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§1 Systems of equations

§1.1 Factorization

Example 1.1. Find the integral solutions of the equation y3 − x3 = 91.

Walkthrough — Factorize y3 − x3, and use the prime factorization of 91.
Also note that x2 + xy + y2 is nonnegative and

y − x ≤ y2 + x2 ≤ x2 + xy + y2

holds for any two integers x, y.

Example 1.2. [WH96, Problem 14] Let r, s be nonzero integers. Prove that
the equation

(r2 − s2)x2 − 4rsxy − (r2 − s2)y2 = 1

has no solutions in integers.

Walkthrough — Note that

(r2 − s2)x2 − 4rsxy − (r2 − s2)y2 = (rx− sy)2 − (ry + sx)2.

Show that (
r −s
s r

)(
x
y

)
=

(
±1
0

)
holds.

Example 1.3. [HW97, Problem 7] Prove that the equation

x4 + y4 + z4 − 2x2y2 − 2y2z2 − 2z2x2 = 24

has no solution in integers x, y, z.

Walkthrough — Note that

x4 + y4 + z4 − 2x2y2 − 2y2z2 − 2z2x2

= (x2 + y2 − z2)2 − (2xy)2

= −(x+ y + z)(x+ y − z)(y + z − x)(z + x− y)

holds, and any two of the above four factors are of the same parity. Does 24

divide 24?

Example 1.4 (India RMO 1992 P1). Determine the set of integers n for which
n2 + 19n+ 92 is a square of an integer.

Some style files, prepared by Evan Chen, have been adapted here. 3
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Solution 1. Let n be an integer such that n2 + 19n+ 92 = m2 holds for some
non-negative integer m. This gives

(2n+ 19)2 + 7 = (2m)2,

which yields
7 = (2m− 2n− 19)(2m+ 2n+ 19).

Since 2m+2n+19 is positive, it follows that (2m−2n−19, 2m+2n+19) is equal
to (7, 1) or (1, 7). This shows that (m,n) is equal to one of (2,−11), (2,−8),
and consequently, n is equal to one of −11,−8. Note that

(−11)2 − 19 · 11 + 92 = 4, (−8)2 − 19 · 8 + 92 = 4

holds. This proves that the integers satisfying the given condition are precisely
−11,−8. ■

Example 1.5 (India RMO 2001 P2). Find all primes p, q such that p2+7pq+q2

is a perfect square.

Solution 2. Let p, q be primes such that

p2 + 7pq + q2 = m2 (1)

holds for some positive integer m. Note that m is congruent to one of q,−q
modulo p. Write m = kp± q for some integer k. Substituting m = kp± q in
Eq. (1) yields

p(k2 − 1) = (7∓ 2k)q. (2)

Let us consider the case that p > q. This gives m2 ≥ 9q2, and hence we
obtain k > 1. This implies that k2 − 1 is positive, and hence, so is 7 ± 2k.
Using p > q, we get

k2 − 1 < 7∓ 2k,

which yields (k ± 1)2 < 9. Noting that k is positive, it follows that k ± 1 is
equal to one of 0, 1, 2, and hence k is equal to one of 2, 3. Substituting k = 2
in Eq. (2) yields 3p = (7∓ 4)q. Since p > q, we obtain 3p = 11q, which shows
that p = 11, q = 3. Substituting k = 3 in Eq. (2) yields 8p = (7∓ 6)q, which
implies that 8p = q or 8p = 13q, which is impossible. It follows that any pair
of primes (p, q) such that p2 + 7pq + q2 is a perfect square and p > q holds, is
equal to (11, 3). Note that

112 + 7 · 11 · 3 + 32 = 121 + 231 + 9 = 361 = 192

holds. We conclude that (p, q) = (11, 3) is the only solution when p > q.
Since p2 + 7pq + q2 is symmetric in p, q, it follows that (p, q) = (3, 11) is the

only solution when p < q.
Also note that if p = q, then p2 + 7pq + q2 = (3p)2 is a perfect square. So

the solutions are are precisely (3, 11), (11, 3), and the tuples of the form (r, r),
where r runs over the set of primes. ■

4 The content posted here and at this blog by Evan Chen are quite useful.
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Example 1.6 (India Pre-RMO 2012 P5). Let Sn = n2+20n+12, n a positive
integer. What is the sum of all possible values of n for which Sn is a perfect
square?

Solution 3. Let n be a positive integer such that

n2 + 20n+ 12 = m2

holds for some positive integer m. Completing squares, we obtain

(n+ 10)2 −m2 = 88,

which yields

(n+ 10 +m)(n+ 10−m) = 88.

Note that at least one of the integers n+ 10 +m,n+ 10−m is even, and they
are of the same parity. This shows that (n+ 10 +m,n+ 10−m) is equal to
one of

(44, 2), (22, 4).

It follows that (n+ 10,m) is equal to one of

(23, 21), (13, 9),

and consequently, (n,m) is equal to one of

(13, 21), (3, 9).

Note that

132 + 20 · 13 + 12 = 169 + 260 + 12 = 441 = 212,

and

32 + 20 · 3 + 12 = 9 + 60 + 12 = 81 = 92

hold. We conclude that the sum of all possible values of n for which Sn is a
perfect square is equal to 13 + 3 = 16. ■

§1.2 Completing squares

Example 1.7. Find all solutions of x2 + 3y2 = 4 in integers. Use it to find all
solutions of m2 +mn+ n2 = 1 in integers.

Walkthrough — Observe that

4(m2 +mn+ n2) = (2m+ n)2 + 3n2.

Some style files, prepared by Evan Chen, have been adapted here. 5
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Example 1.8 (India BStat-BMath 2013 P7). Let N be a positive integer such
that N(N − 101) is the square of a positive integer. Find all possible values of
N . (Note that 101 is a prime number).

Solution 4. Let N be a positive integer such that for some positive integer k,

N(N − 101) = k2

holds. This gives
(2N − 101)2 = 4k2 + 1012,

which yields
(2N − 101− 2k)(2N − 101 + 2k) = 1012.

Using N(N − 101) = k2, N ≥ 1 and k ≥ 1, it follows that N > 101, which
shows that

2N − 101 + 2k = N − 101 +N + 2k > 101.

Since 101 is a prime, we obtain that (2N − 101− 2k, 2N − 101 + 2k) is equal
to 1, 1012, which yields

N =
1 + 1012 + 2 · 101

4
=

1022

4
= 512 = 2601.

Note that
2601(2601− 101) = 512 × 502,

which is a perfect square. This proves that N = 2601 is a only solution. ■

§1.3 Arrange in Order

Example 1.9 (India RMO 1996 P2). Find all triples (a, b, c) of positive integers
such that (

1 +
1

a

)(
1 +

1

b

)(
1 +

1

c

)
= 3.

Solution 5. Let a, b, c be positive integers, satisfying the above equation.
Since (

1 +
1

a

)(
1 +

1

b

)(
1 +

1

c

)
is symmetric with respect to a, b, c, it suffices to consider the case a ≥ b ≥ c.
Note that

3 =

(
1 +

1

a

)(
1 +

1

b

)(
1 +

1

c

)
≤

(
1 +

1

c

)3

holds. If c ≥ 3 holds, then we would obtain 3 ≤ (1 + 1
c )

3 implying 81 ≤ 64,
which is impossible. This shows that c = 1 or c = 2.

6 The content posted here and at this blog by Evan Chen are quite useful.
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Let us consider the case that c = 2. Then(
1 +

1

a

)(
1 +

1

b

)
= 2

holds, which shows that 2 ≤ (1 + 1
b )

2. This gives b < 3. Note that b = 1, c = 2
is not possible. This yields (a, b, c) = (3, 2, 2).

Now, let us consider the case that c = 1. It follows that(
1 +

1

a

)(
1 +

1

b

)
=

3

2
,

which implies 3
2 ≤ (1 + 1

b )
2, and hence, we get b < 5. It follows that b ̸= 1 and

b ̸= 2. Consequently, we obtain that (a, b, c) is equal to one of (8, 3, 1), (5, 4, 1).
Note that the triples

(3, 2, 2), (8, 3, 1), (5, 4, 1)

also satisfy the given equation. It follows that these are precisely all the
solutions of the given equation in the positive integers under the hypothesis
that a ≥ b ≥ c.
Since (1 + 1

a )(1 +
1
b )(1 +

1
c ) is symmetric in a, b, c, the required solutions

are obtained by permuting the coordinates of these three solutions, that, the
required solutions are precisely

(3, 2, 2), (2, 3, 2), (2, 2, 3),

(8, 3, 1), (8, 1, 3), (3, 8, 1), (3, 1, 8), (1, 8, 3), (1, 3, 8),

(5, 4, 1), (5, 1, 4), (4, 5, 1), (4, 1, 5), (1, 4, 5), (1, 5, 4).

■

Example 1.10 (India RMO 2010 P4). Find three distinct positive integers
with the least possible sum such that the sum of the reciprocals of any two
integers among them is an integral multiple of the reciprocal of the third
integer.

Solution 6. Let a, b, c be distinct positive integers with the least possible sum
such that

1

a
+

1

b
+

1

c
=

p

a
=

q

b
=

r

c
(3)

holds, where p, q, r are positive integers. Since a, b, c are positive, it follows
that p, q, r are greater than 1. By reordering a, b, c if necessary, we may and
do assume that a < b < c, or equivalently, p < q < r holds. Note that

3

a
>

1

a
+

1

b
+

1

c
=

p

a
,
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which gives p = 2. This yields

1

a
=

1

b
+

1

c
<

2

b
,

which implies that q < 2p = 4, and using p < q, we obtain q = 3. Now Eq. (3)
gives

2

(
1

a
+

1

b
+

1

c

)
=

p

a
+

q

b
,

and hence, we obtain 2
c = 1

b , which yields r = 2q = 6. This shows that a : b : c
is equal to 2 : 3 : 6. Noting that 2, 3, 6 have no common divisor larger than 1,
it follows that a+ b+ c is a multiple of 2 + 3 + 6 = 11. Note that

1

2
+

1

3
+

1

6
= 1,

which is an integral multiple of the reciprocal of any of 2, 3, 6. This proves
that 2, 3, 6 are three distinct positive integers with the least possible sum such
that the sum of the reciprocals of any two integers among them is an integral
multiple of the reciprocal of the third integer. Moreover, this proof also shows
that these are unique up to reordering. ■

§1.4 Using bounds

Example 1.11 (Canada CMO 1983 P1). Find all positive integers w, x, y and
z which satisfy w! = x! + y! + z!.

Solution 7. Let w, x, y, z be positive integers satisfying the given equation.
Since x! + y! + z! is symmetric in x, y, z, it suffices to consider the case that
x ≤ y ≤ z. Note that y − x ≤ 1, otherwise, if y ≥ x+ 2, then we would have

w!

x!
= 1 +

y!

x!
+

z!

x!
,

which is impossible since
w!

x!
,
y!

x!
,
z!

x!
are even.

Let us consider the case that y = x. Then z ≤ x+ 2 holds, otherwise,

w!

x!
= 2 +

z!

x!

would not hold, since w!
x! ,

z!
x! are multiples of 3. If z = x, then

w ≤ w!

x!
= 3,

8 The content posted here and at this blog by Evan Chen are quite useful.
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which yields that x = y = z = 2 and w = 3. If z = x+ 1, then w > (x+ 1)!
holds, which implies w ≥ x+ 2, and this yields

(x+ 1)(x+ 2) ≤ w!

x!
= 2 + x+ 1,

which gives (x+ 1)2 ≤ 2, which holds for no positive integer x. If z = x+ 2,
then similarly, we obtain

(x+ 1)(x+ 2)(x+ 3) ≤ w!

x!
= 2 + (x+ 1)(x+ 2),

which implies that
(x+ 1)(x+ 2)2 ≤ 2,

which holds for no positive integer x.
Now let us consider the case that y = x+ 1. We obtain w ≥ z + 1, and this

gives

x+ 2 +
∏

x+1≤t≤z

t

=
w!

x!

=
∏

x+1≤t≤w

t

=
∏

x+1≤t≤z

t+

 ∏
z+1≤s≤w

s− 1

 ∏
x+1≤t≤z

t,

which yields

x+ 2 =

 ∏
z+1≤s≤w

s− 1

 ∏
x+1≤t≤z

t

≥ (z + 1− 1)
∏

x+1≤t≤z

t

≥ y
∏

x+1≤t≤z

t

≥ (x+ 1)
∏

x+1≤t≤z

t

≥ (x+ 1)2,

which is impossible.
This proves that

x = y = z = 2, w = 3

is the only solution to the given equation over the positive integers. ■
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Remark. After obtaining the above solution, one may easily arrive at the
following argument, which is much shorter.

Let x, y, z, w be positive integers satisfying w! = x! + y! + z!. Note that
w ≥ max{x, y, z}+ 1 holds, which gives

w ×max{x, y, z}! ≤ w! = x! + y! + z! ≤ 3×max{x, y, z}!

implying w ≤ 3. It follows that x = y = z = 2, w = 3 is the only solution of the
given equation.

Example 1.12 (India RMO 2005 P6). Determine all triples (a, b, c) of positive
integers such that a ≤ b ≤ c and

a+ b+ c+ ab+ bc+ ca = abc+ 1.

Solution 8. Let a, b, c be integers satisfying the given conditions. Note that
the above equation can be rewritten as

(1 + a)(1 + b)(1 + c) = 2(abc+ 1). (4)

Note that if the inequalities

2
1
3 a ≥ a+ 1, 2

1
3 b ≥ b+ 1, 2

1
3 c ≥ c+ 1

hold, then

(1 + a)(1 + b)(1 + c) ≤ 2abc < 2(abc+ 1)

holds, which is impossible. Also note that if a ≥ 4, then

1

2
1
3 − 1

= 2
2
3 + 2

1
3 + 1 <

8

5
+

7

5
+ 1 = 4

holds, which implies that

2
1
3 a ≥ a+ 1, 2

1
3 b ≥ b+ 1, 2

1
3 c ≥ c+ 1.

This proves that a ≤ 3. From Eq. (4), it follows that a ̸= 1, and hence, a is
equal to one of 2, 3.

Also note that Eq. (4) does not hold if the inequalities

√
2a · b ≥

√
1 + a(b+ 1),

√
2a · c ≥

√
1 + a(c+ 1)

hold. Observe that if

b ≥

{
7 if a = 2,

5 if a = 3,

10 The content posted here and at this blog by Evan Chen are quite useful.
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holds, then we obtain

√
1 + a√

2a−
√
1 + a

=


√
3

2−
√
3
< 7 if a = 2,

2√
6− 2

< 5 if a = 3.

This shows that b ≤ 6 if a = 2, and b ≤ 4 if a = 3. Note that Eq. (4) is
equivalent to

(2ab− (1 + a)(1 + b))c = (1 + a)(1 + b)− 2,

which gives

c(b− 3) = 3b+ 1 if a = 2,

c(b− 2) = 2b+ 1 if a = 3.

It follows that if a = 2, then b ̸= 2 and b ̸= 3, and if a = 3, then b ̸= 4. This
shows that (a, b, c) is equal to one of

(2, 4, 13), (2, 5, 8), (3, 3, 7).

Note that these triples satisfy Eq. (4). Consequently, the above triples are
precisely all the solutions. ■

Remark. Note that Eq. (4) suggests to substitute

x = 1 + a, y = 1 + b, z = 1 + c,

which yields
xyz = 2 + 2(x− 1)(y − 1)(z − 1),

which can be rewritten as

xyz + 2(x+ y + z) = 2(xy + yz + zx).

The above reduces to

2(x+ y + z) + xy
(z
3
− 2

)
+ yz

(x
3
− 2

)
+ zx

(y
3
− 2

)
= 0,

which shows that x ≤ 5. Can one use the above to determine all the solutions?

Example 1.13 (India RMO 2012f P5). Determine all positive integers a, b, c
such that 1

a + 2
b + 3

c = 1, a ≤ b ≤ c and a is a prime.

Solution 9. Let a, b, c be integers satisfying the given conditions. Since

1 =
1

a
+

2

b
+

3

c
≤ 6

a
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holds, we obtain a ≤ 6. Since a is a prime, it is equal to one of 2, 3, 5. Note
that

2

b
<

2

b
+

3

c
≤ 5

b

holds, which implies that
2

b
< 1− 1

a
≤ 5

b
,

which yields that
2

1− 1
a

< b ≤ 5

1− 1
a

.

It follows that 5 ≤ b ≤ 10 if a = 2, 4 ≤ b ≤ 7 if a = 3, and b ≤ 6 if a = 5. Note
that if (a, b) is equal to

(2, 9), (3, 5), (3, 7), (5, 5), (5, 6),

then no integer c satisfies the given equation. This shows that (a, b, c) is equal
to one of

(2, 5, 30), (2, 6, 18), (2, 7, 14), (2, 8, 12), (2, 10, 10), (3, 4, 18), (3, 6, 9).

Noting that the above triples satisfy the given equation, we conclude that the
required solutions are precisely the ones above. ■

Example 1.14 (India RMO 2012c P6). Find all positive integers such that
32n + 3n2 + 7 is a perfect square.

Solution 10. Let n,m be positive integers such that

32n + 3n2 + 7 = m2

holds. This implies
3n2 + 7 = (m− 3n)(m+ 3n).

Note that any two positive integers a, b satisfy ab > a− b. Since m−3n,m+3n

are positive, it follows that

3n2 + 7 > 2 · 3n.

Applying the binomial theorem, we obtain

3n ≥ 1 +

(
n

1

)
2 +

(
n

2

)
22 ≥ 1 + 2n+ 22

n(n− 1)

2
= 1 + 2n2,

which yields
2(1 + 2n2) < 3n2 + 7,

which is equivalent to n2 < 5. This shows that n is equal to 1 or 2. Note that
32n+3n2+7 is equal to 19 (resp. 100) for n = 1 (resp. n = 2). So the required
solution is n = 2. ■

12 The content posted here and at this blog by Evan Chen are quite useful.
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Example 1.15 (India RMO 2015b P6). Find the number of integers m that
satisfy both the following properties:

1. 1 ≤ m ≤ 5000,

2. [
√
m] = [

√
m+ 125].

Solution 11. If m is positive integer satisfying [
√
m] = [

√
m+ 125], then for

k = [
√
m], we have k ≤

√
m <

√
m+ 125 < k + 1, which yields k2 ≤ m <

m+ 125 < (k + 1)2, and this implies that

2k + 1 = (k + 1)2 − k2 ≥ m+ 126−m = 126,

or equivalently, k ≥ 63 holds. This shows that for any positive integer m
satisfying [

√
m] = [

√
m+ 125], we have k2 ≤ m ≤ (k + 1)2 − 126 for some

integer k ≥ 63.

Conversely, if m is an integer satisfying k2 ≤ m ≤ (k + 1)2 − 126 for some
positive integer k ≥ 63, then we obtain k2 ≤ m < m+ 125 < (k + 1)2, which
gives k ≤

√
m <

√
m+ 125 < k + 1, and consequently, [

√
m] = [

√
m+ 125]

holds.

So the number of integers satisfying the given conditions is equal to the
number of positive integers m satisfying m ≤ 5000 and k2 ≤ m ≤ (k+1)2−126
for some positive integer k ≥ 63. Note that any such integer k satisfies
k2 ≤ m ≤ 5000 < 712, which gives k ≤ 70. Moreover, if ℓ is an integer
satisfying 63 ≤ ℓ ≤ 70 and an integer m satisfies ℓ2 ≤ m ≤ (ℓ+ 1)2 − 126, then
using

(ℓ+ 1)2 − 126 ≤ 712 − 126 = 4900 + 140 + 1− 126 < 5000,

it follows that m ≤ 5000. This proves that the integers satisfying the given
conditions are precisely the integers m satisfying k2 ≤ m ≤ (k + 1)2 − 126 for
some integer 63 ≤ k ≤ 70. Hence, the required number is equal to

70∑
k=63

((k + 1)2 − 126− k2 + 1)

=

70∑
k=63

(2k − 124)

= 2 + 4 + 6 + · · ·+ 16

= 72.

■
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§1.5 Warm up

Example 1.16 (India RMO 1999 P6). Find all solutions in integers m,n of
the equation

(m− n)2 =
4mn

m+ n− 1
.

Solution 12. Let m,n be integers satisfying m+n ̸= 1 and the above equation.
Note that the above equation is equivalent to

(m− n)2 =
(m+ n)2

m+ n
= m+ n,

which holds if and only if

1

2
(m− n)(m− n− 1) = n.

Writing m− n = k, it follows that (m,n) is equal to(
k +

1

2
k(k − 1),

1

2
k(k − 1)

)
=

(
1

2
k(k + 1),

1

2
k(k − 1)

)
.

Also note that for any integer k, the pair(
1

2
k(k + 1),

1

2
k(k − 1)

)
is a solution to the given equation if k2 ̸= 1. This shows that the solution is{(

1

2
k(k + 1),

1

2
k(k − 1)

)
| k ∈ Z \ {±1}

}
.

■

Example 1.17 (India RMO 2007 P2). Let a, b, c be three natural numbers
such that a < b < c and gcd(c− a, c− b) = 1. Suppose there exists an integer
d such that a+ d, b+ d, c+ d form the sides of a right-angled triangle. Prove
that there exist integers ℓ,m such that c+ d = ℓ2 +m2.

Solution 13. Since a < b < c, and the integers a + d, b + d, c + d form the
sides of a right-angled triangle, it follows that

(c+ d)2 = (a+ d)2 + (b+ d)2. (5)

Writing the above as a quadratic equation d, we obtain

d2 + 2(a+ b− c)d+ a2 + b2 − c2 = 0,

14 The content posted here and at this blog by Evan Chen are quite useful.
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which implies that

d = (c− a− b)±
√
(a+ b− c)2 − (a2 + b2 − c2).

Since a+ b+ d− c = (a+ d) + (b+ d)− (c+ d) is positive, we obtain

d = (c− a− b) +
√
(a+ b− c)2 − (a2 + b2 − c2)

= (c− a− b) +
√
2c2 + 2ab− 2bc− 2ca

= (c− a− b) +
√
2(c− a)(c− b).

Since d is an integer, it follows that 2(c− a)(c− b) is a perfect square. Note
that the integers c − a, c − b are positive and relatively prime. So there are
positive integers m,n such that c− a, c− b are equal to 2m2, n2 in some order.
This yields

c+ d = (c− a) + (c− b) +
√

2(c− a)(c− b)

= 2m2 + n2 + 2mn

= m2 + (m+ n)2,

which proves the result. ■

Remark. After obtaining Eq. (5), one may also argue as follows. Note that
Eq. (5) implies that a divisor of any two of a+d, b+d, c+d, divides all of them,
and hence also divides the differences c−a, c−b, which are coprime. This shows
that a+ d, b+ d, c+ d are pairwise coprime integers, and (a+ d, b+ d, c+ d) is
a primitive Pythagorean triple. It follows (how?) that c+ d is equal to ℓ2 +m2

for some integers ℓ,m.
It is not a good idea to apply the classification of primitive Pythagorean

triples to conclude that c+ d is the sum of two squares, since the above solution
of Example 1.17 is no different from (one proof of) the classification of primitive
Pythagorean triples, which is provided below.

A careful reading of the above solution of Example 1.17 leads to the following
proof of the primitive Pythagorean triples as follows.
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Lemma 1

Let 1 ≤ x ≤ y ≤ z be integers satisfying

x2 + y2 = z2.

Then the following statements are equivalent.

(i) Some two of x, y, z are relatively prime.

(ii) Any two of x, y, z are relatively prime.

(iii) The integers z − x, z − y are relatively prime.

If any of the above conditions holds, then there are relatively prime
positive integers a > b such that x, y are equal to a2 − b2, 2ab in some
order, and z is equal to a2 + b2.

Proof. Note that

x2 = (z − y)(z + y), y2 = (z − x)(z + x)

holds. So any common prime divisor of z − x, z − y is also a common divisor
of x, y. Using x2 + y2 = z2, it follows that any common divisor of x, y is also a
common divisor of z−x, z− y. The equivalence of the three statements follows.
Assume that one of the given conditions holds. Note that

(x+ y − z)2 = (x+ y − z)2 − (x2 + y2 − z2)

= 2z2 + 2xy − 2z(x+ y)

= 2(z − x)(z − y)

holds. Since z − x, z − y are relatively prime, and 2(z − x)(z − y) is a perfect
square, it follows that there are positive integers m,n such that z − x, z − y
are equal to 2m2, n2 in some order. Note that

z = (z − x) + (z − y) + (x+ y − z)

= 2m2 + n2 + 2mn

= m2 + (m+ n)2,

and this implies that

z − 2m2 = (m+ n)2 − n2,

z − n2 = 2m(m+ n).

Putting
a = m+ n, b = m,

16 The content posted here and at this blog by Evan Chen are quite useful.
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it follows that x, y are equal to a2 − b2, 2ab in some order, and z is equal
to a2 + b2. Since x, y are relatively prime, we get that the integers a, b are
relatively prime.

Example 1.18 (India RMO 2008 P2). Prove that there exist two infinite
sequences {an}n≥1 and {bn}n≥1 of positive integers such that the following
conditions hold simultaneously:

(i) 0 < a1 < a2 < a3 < · · · ,

(ii) an < bn < a2n for all n ≥ 1,

(iii) an − 1 divides bn − 1 for all n ≥ 1,

(iv) a2n − 1 divides b2n − 1 for all n ≥ 1.

Solution 14. We claim that it suffices to prove that for any positive integer
N , there exist integers a, b > N such that a < b < a2, and a− 1 divides b− 1,
a2 − 1 divides b2 − 1. Indeed, if this statement is true, then there exist positive
integers a1, b1 such that a1 < b1 < a21, and a1 − 1 divides b1 − 1, a21 − 1 divides
b21 − 1. Moreover, if for some positive integer n ≥ 1, there are positive integers
a1, a2, . . . , an, b1, b2, . . . , bn such that a1 < a2 < · · · < an, b1 < b2 < · · · < bn,
and ak − 1 divides bk − 1 and a2k − 1 divides b2k − 1 for any 1 ≤ k ≤ n, then
by the above statement, there exist integers a, b such that a, b > an + bn,
a < b < a2, and a− 1 divides b− 1, a2 − 1 divides b2 − 1, then one can define
an+1 = a, bn+1 = b. Applying induction, we obtain two infinite sequences
{an}n≥1 and {bn}n≥1 as desired. Now it remains to prove that for any positive
integer N , there exist integers a, b > N such that a < b < a2, and a− 1 divides
b− 1, a2 − 1 divides b2 − 1.
Note that if a, b are two integers such that a − 1 divides b − 1, then b =

1 + (a− 1)k for some integer k, and hence

b2 − 1 = (b− 1)(b+ 1)

= k(a− 1)((a− 1)k + 2)

= k(a− 1)((a+ 1)k − (2k − 2))

= k2(a2 − 1)− 2k(k − 1)(a− 1)

holds, which shows that b2 − 1 is divisible by a2 − 1 if a+ 1 divides 2k, which
holds if a is odd and k = a+1

2 . In fact, for any positive integer N , setting

a = 2N + 1, b = 1 + (a− 1)
a+ 1

2
=

a2 + 1

2
= 2N2 + 2N + 1,

the inequality a < b < a2 follows, and a− 1 = 2N divides b− 1 = 2N(N + 1),
a2 − 1 = 4N(N + 1) divides b2 − 1 = 4N(N + 1)(N2 +N + 1). This completes
the proof. ■
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Remark. The above argument (that is, only after having the above argument,
it) shows that any strictly increasing sequence {an}n≥1 of odd positive integers
with a1 ≥ 3, and the {bn}n≥1, defined by

bn =
a2
n + 1

2
for any integer n ≥ 1,

have the required properties.

Example 1.19 (India RMO 2008 P5). Three nonzero real numbers a, b, c are
said to be in harmonic progression if 1

a + 1
c = 2

b . Find all three term harmonic
progressions a, b, c of strictly increasing positive integers in which a = 20 and b
divides c.

Solution 15. Let b, c be positive integers such that 20 < b < c holds, and b
divides c and

1

20
+

1

c
=

2

b

holds. For some positive integer k > 1, we have c = bk, which yields

1

20
+

1

bk
=

2

b
,

and this gives
bk = 20(2k − 1).

Since k, 2k− 1 are relatively prime and b is an integer, it follows that k divides
20, and hence, k is equal to one of 2, 4, 5, 10 or 20. This shows that (a, b, c) is
equal to one of

(20, 30, 60), (20, 35, 140), (20, 36, 180), (20, 38, 380), (20, 39, 780).

Note that any of the above triples satisfy the required conditions. This proves
that the above ones are all the three term harmonic progressions satisfying the
required conditions. ■

Example 1.20 (India RMO 2010 P6). For each integer n ≥ 1, define

an =

[
n

[
√
n]

]
,

where [x] denotes the largest integer not exceeding x, for any real number x.
Find the number of all n in the set {1, 2, 3, . . . , 2010} for which an > an+1.

Solution 16. Let n be a positive integer such that an > an+1 holds. Note
that [

√
n], [

√
n+ 1] are not equal, otherwise, we would obtain

n+ 1

[
√
n+ 1]

=
n+ 1

[
√
n]

≥ n

[
√
n]
,

18 The content posted here and at this blog by Evan Chen are quite useful.
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implying an+1 ≥ an. Let k denote the largest integer satisfying k2 ≤ n. In
other words, k denotes the integer [

√
n]. Since [

√
n], [

√
n+ 1] are not equal,

we obtain [
√
n+ 1] > k, which gives [

√
n+ 1] ≥ k + 1. This shows that

n+ 1 ≥ (k + 1)2. Since k is the largest integer satisfying k2 ≤ n, we obtain
n+ 1 = (k + 1)2. We conclude that if an > an+1 holds, then n+ 1 is a perfect
square. Also note that the converse of this statement holds, that is, if n+ 1 is
a perfect square, then an > an+1 holds. Indeed, if n+ 1 = m2 holds for some
positive integer m, then it follows that

n

[
√
n]

− n+ 1

[
√
n+ 1]

=
m2 − 1

m− 1
− m2

m
= 1,

which yields [
n

[
√
n]

]
≥

[
n+ 1

[
√
n+ 1]

]
≥ 1 > 0.

This proves that for a positive integer n, the inequality an > an+1 holds if and
only if n+ 1 is a perfect square. Noting that

452 − 1 = 2025− 1 > 2010, 442 = 2025 + 1− 90 < 2010

holds, we conclude that the positive integers n in the set {1, 2, . . . , 2010}
satisfying an > an+1 are precisely

22 − 1, 32 − 1, . . . , 442 − 1.

So there are 43 values of n satisfying the given condition. ■

Example 1.21 (India RMO 2012e P3). Find all natural numbers x, y, z such
that

(2x − 1)(2y − 1) = 22
z

+ 1.

Solution 17. Let x, y, z be natural numbers satisfying the above equation.
Note that the above equation can be rewritten as

2x+y = 2x + 2y + 22
z

.

Let us first consider the case that x ≤ y. Note that 2z ≥ x holds and we have

2y = 1 + 2y−x + 22
z−x. (6)

Let us consider the case that x = y. Then we obtain

2y = 2 + 22
z−x,

which gives y = 2, 2z − x = 1, which yields

2z = x+ 1 = y + 1 = 3,
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which is impossible. This shows that x < y.
Let us consider the case that x < y. Using Eq. (6), we obtain 2z = x,

y − x = 1 and y = 2, which gives

x = 1, y = 2, z = 0.

It follows that any solution of the given equation in the natural numbers
satisfying x ≤ y is equal to (1, 2, 0). Since the given equation is symmetric in
x, y, it follows that any given solution of this equation is equal to one of

(1, 2, 0), (2, 1, 0).

Note that the above triples satisfy the given equation. Hence, the above triples
are precisely all the solutions of the given equation in the natural numbers. ■

Example 1.22 (India RMO 2013a P3). Find all primes p and q such that p
divides q2 − 4 and q divides p2 − 1.

Solution 18. Let p, q be primes such that p divides q2− 4 and q divides p2− 1.
If p is equal to 2, then using that p divides q2 − 4, it follows that q = 2, which
is impossible since q divides p2 − 1. This shows that p is odd.
Since p divides q2 − 4, it follows that p divides q − 2, or p divides q + 2.

Using the hypothesis that q divides p2 − 1, we obtain q divides at least one
of p − 1, p + 1, and hence, q ≤ p + 1 holds. If p divides q − 2, then using
q − 2 ≤ p − 1, we obtain that q − 2 = 0, that is, q = 2. If p divides q + 2,
then using 0 < q + 2 ≤ p+ 3, we obtain q + 2 = p, and using that q divides
p2− 1 = (q+2)2− 1 = q2+4q+3, we get q = 3, and hence, p = 5. This proves
that (p, q) is equal to (5, 3), or that p is odd, and q = 2.

Note that if (p, q) is equal to (5, 3), then the required divisibility conditions
hold. Moreover, these conditions are also satisfied if p is an odd prime and
q = 2.

It follows that the required pairs of primes (p, q) are precisely the elements of

{(5, 3)} ∪ {(r, 2) | r is an odd prime}.

■

Example 1.23 (India RMO 2013e P2). Find all triples (p, q, r) of primes such
that pq = r + 1 and 2(p2 + q2) = r2 + 1.

Solution 19. Let p, q, r be primes satisfying the above conditions. Since 2
divides r2 + 1, it follows that r is odd. This shows that pq is even, and hence
at least one of p, q is even.
Let us consider the case that p = 2. We obtain q = r+1

2 . This yields

2

(
22 +

(r + 1)2

22

)
= r2 + 1,

20 The content posted here and at this blog by Evan Chen are quite useful.
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which implies
r2 − 2r − 15 = 0,

which shows that r = 5, and hence, (p, q, r) is equal to (2, 3, 5). Since the given
equations are symmetric in p, q, it follows that if q = 2, then (p, q, r) is equal to
(3, 2, 5). Note that the triples (2, 3, 5) and (3, 2, 5) satisfy the given equations.

We conclude that (2, 3, 5), (3, 2, 5) are precisely all the triples of primes
satisfying the given conditions. ■

Example 1.24 (India RMO 2013a P4). Find the number of 10-tuples (a1, a2, . . . , a9, a10)
of integers such that |a1| ≤ 1 and

a21 + a22 + a23 + · · ·+ a210 − a1a2 − a2a3 − a3a4 − · · · − a9a10 − a10a1 = 2.

Solution 20. Let (a1, . . . , a10) be a tuple of integers satisfying |a1| ≤ 1, and
the above equation. Note that the above equation can be rewritten as

(a1 − a2)
2 + (a2 − a3)

2 + · · ·+ (a9 − a10)
2 + (a10 − a1)

2 = 4.

Since the sum of the integers

a1 − a2, a2 − a3, . . . , a10 − a1

is zero, it is not possible that only one of them is equal to ±2 and the others
are zero. Consequently, exactly two of them are equal to 1, and exactly two of
them are equal to −1, and the remaining ones are equal to zero. Note that a1
is equal to −1, 0 or 1.
Let A denote the set of solutions satisfying the given conditions, and B

denote the set of 11-tuples of integers, whose first coordinate is at most 1 in
absolute value, the remaining 10 coordinates add up to 0, and exactly two of
these 10 coordinates are equal to 1, and exactly two of these 10 coordinates
are equal to −1. Consider the map from A → B, given by

(a1, . . . , a10) 7→ (a1, a1 − a2, a2 − a3, . . . , a10 − a1).

Note that this map is a bijection. So the number of 10-tuples satisfying the
given conditions is equal to

3

(
10

2

)(
8

2

)
= 3780.

■

Example 1.25 (India RMO 2013b P1). Prove that there do not exist natural
numbers x and y with x > 1 such that

x7 − 1

x− 1
= y5 + 1.
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Solution 21. Let x, y be natural numbers with x ̸= 1 and satisfying the above
equation. Note that the given equation can be rewritten as

y5 =
x7 − x

x− 1
= x(x2 + x+ 1)(x3 + 1).

Observe that the integer x is coprime to x2 + x+ 1, and x is also coprime to
x3 + 1. Since

x3 + 1− (x− 1)(x2 + x+ 1) = 2

holds and the integer x2+x+1 is odd, it follows that the integers x2+x+1, x3+1
are coprime. Since the positive integers x, x2 + x + 1, x3 + 1 are pairwise
coprime, and their product is the fifth power of an integer, it follows that the
integers x, x2 + x+ 1, x3 + 1 are also fifth powers of positive integers. Using
1 = (x3 + 1)− (x3), we obtain that 1 can be expressed as the difference of the
fifth powers of two distinct positive integers. However, this is impossible since
the fifth powers of two distinct positive integers differ by at least 31. Indeed, if
i > j ≥ 1 are positive integers, then

i5 − j5 = (i− j)(i4j + i3j + i2j2 + ij3 + j4)

≥ i4j + i3j + i2j2 + ij3 + j4

≥ 24 + 23 + 22 + 2 + 1

= 31

holds. This completes the proof. ■

Remark. It is worth comparing the above problem, and the following one.

Example 1.26 (IMOSL 2006 N5). Find all integer solutions of the equation

x7 − 1

x− 1
= y5 − 1.

The following is due to the AoPS user TomciO.

Solution 22. Let us establish the following claim.

Claim — Let p, q be primes such that q divides the integer

xp − 1

x− 1

for some integer x ̸= 1. Then q ≡ 1 mod p or p = q holds.

Proof of the Claim. If x ≡ 1 mod q, then

xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ 1 ≡ p mod q
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holds, which shows that p = q.

If x ̸≡ 1 mod q, then let k denote the smallest positive integer such that
xk ≡ 1 mod q holds. Writing p = ak + b for some integers a, b with 0 ≤ b < k,
and using the congruence xp ≡ 1 mod q combined with the minimality of k, it
follows that b = 0, and hence p is a multiple of the integer k. Since k is larger
than 1 and p is a prime, we obtain p = k. A similar argument also shows that
k divides q − 1, and consequently, p divides q − 1.

Let x, y be integers with x ̸= 1 and satisfying the given equation.

Let us first consider the case that x ≡ 1 mod 7. We obtain

y5 − 1 = x6 + x5 + · · ·+ x+ 1 ≡ 0 mod 7,

which yields y ≡ 1 mod 7. This shows that

y4 + y3 + y2 + y + 1 ≡ 5 mod 7,

and hence, the integer y4 + y3 + y2 + y + 1 admits a prime divisor q satisfying
q ̸≡ 1 mod 7 and q ̸= 7. Note that q divides (x7 − 1)/(x− 1), and applying the
Claim, we obtain a contradiction.

Let us now consider the case that x ̸≡ 1 mod 7. Note that

(x− 1)

(
x7 − 1

x− 1
− 1

)
= x7 − 1− (x− 1) ≡ 0 mod 7

holds, and using x− 1 ̸≡ 0 mod 7, we obtain

x7 − 1

x− 1
≡ 1 mod 7,

which yields y5 ≡ 2 mod 7. This gives that

y ≡ y25 mod 7

≡ 25 mod 7

≡ 4 mod 7,

and hence y − 1 ≡ 3 mod 7. It follows that some prime divisor q of y − 1
satisfies q ̸≡ 1 mod 7 and q ≠ 7. Note that q divides (x7 − 1)/(x − 1), and
applying the Claim, we obtain a contradiction.

We conclude that there are no integer solutions to the given equation satis-
fying x ̸= 1. ■

Example 1.27 (India RMO 2013c P2). Find all 4-tuples (a, b, c, d) of natural
numbers with a ≤ b ≤ c and a! + b! + c! = 3d.
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Solution 23. Let a, b, c, d be natural numbers satisfying the given conditions.
Note that d ≥ 1. If a ≥ 2, then 3d = a! + b! + c! would be even, which is
impossible. So a is equal to 1, which gives b! + c! = 3d − 1. This implies that
b ≤ 2. If b = 1, then c! = 3d − 2, which shows c ≤ 2, and hence c = 1, d = 1.
Suppose b is equal to 2. Then we obtain c! = 3d − 3, which gives d ≥ 2. Since
9 does not divide 3d − 3, it follows that c ≤ 5. This implies that (c, d) is equal
to (3, 2) or (4, 3). This gives that (a, b, c, d) is equal to one of

(1, 1, 1, 1), (1, 2, 3, 2), (1, 2, 4, 3).

Note that the above tuples also satisfy the given conditions. This shows that
the tuples are precisely the 4-tuples of natural numbers satisfying the given
conditions. ■

Example 1.28 (India RMO 2014c P6). For any natural number, let S(n)
denote sum of digits of n. Find the number of 3 digit numbers for which
S(S(n)) = 2.

Solution 24. Let n be a 3-digit natural number such that S(S(n)) = 2. Note
that S(n) ≤ 27. Using S(n) ≤ 27 and S(S(n)) = 2, it follows that S(n) is
equal to one of 2, 11, 20. Noting that S(n) is congruent to 2 mod 9, and using
n ≡ S(n) mod 9, we obtain n ≡ 2 mod 9. Conversely, note that if m is a 3-digit
number and m ≡ 2 mod 9, then S(m) ≡ 2 mod 9 holds, and using S(m) ≤ 27,
it follows that S(m) is equal to one of 2, 11, 20. We conclude that the 3-digit
numbers n satisfying S(S(n)) = 2 are precisely the 3-digit numbers which are
congruent to 2 modulo 9, or equivalently, n is equal to one of

101, 110, . . . , 992.

Hence there are

1 +
1

9
(992− 101) = 100

three-digit numbers n for which S(S(n)) = 2. ■

Example 1.29 (India RMO 2016a P3). For any natural number n, expressed
in base 10, let S(n) denote the sum of all digits of n. Find all natural numbers
n such that n = 2S(n)2.

Solution 25. Let n be a natural number satisfying the given conditions. Using
n ≡ S(n) mod 9, it follows that

n ≡ 2n2 mod 9,

which gives
2n2 ≡ n mod 3,
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which implies that n is congruent to one of 0, 2 modulo 3. Consequently, n is
congruent to one of 0, 3, 6, 2, 5, 8 modulo 9. Using n ≡ 2n2 mod 9, we obtain
that n is congruent to one of 0, 5 modulo 9.
Note that if n has d digits, then

10d−1 ≤ n = 2S(n)2 ≤ 2(9d)2

holds. Note that 105−1 > 2(9 · 5)2 holds, and if k is a positive integer such that
10k−1 > 2(9k)2 holds, then we obtain

10k

2(9(k + 1))2
>

10× 2(9k)2

2(9(k + 1))2

=
10

(1 + 1/k)2

≥ 10

22

> 1.

It follows that 10k−1 > 2(9k)2 holds for any integer k ≥ 5. We obtain that
d ≤ 4, that is, n has at most four digits. This gives that S(n) ≤ 36. Since
S(n) ≡ n mod 9 and n is congruent to one of 0, 5 modulo 9, it suffices to
consider the following cases.
Let us consider the case that S(n) is a multiple of 9. Then S(n) is equal

to one of 9, 18, 27, 36, and n is equal to one of 162, 648, 1458, 2592. Note that
none of the integers 1458, 2592 satisfies the given condition. This shows that n
is one of 162, 648.

Let us now consider the case that S(n) is equal to one of 5, 14, 23, 32. Then
S(n) is equal to one of 50, 392, 1058, 2048. Note that none of 1058, 2048 satisfies
the given condition, which implies that n is equal to one of 50, 392.

It follows that n is equal to one of the integers

50, 162, 392, 648.

Note that the above integers satisfy the given condition. Hence, the above are
precisely all the natural numbers satisfying n = S(n)2. ■

Example 1.30 (India RMO 2016b P3). For any natural number n, expressed
in base 10, let S(n) denote the sum of all digits of n. Find all natural numbers
n such that n3 = 8S(n)3 + 6nS(n) + 1.

Solution 26. Let n be a natural number satisfying the given condition. Using
S(n) ≡ n mod 9, we obtain

7n3 + 6n2 + 1 ≡ 0 mod 9.
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Note that

7n3 + 6n2 + 1 = (n+ 1)(7n2 − n+ 1)

≡ (n+ 1)(n+ 1)(7n+ 1) mod 9

≡ 7(n+ 1)(n+ 1)(n+ 4) mod 9

holds, which implies that 3 divides n+ 1 or 9 divides n+ 4.
Note that

8S(n)3 + 6nS(n) + 1− n3 = (2S(n))3 + (−n)3 + 13 − 3(2S(n))(−n)

holds. This shows that
2S(n) + 1 = n,

or
2S(n) = 1 = −n

holds, and hence, we get
2S(n) + 1 = n.

Suppose n has d digits. Note that

10d−1 ≤ n

= 2S(n) + 1

≤ 2 · 9d+ 1

holds. Observe that 103−1 > 18 · 3 + 1 holds, and if k is a positive integer
satisfying 10k−1 > 18k + 1, then

10k

18k + 19
>

10(18k + 1)

18k + 19

> 1

holds. By induction, it follows that d ≤ 2, that is, n has at most two digits. It
follows that S(n) ≤ 18.
Note that n = 2S(n) + 1 implies that n is odd. Moreover, 3 divides n+ 1

or 9 divides n+ 4. Combining these with the congruence S(n) ≡ n mod 9, we
obtain that S(n) is equal to one of 5, 11, 17. Note that none of the integers
5, 11 satisfies n = 2S(n) + 1. This shows that n = 17. Since n = 17 satisfies
2S(n) + 1 = n, it also satisfies the given condition. It follows that n = 17 is
the only natural number satisfying the given condition. ■

Example 1.31 (India RMO 2023b P3). For any natural number n, expressed
in base 10, let s(n) denote the sum of all its digits. Find all natural numbers
m and n such that m < n and

(s(n))2 = m and (s(m))2 = n.
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Solution 27. Let m,n be natural numbers satisfying the given conditions.
Note that

n2 ≡ m mod 9,m2 ≡ n mod 9,

which implies that m is congruent to one of 0, 1 modulo 3, and so is n, and
consequently, it follows that

m ≡ n mod 3.

Suppose m has d digits. Note that m ≥ 10d−1 and s(m) ≤ 9d holds.
Consequently, 10d−1 > (9d)2 would yield

n > m ≥ 10d−1 > (9d)2 ≥ s(m)2 = n,

which is impossible. Observe that 105−1 > (9 · 5)2 holds, and if k is a positive
integer satisfying 10k−1 > (9k)2, then

10k

(9(k + 1))2
>

10(9k)2

(9(k + 1))2

=
10

(1 + 1
k )

2

> 1

holds. By induction, it follows that d ≤ 4, that is, m has at most 4 digits.
This gives

s(m) ≤ 9d ≤ 36,

and hence, it follows that

n = s(m)2 ≤ 362 = 1296.

This yields

s(n) ≤ max{s(1296), s(1199), s(1099), s(999)} = max{18, 20, 19, 27} = 27,

which gives
m = s(n)2 ≤ 272 = 729.

We get

s(m) ≤ max{s(729), s(719), s(709), s(699)} = max{18, 17, 16, 24} = 24,

which shows that
n = s(m)2 ≤ 242 = 576.

This gives

s(n) ≤ max{s(576), s(569), s(559), . . . , s(519), s(509), s(499)} = 22,
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which yields
m = s(n)2 ≤ 222 = 484.

This shows that

s(m) ≤ max{s(484), s(479), s(399)} = 21,

which gives
n = s(m)2 ≤ 212 = 441.

It follows that

s(n) ≤ max{s(441), s(400), s(361), s(324), s(289)} = max{9, 4, 10, 9, 19} = 19,

and hence, we get
m = s(n)2 ≤ 192 = 361.

This gives
s(m) ≤ max{s(361), s(324), s(289)} = 19,

which yields
n ≤ 192,

and using the inequality m < n, the congruence m ≡ n mod 3, and that m is a
perfect square, we obtain

m ≤ 172.

Note that

s(172)2 = s(289)2 = 192 = 361, s(361)2 = 100 ̸= 172

holds, which implies that
m ≤ 162,

and hence, we obtain

s(m) ≤ max{s(256), s(225), s(196), s(169), s(81), s(64), s(49)} = 16.

Consequently, we obtain
n ≤ 162,

and using the inequality m < n, the congruence m ≡ n mod 3, and that m is a
perfect square, we get

m ≤ 142.

Observe that

s(142)2 = s(196)2 = 162 = 256, s(256)2 = 132 ̸= 142

holds, which yields
m ≤ 132.

28 The content posted here and at this blog by Evan Chen are quite useful.
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Note that (m,n) = (132, 162) is a solution to the given equation. If 82 ≤ m ≤
122, then

s(m) ≤ max{s(64), s(81), s(100), s(121), s(144)} = 9,

which gives n ≤ 81, and hence (m,n) is equal to (82, 92), which is impossible.
It follows that m ≤ 72. Observe that s(m)2 = n, s(n)2 = m fails to hold if m
is any of 12, 22, 32, 42, 52, 62, 72.
We conclude that (m,n) = (132, 162) is the only solution to the given

equations. ■

Remark. The above solution to Example 1.31 makes an effort to defer comput-
ing the (decimal expansions of the) perfect squares. It turns out that without
deferring it, we may arrive at the solution in fewer steps.

After obtaining n ≤ 362 = 1296, one may compute the sum of the digits of
the perfect squares lying between 112 and 362, as recorded in the table below.

k k2 s(k2)

36 1296 18
35 1225 10
34 1156 13
33 1089 18
32 1024 7
31 961 16
30 900 9
29 841 13
28 784 19
27 729 18
26 676 19
25 625 13
24 576 18
23 529 16
22 484 16
21 441 9
20 400 4
19 361 10
18 324 9
17 289 19
16 256 13
15 225 9
14 196 16
13 169 16
12 144 9
11 121 4
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This yields
s(n) ≤ 19,

which gives
m = s(n)2 ≤ 192 = 361.

We get
s(m) ≤ 19,

which shows that
n = s(m)2 ≤ 192 = 361.

Since m ≡ n mod 3, we obtain

m ≤ 172 = 289.

Note that

s(172)2 = s(289)2 = 192 = 361, s(361)2 = 100 ̸= 172

holds, which implies that
m ≤ 162,

and hence, we obtain

s(m) ≤ max{s(256), s(225), s(196), s(169), s(81), s(64), s(49)} = 16.

Consequently, we obtain
n ≤ 162,

and this gives
m ≤ 152.

Observe that

s(152)2 = s(225)2 = 81, s(81)2 = 81 ̸= 152,

s(142)2 = s(196)2 = 162 = 256, s(256)2 = 132 ̸= 142

holds, which yields
m ≤ 132.

Note that (m,n) = (132, 162) is a solution to the given equation. If 82 ≤ m ≤
122, then

s(m) ≤ max{s(64), s(81), s(100), s(121), s(144)} = 9,

which gives n ≤ 81, and hence (m,n) is equal to (82, 92), which is impossible.
It follows that m ≤ 72. Observe that s(m)2 = n, s(n)2 = m fails to hold if m is
any of 12, 22, 32, 42, 52, 62, 72.

We conclude that (m,n) = (132, 162) is the only solution to the given
equations.

Example 1.32 (India RMO 2014e P2). The roots of the equation

x3 − 3ax2 + bx+ 18c = 0
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form a non-constant arithmetic progression and the roots of the equation

x3 + bx2 + x− c3 = 0

form a non-constant geometric progression. Given that a, b, c are real numbers,
find all positive integral values a and b.

Solution 28. Let a, b, c are real numbers such that the given conditions
hold. Let d ̸= 0 denote the common difference of the non-constant arithmetic
progression formed by the roots of x3 − 3ax2 + bx+ 18c = 0, and let r denote
the common ratio of the non-constant geometric progression formed by the
roots of x3+bx2+x−c3 = 0. Note that the terms of the arithmetic progression
are a− d, a, a+ d, and the terms of the geometric progression are c

r , c, cr. It
follows that

a(a− d) + a(a+ d) + (a2 − d2) = b, a(a2 − d2) = −18c,

which gives
d2 = 3a2 − b, a(a2 − d2) = −18c,

and
c

r
+ c+ cr = −b,

c2

r
+ c2 + c2r = 1.

Eliminating d, we obtain

a(4a2 − b) = −18c,

and eliminating r, we obtain
bc = −1.

Eliminating c yields
ab(b− 2a2) = 18. (7)

Assume that a, b are positive integers. Since a, b are positive, it follows that
b − 2a2 is also positive. Note that b, b − 2a2 are of the same parity. Since 2
divides 18 and 4 does not divide 18, we obtain a = 2, and hence

b(b− 8) = 9.

Since b is positive, it gives b = 9.
Note that for (a, b) = (2, 9), and for c = − 1

9 , the roots of the polynomial

x3−3ax2+bx+18c are 2∓
√
3, 2, 2±

√
3, which form a non-constant arithmetic

progression, and the roots of the polynomial x3 + bx2 + x − c3 are c/r, c, cr
with r = 40±

√
402 − 1, which form a non-constant geometric progression.

This proves that the required solution for (a, b) is precisely (2, 9). ■

Example 1.33 (India RMO 2015d P3). Find all integers a, b, c such that
a2 = bc+ 1 and b2 = ca+ 1.
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Solution 29. Let a, b, c be integers satisfying the given equations.
Let us first consider the case that a = b. Note that a(a − c) = 1 holds,

which shows that (a, a − c) is equal to one of (1, 1), (−1,−1), which implies
that (a, b, c) is equal to one of (1, 1, 0), (−1,−1, 0).

Now, let us consider the case that a ̸= b. Taking the difference of the given
equations, we obtain (a−b)(a+b+c) = 0, which gives a+b = −c. Substituting
c = −a− b in a2 = bc+ 1 yields a2 + ab+ b2 = 1, which is equivalent to

(2a+ b)2 + 3b2 = 4.

This shows that (2a+ b, b) is equal to one of

(1, 1), (1,−1), (−1, 1), (−1,−1), (2, 0), (−2, 0).

This implies that (a, b, c) is equal to one of

(0, 1,−1), (1,−1, 0), (−1, 1, 0), (0,−1, 1), (1, 0,−1), (−1, 0, 1).

Combining the above cases, it follows that (a, b, c) is equal to one of

(1, 1, 0), (−1,−1, 0), (0, 1,−1), (1,−1, 0), (−1, 1, 0), (0,−1, 1), (1, 0,−1), (−1, 0, 1).

Note that any of the above triples satisfies the given equations. Hence, the
solutions of the given equations over the integers are precisely the above eight
triples. ■

Example 1.34 (India RMO 2015b P3). Find all integers a, b, c such that
a2 = bc+ 4 and b2 = ca+ 4.

Solution 30. Let a, b, c be integers satisfying the given equations.
Let us first consider the case that a = b. Note that a(a− c) = 4 holds, which

shows that (a, a− c) is equal to one of the elements of

{(d, d− 4/d) | d is a divisor of 4},

and hence (a, b, c) is equal to one of

(1, 1,−3), (−1,−1, 3), (2, 2, 0), (−2,−2, 0), (4, 4, 3), (−4,−4,−3).

Now, let us consider the case that a ̸= b. Note that

a3 − b3 = a(bc+ 4)− b(ca+ 4) = 4(a− b)

holds, which yields
a2 + ab+ b2 = 4.

It follows that at least one of a, b is even, and hence, both of them are even.
Observe that (

a+
b

2

)2

+ 3

(
b

2

)2

= 4
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holds, which shows that (a+ b/2, b/2) is equal to one of

(2, 0), (−2, 0), (1, 1), (1,−1), (−1, 1), (−1,−1),

and hence (a, b) is equal to one of

(2, 0), (−2, 0), (0, 2), (2,−2), (−2, 2), (0,−2).

This implies that (a, b, c) is equal to one of

(2, 0,−2), (−2, 0, 2), (0, 2,−2), (2,−2, 0), (−2, 2, 0), (0,−2, 2).

Considering the above cases, it follows that (a, b, c) is equal to one of

(1, 1,−3), (−1,−1, 3), (2, 2, 0), (−2,−2, 0), (4, 4, 3), (−4,−4,−3),

(2, 0,−2), (−2, 0, 2), (0, 2,−2), (2,−2, 0), (−2, 2, 0), (0,−2, 2).

Note that any of the above pairs satisfy the given equations. This proves that
the above tuples are precisely all the solutions of the given equation over the
integers. ■

Example 1.35 (India RMO 2015c P4). Find all three digit natural numbers of
the form (abc)10 such that (abc)10, (bca)10, (cab)10 are in geometric progression.
(Here (abc)10 is representation in base 10).

Solution 31. Let (abc)10 be a three digit natural number such that (abc)10,
(bca)10, (cab)10 are in geometric progression, that is,

(100b+ 10c+ a)2 = (100a+ 10b+ c)(100c+ 10a+ b)

holds, which is equivalent to

10000b2 + 100c2 + a2 + 2000bc+ 200ab+ 20ca

= 10000ca+ 1000(a2 + bc) + 100(c2 + 2ab) + 10(b2 + ca) + bc.

This implies

10000(b2 − ca)− 1000(a2 − bc)− 10(b2 − ca) + (a2 − bc) = 0,

which reduces to

(10(b2 − ca)− (a2 − bc))(1000− 1) = 0.

This gives

(10a− b)c = 10b2 − a2. (8)
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Note that 10a− b is nonzero, otherwise, 10 would divide b, implying b = 0, and
thus, a = 0, which is impossible. It follows that

c =
10b2 − a2

10a− b

=
10b(b− 10a) + 100ab− a2

10a− b

= −10b+
100ab− a2

10a− b

= −10b+ a
100b− a

10a− b

= −10b+ a
100(b− 10a) + 1000a− a

10a− b

= −10b− 100a+
999a2

10a− b
.

Let d denote the greatest common divisor of a, b. Note that 10a − b divides

999a2, which shows that 10a
d−

b
d divides 999d

(
a
d

)2
. Since a/d, b/d are relatively

prime, it follows that 10a
d − b

d divides 999d. Using Eq. (8), it follows that
b ≥ 1. Note that if a = b holds, then using Eq. (8), we obtain a = b = c, and
hence, (abc)10, (bca)10, (cab)10 are equal, and form a geometric progression. It
remains to consider the case that a ̸= b, which we assume from now on. Since
1 ≤ b ≤ 9 and d divides b, it follows that d ≤ 4.

Let us consider the case that d = 4. Then a/d, b/d belong to {1, 2}. Using
a ̸= b, it follows that (ad ,

b
d ) is equal to (1, 2) or (2, 1), which implies that

10a
d − b

d does not divide 999d, which is impossible. We obtain d ̸= 4.

Let us consider the case that d = 3. Note that 1 ≤ a/d ≤ 3, 1 ≤ b/d ≤ 3
hold, and hence 7 = 10−3 ≤ 10a

d −
b
d ≤ 30−1 = 29 < 37. Since 10a

d −
b
d divides

999d = 37× 81, it is equal to one of 9, 27, which shows that a
d − b

d ≡ 0 mod 3.
This yields a = b, which is impossible. We get that d ̸= 3.

Let us consider the case that d = 2. Note that 1 ≤ a/d ≤ 4, 1 ≤ b/d ≤ 4 hold,
which yields 6 ≤ 10a/d−b/d ≤ 39. Since 10a/d−b/d divides 999d = 2×27×37,
it is equal to one of 27, 37, and it follows that (a/d, b/d) is equal to one of
(3, 3), (4, 3). Using a ̸= b, we get that (a, b) is equal to (8, 6). Then Eq. (8)
yields c = 4.

Let us consider the case that d = 1. Note that 10a− b divides 999 = 27× 37.
Observing that 10a− b ≤ 90, we obtain 10a− b is equal to one of 1, 3, 9, 27, 37,
and hence (a, b) is equal to one of (1, 9), (1, 7), (1, 1), (3, 3), (4, 3). Note that
(a, b) is equal to none of (1, 9), (1, 7), otherwise, we would get c > 10. Using
a ̸= b, it follows that (a, b) is equal to (4, 3). Then Eq. (8) yields c = 2.

The above argument shows that (abc)10 is equal to one of the following eleven
integers

111, 222, 333, 444, 555, 666, 777, 888, 999, 432, 864.
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Note that

432× 243 = 144× 729

= 122 × 272

= 3242,

864× 486 = 4× 432× 243

= 4× 3242

= 6482

holds. This proves that the above eleven integers satisfy the required condition,
and hence, these are precisely all the required three digit natural numbers. ■

Example 1.36 (India RMO 2016f P1). Find distinct positive integers n1 <
n2 < · · · < n7 with the least possible sum, such that their product n1 × n2 ×
· · · × n7 is divisible by 2016.

Solution 32. Note that

2016 = 32× 63 = 25 · 32 · 7

holds.
Let n1 < n2 < · · · < n7 be distinct positive integers satisfying the given

conditions. Note that ni ≥ i holds for all 1 ≤ i ≤ 7, which gives

n1 + n2 + · · ·+ n7 ≥ 1 + 2 + 3 + 4 + 5 + 6 + 7.

Note that the product of the distinct integers 1, 2, 3, 4, 6, 7, 8 is equal to 25 ·32 ·7.
This implies that

n1 + n2 + · · ·+ n7 ≤ 3 + 1 + 2 + 3 + 4 + 5 + 6 + 7. (9)

Note that n4 > 4 implies that

n1 + n2 + · · ·+ n7 ≥ 1 + 2 + 3 + 5 + 6 + 7 + 8 = 4 + 1 + 2 + 3 + 4 + 5 + 6 + 7,

which is impossible. This gives that n4 ≤ 4, and consequently,

n1 = 1, n2 = 2, n3 = 3, n4 = 4

holds.
If

n1 + n2 + · · ·+ n7 = 1 + 2 + 3 + 4 + 5 + 6 + 7

holds, then ni is equal to i for any 1 ≤ i ≤ 7, and this is impossible since 7! is
not divisible by the divisor 25 of 2016. This proves that

n1 + n2 + · · ·+ n7 > 1 + 2 + 3 + 4 + 5 + 6 + 7,
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which implies that ni > i for some 1 ≤ i ≤ 7, and hence ni > i for some i ≥ 5.
This shows that

n1 + n2 + · · ·+ n7 ≥ 1 + 2 + 3 + 4 + 6 + 7 + 8 = 3 + 1 + 2 + 3 + 4 + 5 + 6 + 7.

Using Eq. (9), we obtain

n1 = 1, n2 = 2, n3 = 3, n4 = 4, n5 = 6, n6 = 7, n7 = 8.

■

§1.6 Using congruences

Example 1.37 (India RMO 1995 P4). Show that the quadratic equation
x2 + 7x− 14(q2 + 1) = 0, where q is an integer, has no integer root.

Solution 33. It suffices to show that the discriminant of the polynomial
x2 + 7x− 14(q2 + 1) is not a perfect square, that is, the integer 49 + 56(q2 + 1)
is not perfect square.

Let us assume that 49 + 56(q2 +1) is perfect square. Note that it is divisible
by 7. So it is divisible by 49. Hence, q2+1 is divisible by 7, which is impossible
since 7 ≡ 3 mod 4. Alternatively, note that

q2 + 1 ≡ 1, 2, 5, 3 mod 7

if q ≡ 0,±1,±2,±3 mod 7, and thus q2 + 1 is not divisible by 7. This shows
that the discriminant of x2 + 7x− 14(q2 + 1) is not a perfect square. So this
polynomial has no integer root. ■

Example 1.38 (India RMO 2009 P2). Show that there is no integer a such
that a2 − 3a− 19 is divisible by 289.

Solution 34. If a2 − 3a− 19 is divisible by 289 for some integer a, then

4(a2 − 3a− 19) = (2a)2 − 12a− 76 = (2a− 3)2 − 85

would be divisible by 289 = 172, and hence 2a− 3 would be a multiple of 17,
and consequently, 172 would divide 85, which is impossible. This proves the
result. ■

Example 1.39 (Jonquières 1878). Prove that the equation

y2 = x3 + 23

has no solutions in integers.
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Solution 35. Let x, y be integers satisfying the given equation. If x is
even, then y is odd, and hence y2 ≡ 1 mod 8, which is impossible since
x3 + 23 ≡ 7 mod 8. It follows that x is odd, and consequently, y is even. Write
y = 2k for some integer k. Note that

4k2 + 4 = x3 + 33

holds, which yields

(x+ 3)(x2 − 3x+ 9) = 4(k2 + 1).

Since x is odd, it follows that x2 − 3x+ 9 is odd, and hence 4 divides x+ 3, or
equivalently, we have x ≡ 1 mod 4. This shows that

x2 − 3x+ 9 ≡ 3 mod 4.

It follows that x2− 3x+9 admits a prime factor p satisfying p ≡ 3 mod 4. This
implies that p divides k2 +1, and hence the order of k modulo p is 4. Applying
division algorithm, and using kp−1 ≡ 1 mod 4, we obtain that 4 divides p− 1,
which is impossible. This proves that the given equation has no solution over
the integers. ■

Remark. We refer to this notes by Keith Conrad on Mordell’s equation, which
are equations of the form y2 = x3 + k, where k is an integer.
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