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Suggested readings

• Evan Chen’s

– advice On reading solutions, available at https://blog.evanchen.
cc/2017/03/06/on-reading-solutions/.

– Advice for writing proofs/Remarks on English, available at https:
//web.evanchen.cc/handouts/english/english.pdf.

• Evan Chen discusses why math olympiads are a valuable experience for
high schoolers in the post on Lessons from math olympiads, available at
https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/.
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Example 1. Show that the positive integers of the form 4n+ 3, that is, the
integers

3, 7, 11, 15, 19, . . .

cannot be written as the sum of two perfect squares.

Summary — Show that the squares leave a remainder of 0 or 1 upon division
by 4. Conclude that a sum of two squares leaves a remainder of 0, 1, 2 upon
division by 4.

Walkthrough —

(a) Consider the integers

02 + 12, 02 + 22, 02 + 32, 02 + 42, . . . ,

12 + 12, 12 + 22, 12 + 32, 12 + 42, . . . ,

22 + 12, 22 + 22, 22 + 32, 22 + 42, . . . ,

32 + 12, 32 + 22, 32 + 32, 32 + 42, . . . ,

42 + 12, 42 + 22, 42 + 32, 42 + 42, . . . .

(b) Observe that upon division by 4, they leave the integers 0, 1, 2 as remain-
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ders.

02 + 12 ⇝ 1, 02 + 22 ⇝ 0, 02 + 32 ⇝ 1, 02 + 42 ⇝ 0, . . . ,

12 + 12 ⇝ 2, 12 + 22 ⇝ 1, 12 + 32 ⇝ 2, 12 + 42 ⇝ 1, . . . ,

22 + 12 ⇝ 1, 22 + 22 ⇝ 0, 22 + 32 ⇝ 1, 22 + 42 ⇝ 0, . . . ,

32 + 12 ⇝ 2, 32 + 22 ⇝ 1, 32 + 32 ⇝ 2, 32 + 42 ⇝ 1, . . . ,

42 + 12 ⇝ 1, 42 + 22 ⇝ 0, 42 + 32 ⇝ 1, 42 + 42 ⇝ 0, . . . .

(c) Show that it is always the case, namely, upon division by 4, the sum of
two perfect squares leaves one of 0, 1, 2 as the remainder.

(d) Conclude that no integer, which leaves the remainder of 3 upon division
by 4, can be written as the sum of two squares.

Solution 1. The solution relies on the following claim.

Claim — For any integer x, the integer x2 leaves a remainder of 0 or 1
upon division by 4.

Proof of the claim. Let x be an integer. Let us consider the following cases.

1. Upon division by 4, x leaves a remainder of 0.

2. Upon division by 4, x leaves a remainder of 1.

3. Upon division by 4, x leaves a remainder of 2.

4. Upon division by 4, x leaves a remainder of 3.

In the first case, x is a multiple of 4, and hence x2 leaves a remainder of 0
upon division by 4. Similarly, in the third case, x is a multiple1 of 2, i.e. x is
equal to 2k, and hence x2 is a multiple of 4.
In the second case, x is equal to 4k + 1 for some integer k. Note that

x2 = (4k + 1)2

= (4k)2 + 2 · 4k + 1

= 4(4k2 + 2k) + 1,

and hence x2 leaves a remainder of 1 upon division by 4.
In the fourth case, x is equal to 4k + 3 for some integer k. Note that

x2 = (4k + 3)2

= (4k)2 + 2 · 4k · 3 + 9

= 4(4k2 + 6k + 2) + 1,

and hence x2 leaves a remainder of 1 upon division by 4.
This proves the claim.

1Is it clear?
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Using the claim, it follows that a sum of two squares leaves one of 0, 1, 2 as
a remainder upon division by 4. Hence, no integer of the form 4n+ 3 can be
expressed as a sum of two perfect squares. ■

Example 2 (Putnam 2002 A2). Given any five points on a sphere, show that
some four of them must lie on a closed hemisphere.

Remark. Let S be a sphere and C be a great circle on it. Then C divides S into
two parts, which are called the hemispheres defined by C. Any such hemisphere
together with the great circle C is called a closed hemisphere. In Fig. 1, there
are a few examples of closed hemispheres. Those are the grey ones together
with the great circles marked in red, and the blue ones together with the great
circles marked in red.

Summary — Apply the pigeonhole principle.

(a) (b)

(c) (d)

Figure 1: USA Putnam 2002 A2, Example 2
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Walkthrough —

(a) Draw a great circle passing through at least two of the five points.

(b) At least one closed hemisphere contains at least two of the remaining
three points.

(c) Conclude!

Solution 2. Draw a great circle passing through at least two of the five points.
Then at least one closed hemisphere contains at least two of the remaining
three points. This proves the result. See [AN10, Example 3.2]. ■

Example 3 (Moscow MO 2015 Grade 11 Day 1 P5). Prove that it is impossible
to put the integers from 1 to 64 (using each integer once) into an 8× 8 table

so that for any 2× 2 square c
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, the difference ad− bc is equal to 1 or −1.
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Figure 2: ad− bc = ±1, ps− qr = ±1, Example 3

Remark.

• Given a 2× 2 square c
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, the difference ad− bc is equal to

the product of the diagonal terms

− the product of the anti-diagonal terms.
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Figure 3: ad− bc = ±1, ps− qr = ±1, Example 3
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Let us call this difference the determinant of the 2× 2 square.

• For instance,

–

(
1 2
3 4

)
has determinant equal to −2,

–

(
8 9
7 12

)
has determinant equal to 96− 63 = 33,

–

(
13 14
5 7

)
has determinant equal to 91− 70 = 21.

– Did you notice that if the determinant is odd, then the diagonal
entries are odd or the anti-diagonal entries are odd?

• We need to show that there is no filling of an 8×8 table using the integers
from 1 to 64, using each integer once, such that any 2× 2 square (such
squares have been marked in Fig. 2, Fig. 3, note that there 9 + 16 = 25
such 2×2 squares.) has a determinant equal to 1 or −1. Equivalentlya, no
matter how one may fill an 8× 8 table using using the integers from 1 to
64, using each integer once, some 2× 2 square has to have a determinant
other than 1,−1.

aIs the equivalence clear? Try to think about it!

Summary — If such a filling exists, then divide the 8 × 8 table into 16
pairwise disjoint 2× 2 squares (as in Fig. 4). Due to parity constraints, each
square contains precisely two evens along its diagonal or anti-diagonal, and their
product is at most one more than the product of the odd entries. Consequently,
for any of these 16 squares, the product of its even entries is less than the
product of the successors of its odd entries. Multiplying across the squares gives
a contradiction.

Walkthrough —

(a) Assume that such a filling exists.

Figure 4: Moscow MO 2015 Grade 11 Day 1 P5, Example 3

(b) Recall that the determinant of a 2× 2 square c
b
d

a

is

the product of the diagonal terms

Some style files, prepared by Evan Chen, have been adapted here. 101

https://web.evanchen.cc/otis.html


2 June 2024 https://jpsaha.github.io/MOTP/

− the product of the anti-diagonal terms.

(c) Note that even− even ̸= ±1, odd− odd ̸= ±1 , and hence any square

contains two odd numbers along the diagonal or on the anti-diagonal

.

(d) Divide the 8× 8 table into 16 pairwise disjoint 2× 2 squares.

(e) Each of these 16 squares contains at least two odd integers, and hence,
they together contain at least 32 odd integers.

(f) Conclude that each of these 16 squares contains precisely two odd integers,
and precisely two even integers.

(g) Consider a square among them. It is of the form

c
b
d

a

with a, d both odd, and b, c both even,

or of the form

d
a
c

b
with a, d both odd, and b, c both even.

(h) The product of its even entries is at most one more than the product of
its odd entries.

(i) Note that for any two odd positive integers b, c, the inequality bc+ 1 <
(b+ 1)(c+ 1) holds.

(j) This shows that

the product of two evens between 1 and 64

< the product of

two (possibly different) evens between 1 and 64.

(k) Multiply all the even entries of the 16 squares to obtain

2 · 4 · . . . · 64 < (1 + 1) · (3 + 1) · . . . · (63 + 1) = 2 · 4 · . . . · 64.

Solution 3. Let us assume that an 8× 8 table admits a filling by the integer
from 1 to 64, using each integer once, such that each 2× 2 square, considered
as a matrix, has determinant equal to 1 or −1.

Claim — Any 2× 2 square contains at least two odd integers.

Proof of the claim. Since the difference of two integers can be odd only when
they are of different parity (i.e. one of them is odd, and the other is even), it
follows that for any 2× 2 square, the product of its diagonal entries and the
product of its anti-diagonal entries are of different parity, and hence of these
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two products is odd, and consequently, the diagonal entries are odd or the
anti-diagonal entries are odd. In particular, any 2× 2 square contains at least
two odd integers.

Let us divide the 8× 8 table into 16 pairwise disjoint 2× 2 squares (as in
Fig. 4).

Claim — Each of these 16 squares contains exactly two even integers,
lying along its diagonal or anti-diagonal.

Proof of the claim. By the previous Claim, each of these 16 squares contains
at least two odd integers, and they contain at least 16× 2 = 32 odd integers.
Since there are precisely 32 odd integers between 1 and 64, it follows that each
of these 16 squares contains exactly two odd integers along its diagonal or
anti-diagonal, and hence exactly two even integers along its anti-diagonal or
diagonal.

Since the determinant of any 2× 2 square is 1 or −1, it follows that for any
of the 16 squares as in Fig. 4, the product of its even entries is at most one
more than the product of its odd entries. Note that for any two odd positive
integers b, c, the inequality bc+ 1 < (b+ 1)(c+ 1) holds. Consequently, for any
of the 16 squares as in Fig. 4, the product of its even entries is less than the
product of the successors of its odd entries. This implies that the product of
the even entries of all the 16 squares is less than the product of the successors
of the odd entries of these boxes. Note that the even entries of these squares
are the even integers lying between 1 and 64, so are the successors of the odd
entries of these squares. It follows that

2 · 4 · . . . · 64 < (1 + 1) · (3 + 1) · . . . · (63 + 1) = 2 · 4 · . . . · 64.

This contradicts the assumption that an 8 × 8 table admits a filling by the
integer from 1 to 64, using each integer once, such that each 2 × 2 square,
considered as a matrix, has determinant equal to 1 or −1. Hence, no such
filling is possible. ■

Example 4. Among any 5 points in a 2× 2 square, show that there are two
points which are at most

√
2 apart.

Summary — Divide the 2× 2 square into suitable “boxes/pockets”, so that
the pigeonhole principle can be applied.

Walkthrough —

(a) Divide the 2× 2 square into four unit squares.

(b) Two points among any choice of 5 points from the 2× 2 square lie in one
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Figure 5: Example 4

of these unit squares.

(c) Conclude!

Solution 4. Suppose we are given a set of five points in a 2× 2 square. Divide
the 2× 2 square into four unit squares. By the pigeonhole principle, two points
among those five points lie in one of these unit squares. Note that the distance
between any two points lying in a unit square is at most the length of any of its
diagonals. By Pythagoras’ theorem, any diagonal of a unit square has length
equal to

√
2. Consequently, two of those five points are at most

√
2 apart. ■

Example 5 (Austrian Junior Regional Competition 2022). Determine all
prime numbers p, q and r with p+ q2 = r4.

Summary — Write down p in terms of q, r and factorize p, which is a prime!

Walkthrough —

(a) Note that

p = r4 − q2

= (r2 − q)(r2 + q).

(b) This gives r2 − q = 1, and hence

q = r2 − 1

= (r − 1)(r + 1).

(c) This implies that r − 1 = 1.

(d) Conclude that r = 2, q = 3, p = 7.
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Solution 5. Note that

p = r4 − q2

= (r2 − q)(r2 + q).

Since p is a prime and r2 − q < r2 + q holds, it follows that r2 − q = 1, and
hence

q = r2 − 1

= (r − 1)(r + 1).

Since p is a prime and r − 1 < r + 1, this implies that r − 1 = 1. This gives
r = 2, q = 3, p = 7. Since 2, 3, 7 are primes, it follows that the only solution of
the given equation in primes is

p = 7, q = 3, r = 2.

■

Example 6 (cf. Australian Mathematics Competition 1984). Suppose

x1, x2, x3, x4, . . .

is a sequence of integers satisfying the following properties:

(1) x2 = 2,

(2) xmn = xmxn for all positive integers m,n,

(3) xm < xn for any positive integers m,n with m < n.

Find x2024.

Summary — Observe that x2n = 2n for any n ≥ 1. Combining this with
the hypothesis that {xn}n≥1 is an increasing sequence of positive integers,
conclude that xn = n for any n ≥ 1.

Walkthrough —

(a) What can be said about x4, x8, x16, x32?

(b) Note that x4 = x2×2, x8 = x4×2, x16 = x8×2, x32 = x16×2.

(c) Can one show that x2n = 2n for any n ≥ 1?

(d) Show that xm = m for any m ≥ 1 (does property (3) help?).
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Solution 6. From the second condition, we obtain

x2n = xn
2

for any integer n ≥ 1. Using the first condition, it gives

x2n = 2n

for any integer n ≥ 1. Since {xn}n≥1 is an increasing sequence of positive
integers, it follows that xn = n for any positive integer n. This gives

x2024 = 2024.

■
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