

P LR =T 1]

holds, for some nonnegative integers k, ¢ satisfying k + ¢ = n.

(b) Show that if n > 6, then min{k, £} > 2 holds. Note that
3k < 2n+1 < 9(n+1)/3
holds, implying k& < 2(n + 1)/3. Also note that
2.3° < 2"t < 2. 373

holds, implying ¢ < 2n/3. Using k + £ = n, it follows that

n—2 n—2
k>——0> .
3 3
(c) Let us consider the case” that n > 6. Note that m := min{k, ¢} > 2
holds.
(i) Note that 9 divides 2" — 1, and show that 6 divides n+ 1. Writing
n+ 1 =67 yields

2" 1= (4 —1)@¥ +47+1) = (2 —1) (2T +1)((4' —1)* +3-4%).
(ii) Noting that (47 —1)? 4 3-47 is divisible by 3, but not by 9, and that

the integers 27 -1, 27 41 are coprime, conclude that 3™~ divides
one of 27 — 1,27 + 1.
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(iii) Prove that
3™ l<9i 41 <3 =3,

implying
n+1
—-1<
" =%
(iv) Conclude that
"2 jem-1<2El

holds.
(v) This yields n < 11, contradicting n > 6 and 6 divides n + 1.

(d) It remains to consider the case n < 5.

2Tt also suffices to assume that n > 5 holds to obtain m > 2.

§16 Primitive roots

Given a prime p, and an integer a, define the Legendre symbol (%) by

0 if p divides a,

a
<) =<1 if p does not divide a, and a = m? mod p for some integer m,

P —1 if p # m? mod p for every integer m.

Exercise 16.1. Show that

(_3>:1 if p=1mod 3.
p

Walkthrough — Show that
(26 +1)° = =3 mod p
holds for any integer &, which is of order 3 modulo p. Does such an integer

exist?

Exercise 16.2. Show that

(5>:1 if p=1mod 5.
p

Walkthrough — Show that

€+’ +(€E+€E) =1modp
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holds for any integer £, which is of order 5 modulo p. Does such an integer
exist?

§17 Quadratic residues

Henceforth, p denotes an odd prime.

Exercise 17.1. Show that the number of solutions of 22 = a mod p is given

by
1+ <a> .
p
Exercise 17.2 (Counting squares and non-squares). Show that
p—1 a
> (%)=
a=1 p

Exercise 17.3. Prove that
—1

()

=0

holds for any integers a, b with p 1t a.
Note that the sums in the above problems are over different sets.

Exercise 17.4. Let a be an integer. Show that the number of solutions to

2% — y? = a mod p is given by

5(+(52)

Exercise 17.5. Let a be an integer. Prove that the number of solutions to
2 —y?2 = amod p is equal to

=y
p_]- lfp'faa
2p—1 ifp|a.

4 )
Corollary 7
Prove that )
pz<y2+a>_{—1 if pta,
o\ P p—1 ifp|a,
59 -5
o D (p—1) (%) if p | a.
- J
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\
Lemma 8
Let p be an odd prime. Then for any integer a, the congruence
<a) =aPV/2 mod p
p
holds.
- J

I Walkthrough — Count the squares! Does Exercise 17.2 help?

Exercise 17.6 (China TST 2009 P6, AoPS). Determine whether there exists
an arithmetic progression consisting of 40 terms and each of whose terms can
be written in the form 2 4 3™ or not, where m,n are nonnegative integers.

Here is an argument by AoPS user iceillusion.

Walkthrough —

(a) On the contrary, let us assume that there exists such a progression of
length 23.

(b) Put p = 23. Note that

-0 ()

It follows that the terms of the progression are nonzero modulo p, and
hence at two of those 23 term progression are congruence modulo p. This
shows that their common difference is divisible by p, and hence the 23
terms are congruent to a nonzero residue a modulo p.

(c) Prove the following.

Claim — For any integer a with p { a, the number of pairs (z,y) of
nonzero quadratic residues modulo p, satisfying z 4+ y = a mod p is
equal to

{--(3)-()- (- ()
e ()-6)

(d) Consider the 23 pairs (2™,3™) corresponding to the 23 terms of the
progression. Note that these pairs, when reduced modulo p, can take at
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{2 (2)2(2) <2

values. By the pigeonhole principle, it follows that at least five pairs
among these 23 pairs, are congruent to each other modulo p.

(e) Note that the integers 2,3 are of order 11 modulo 23. It follows that the
pairs of the exponents (m, n), corresponding to these five congruent pairs,
are congruent to each other modulo 11.

most

(f) This produces three suitable positive integers of the form = + ki1d, z +
kad, x + ksd, with 1 < k1 < ko < ks < 22.

(g) Obtain a contradiction!

Solution 42. [ ]

Lemma 9

Let p be an odd prime. Then
2 2
2) — () -1/8,
) -

Proof. Let Z[i] denote the set of complex numbers whose real and imaginary
parts are integers. For two elements 21, zo of Z[i], we write

z1 = zo mod p

if the real part and the imaginary part of z; — z are multiples of p.
Note that

(1+i)P =(1+ i)(?i)(p_l)/Q =(1+ Z’)Z‘(p—l)/Qg(P—l)/Q

holds, which yields
2
(> (1+4)i®PD/2 =14 i(=1)P=1/2 mod p.
p
This shows that

(2)_ (—1)P=D/4if 221 s even,
p) | (=1)@D/Aif 22l s odd.

Some style files, prepared by Evan Chen, have been adapted here. 47


https://github.com/vEnhance/dotfiles/blob/main/texmf/tex/latex/evan/evan.sty
https://web.evanchen.cc/otis.html

17 May 2025 https://jpsaha.github.io/MOTP/

References

[AE11]

[Art91]

[GA1T]

[Goy21]

[Sai06]

[Tao06]

48

T1TU ANDREESCU and BOGDAN ENESCU. Mathematical Olympiad
treasures. Second. Birkh&user /Springer, New York, 2011, pp. viii+253.
ISBN: 978-0-8176-8252-1; 978-0-8176-8253-8 (cited p. 43)

MICHAEL ARTIN. Algebra. Englewood Cliffs, NJ: Prentice Hall Inc.,
1991, pp. xviii+618. 1SBN: 0-13-004763-5 (cited p. 42)

RAZVAN GELCA and TITU ANDREESCU. Putnam and beyond. Second.
Springer, Cham, 2017, pp. xviii+850. ISBN: 978-3-319-58986-2; 978-
3-319-58988-6. DOI: 10.1007/978-3-319-58988~-6. URL: https:
//doi.org/10.1007/978-3-319-58988-6

ROHAN GOYAL. “Polynomials”. Available at https://www.dropbox.
com/s/yo31nat6z5ggaue/Polynomials.pdf?7d1=0. 2021 (cited p. 4)

FiLip SAIDAK. A new proof of Euclid’s theorem. In: Amer. Math.
Monthly, 113:10 (2006), pp. 937-938. 1ssN: 0002-9890. por: 10.2307/
27642094. URL: http://dx.doi.org/10.2307 /27642094 (cited
p. 38)

TERENCE TAO. Solving mathematical problems. A personal per-
spective. Oxford University Press, Oxford, 2006, pp. xii+103. ISBN:
978-0-19-920560-8; 0-19-920560-4 (cited pp. 38, 43)

The content posted here and at this blog by Evan Chen are quite useful.


https://jpsaha.github.io/MOTP/
https://doi.org/10.1007/978-3-319-58988-6
https://doi.org/10.1007/978-3-319-58988-6
https://doi.org/10.1007/978-3-319-58988-6
https://www.dropbox.com/s/yo31nat6z5ggaue/Polynomials.pdf?dl=0
https://www.dropbox.com/s/yo31nat6z5ggaue/Polynomials.pdf?dl=0
https://doi.org/10.2307/27642094
https://doi.org/10.2307/27642094
http://dx.doi.org/10.2307/27642094
https://web.evanchen.cc/
https://blog.evanchen.cc/
https://www.youtube.com/c/vEnhance

	Warm up
	Polynomials
	Warm up
	Even and odd polynomials
	Factorization and roots

	Differentiation and double roots
	Finite differences
	Growth of polynomials
	Rational and irrational numbers
	Size of the roots
	Roots of unity
	Crossing the x-axis
	Lagrange interpolation
	Integer divisibility
	Primes, divisors, and congruences
	Gauss's lemma
	Irreducibility
	Order
	Primitive roots
	Quadratic residues

