RMO 2005 Questions, Solutions, Discussions
(RMO 2005 P2, AoPS) If \(x, y\) are integers and \(17\) divides both the expressions \(x^2 - 2xy + y^2 - 5x + 7y\) and \(x^2 - 3xy + 2y^2 + x - y\), then prove that \(17\) divides \[ xy - 12x + 15y. \]
Click here for the spoiler!
- Factorize \(x^2 - 3xy + 2y^2 + x - y\) to show that \[ x \equiv y \pmod{17}, \quad \text{ or } x \equiv 2y - 1 \pmod{17} \] holds.
- Consider the above cases seperately, and use the divisibility of the other expression by \(17\) to obtain some congruence conditions on \(y\). Using these conditions to read \(xy - 12x + 15y\) modulo \(17\).
Click here for the spoiler!
Let \(x, y\) be integers such that \(17\) divides both the expressions \(x^2 - 2xy + y^2 - 5x + 7y\) and \(x^2 - 3xy + 2y^2 + x - y\). Note that \[ x^2 - 3xy + 2y^2 + x - y = (x-y)( x-2y+1), \] which is divisible by \(17\). It follows that \[ x \equiv y \bmod 17, \quad \text{ or } x \equiv 2y -1 \bmod 17 \] holds. Let us consider the case that \(x \equiv y \bmod 17\). It follows that \[ x^2 - 2xy + y^2 - 5x + 7y \equiv (x-y)^2 - 5x+ 7y \equiv 2y \bmod 17. \] Since \(17\) divides \(x^2 - 2xy + y^2 - 5x + 7y\), we get \(2y \equiv 0 \bmod 17\), which yields \(x\equiv y \equiv 0 \bmod 17\), and hence \(17\) divides \(xy - 12x + 15y\). Let us consider the case that \(x \equiv 2y -1 \bmod 17\). Using \(x^2 - 2xy + y^2 - 5x + 7y\equiv 0 \bmod 17\), we obtain \[ (2y -1 )^2 - 2(2y -1 )y + y^2 - 5(2y-1) + 7y\equiv 0 \bmod 17, \] which yields \(y^2-5y + 6 \equiv 0 \bmod 7\). This implies that \((y-2)(y-3)\equiv 0 \bmod 17\). This shows that either \(x\equiv 3\bmod 17, y \equiv 2 \bmod 17\) holds, or \(x \equiv 5 \bmod 17, y \equiv 3 \bmod 17\) holds. If \(x\equiv 3\bmod 17, y \equiv 2 \bmod 17\) holds, then \[ xy - 12x + 15y \equiv 6 - 36 + 30 \equiv 0 \bmod 17 \] holds. If \(x \equiv 5 \bmod 17, y \equiv 3 \bmod 17\) holds, then we obtain \[ xy - 12x + 15y \equiv 15 - 60 + 45 \equiv 0 \bmod 17. \] This proves that \(17\) divides \(xy - 12x + 15y\).
Click here for the spoiler!
The given inequalities are equivalent to \[ (a-b)^2-c^2 \geq 0 , (b-c)^2 - a^2 \geq 0, (c-a)^2 -b^2 \geq 0 , \] which yields
\[ \begin{align} (a-b+c)(a-b-c) &\geq 0,\ (b-c+a)(b-c-a) &\geq 0,
(c-a+b)(c-a-b) &\geq 0. \end{align} \]
Multiplying them, we obtain \[ -(b+c-a)^2(c+a-b)^2 (a+b-c)^2\geq 0, \] which shows that \((b+c-a)(c+a-b)(a+b-c)\) is equal to \(0\). This proves the result.
Lecture notes for Math Olympiad (IOQM, RMO, INMO)
Click on the icons below to download.
Topics Links Algebra Combinatorics Geometry Number Theory INMO Training Camp 2025, MP IMO Training Camp MOPSS Resources