Orders

MOPSS

3 June 2025

Suggested readings

- Evan Chen's advice On reading solutions, available at https://blog. evanchen.cc/2017/03/06/on-reading-solutions/.
- Evan Chen's Advice for writing proofs/Remarks on English, available at https://web.evanchen.cc/handouts/english/english.pdf.
- Notes on proofs by Evan Chen from OTIS Excerpts [Che25, Chapter 1].
- Tips for writing up solutions by Edward Barbeau, available at https: //www.math.utoronto.ca/barbeau/writingup.pdf.
- Evan Chen discusses why math olympiads are a valuable experience for high schoolers in the post on Lessons from math olympiads, available at https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/.

List of problems and examples

1.1	Example (Tournament of Towns, India RMO 2014a P3)	2
1.2	Example (Mathematical Ashes 2011 P2)	2

§1 Orders

Let p be a prime, and a be an integer, not divisible by p. The order of a modulo p, denoted by $\operatorname{ord}_p(a)$, is defined to be the smallest positive integer such that $a^{\operatorname{ord}_p(a)} \equiv 1 \mod p$.

Example 1.1 (Tournament of Towns, India RMO 2014a P3). [Tao06, Problem 2.2] [AE11, Problem 3.81] Suppose for some positive integers r and s, 2^r is obtained by permuting the digits of 2^s in decimal expansion and 2^r , 2^s have same number of digits. Prove that r = s.

Solution 1. Since a positive integer is congruent to the sum of its digits modulo 9, it follows that 2^r and 2^s are congruent modulo 9.

Let us consider the case that r < s. Note that 9 divides $2^{s-r} - 1$. Since the order of 2 modulo 9 is equal to 6, it follows that 6 divides s - r, and hence $2^s \ge 64 \cdot 2^r$, which is impossible. This shows that $r \ge s$ holds. Similarly, it also follows that $s \ge r$ holds. This proves that s = r, as required.

Example 1.2 (Mathematical Ashes 2011 P2). Find all pairs (m, n) of non-negative integers for which

$$m^2 + 2 \cdot 3^n = m(2^{n+1} - 1).$$

Walkthrough —

(a) Let m, n be nonnegative integers satisfying the given equation. Considering the roots of $x^2 - x(2^{n+1} - 1) + 2 \cdot 3^n$, it follows that

$$3^k + 2 \cdot 3^\ell = 2^{n+1} - 1$$

holds, for some nonnegative integers k, ℓ satisfying $k + \ell = n$.

(b) Show that if $n \ge 6$, then $\min\{k, \ell\} \ge 2$ holds. Note that

$$3^k < 2^{n+1} < 9^{(n+1)/3}$$

holds, implying k < 2(n+1)/3. Also note that

$$2 \cdot 3^{\ell} < 2^{n+1} < 2 \cdot 3^{2n/3}$$

holds, implying $\ell < 2n/3$. Using $k + \ell = n$, it follows that

$$k > \frac{n-2}{3}, \ell > \frac{n-2}{3}.$$

- (c) Let us consider the case^{*a*} that $n \ge 6$. Note that $m := \min\{k, \ell\} \ge 2$ holds.
 - (i) Note that 9 divides $2^{n+1} 1$, and show that 6 divides n+1. Writing n+1 = 6j yields

 $2^{n+1} - 1 = (4^{j} - 1)(4^{2j} + 4^{j} + 1) = (2^{j} - 1)(2^{j} + 1)((4^{j} - 1)^{2} + 3 \cdot 4^{j}).$

- (ii) Noting that $(4^j 1)^2 + 3 \cdot 4^j$ is divisible by 3, but not by 9, and that the integers $2^j 1, 2^j + 1$ are coprime, conclude that 3^{m-1} divides one of $2^j 1, 2^j + 1$.
- (iii) Prove that

$$3^{m-1} \le 2^j + 1 \le 3^j = 3^{\frac{n+1}{6}},$$

implying

$$m-1 \leq \frac{n+1}{6}.$$

(iv) Conclude that

$$\frac{n-2}{3} - 1 < m - 1 \le \frac{n+1}{6}.$$

holds.

(v) This yields n < 11, contradicting $n \ge 6$ and 6 divides n + 1.

(d) It remains to consider the case $n \leq 5$.

^{*a*}It also suffices to assume that $n \ge 5$ holds to obtain $m \ge 2$.

References

- [AE11] TITU ANDREESCU and BOGDAN ENESCU. Mathematical Olympiad treasures. Second. Birkhäuser/Springer, New York, 2011, pp. viii+253. ISBN: 978-0-8176-8252-1; 978-0-8176-8253-8 (cited p. 2)
- [Che25] EVAN CHEN. The OTIS Excerpts. Available at https://web. evanchen.cc/excerpts.html. 2025, pp. vi+289 (cited p. 1)
- [Tao06] TERENCE TAO. Solving mathematical problems. A personal perspective. Oxford University Press, Oxford, 2006, pp. xii+103. ISBN: 978-0-19-920560-8; 0-19-920560-4 (cited p. 2)