Cubic polynomials

MOPSS

8 April 2025

Suggested readings

- Evan Chen's
 - advice On reading solutions, available at https://blog.evanchen. cc/2017/03/06/on-reading-solutions/.
 - Advice for writing proofs/Remarks on English, available at https: //web.evanchen.cc/handouts/english/english.pdf.
- Evan Chen discusses why math olympiads are a valuable experience for high schoolers in the post on Lessons from math olympiads, available at https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/.

List of problems and examples

1.1	Example (India I	RMO	2000 P2)								2
1.2	Example (India I	RMO	2015f P5)								3

§1 Cubic polynomials

Example 1.1 (India RMO 2000 P2). Solve the equation $y^3 = x^3 + 8x^2 - 6x + 8$, for positive integers x and y.

Solution 1. Let x, y be positive integers satisfying the given equation. Since x is a positive integer, it follows that $8x^2 - 6x + 8$ is positive, and hence, $y^3 \ge x^3$ holds. This shows that y = x + k for some positive integer k. Substituting y = x + k in the given equation and simplifying, we obtain

 $(3k-8)x^2 + (3k^2+6)x + k^3 - 8 = 0.$

Since x is positive, it follows that $k \leq 2$. If k = 1, then

 $5x^2 - 9x + 7 = 0$

holds, which shows that $7 \equiv x(x+1) \pmod{2}$, which yields $7 \equiv 0 \pmod{2}$, which is impossible. This implies that k = 2. It follows that

$$2x^2 - 18x = 0,$$

which gives x = 9, and consequently, we obtain y = 9 + 2 = 11.

Also note that if (k, x) = (2, 9), then

$$(3k-8)x^2 + (3k^2+6)x + k^3 - 8 = 0$$

holds, and it gives

$$(x+k)^3 = x^3 + 8x^2 - 6x + 8,$$

which shows that (x, y) = (9, 11) is a solution to the given equation.

It follows that (9, 11) is the only solution of the given equation in the positive integers.

Remark. After arriving at the above solution, one can rewrite it to make it brief by observing that

$$x^{3} + 8x^{2} - 6x + 8 - (x+1)^{3} = 5x^{2} - 9x + 7,$$

which is positive for any positive integer x (in fact, it is positive for any real number x), and then concluding that y = x + k for some integer k > 1.

Example 1.2 (India RMO 2015f P5). Solve the equation $y^3 + 3y^2 + 3y = x^3 + 5x^2 - 19x + 20$ for positive integers x, y.

Solution 2. Let x, y be positive integers satisfying the above equation. Note that the given equation can be rewritten as

$$(y+1)^3 = x^3 + 5x^2 - 19x + 21.$$

Note that

$$5x^2 - 19x + 21 > 5x^2 - 19x \ge 0$$

holds if $x \ge 4$. Also note that $5x^2 - 19x + 21 > 0$ if x lies in $\{1, 2, 3\}$. Since x is a positive integer, it follows that $5x^2 - 19x + 21 \ge 1$. This shows that $(y+1)^3 > x^3$, and hence, y+1 = x + k for some positive integer k. Note that

$$(y+1)^3 = x^3 + 5x^2 - 19x + 21$$

is equivalent to

$$3kx^2 + 3k^2x + k^3 = 5x^2 - 19x + 21,$$

which simplifies to

$$(3k-5)x^2 + (3k^2+19)x + (k^3-21) = 0$$

Note that if $k \ge 2$, then using x > 0, we obtain

$$(3k-5)x^{2} + (3k^{2}+19)x + (k^{3}-21)$$

= $(3k-5)x^{2} + 3k^{2}x + 19(x-1) + k^{3} - 2$
> 1.

This shows that k is equal to 0 or 1. If k = 0, then $5x^2 - 19x + 21 = 0$ holds, which implies that 21 is even, which is impossible. This shows that k = 1, and hence x = y. It follows that

$$2x^2 - 22x + 20 = 0,$$

and hence x is equal to one of 1, 10. Consequently, we obtain (x, y) is equal to (1, 1) or (10, 10).

Note that for any integers x, y, k satisfying y + 1 = x + k and

$$3kx^2 + 3k^2x + k^3 = 5x^2 - 19x + 21,$$

, we have

$$(y+1)^3 = x^3 + 5x^2 - 19x + 21.$$

It follows that (1, 1), (10, 10) also satisfy the given equation.

Consequently, the solutions of the given equation over the positive integers are precisely (1,1) and (10,10).