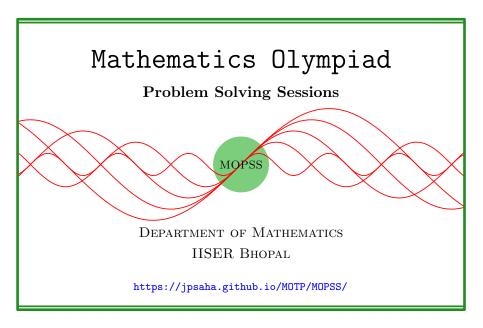
MOPSS

11 October 2025



Suggested readings

- Evan Chen's advice On reading solutions, available at https://blog.evanchen.cc/2017/03/06/on-reading-solutions/.
- Evan Chen's Advice for writing proofs/Remarks on English, available at https://web.evanchen.cc/handouts/english/english.pdf.
- Notes on proofs by Evan Chen from OTIS Excerpts [Che25, Chapter 1].
- Tips for writing up solutions by Edward Barbeau, available at https://www.math.utoronto.ca/barbeau/writingup.pdf.
- Evan Chen discusses why math olympiads are a valuable experience for high schoolers in the post on Lessons from math olympiads, available at https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/.

List of problems and examples

- 1.1 Exercise (British Mathematical Olympiad Round 2 2025 P1) 2
- 1.2 Exercise (British Mathematical Olympiad Round 1 2019 P1) 2
- 1.3 Exercise (British Mathematical Olympiad Round 1 2016/17 P3) 4
- 1.4 Exercise (British Mathematical Olympiad Round 1 2023 P4) 4

§1

Exercise 1.1 (British Mathematical Olympiad Round 2 2025 P1). Prove that if n is a positive integer, then $\frac{1}{n}$ can be expressed as a finite sum of reciprocals of different triangular numbers. (A **triangular number** is an integer which is equal to $\frac{k(k+1)}{2}$ for some positive integer k.)

Walkthrough —

- (a) Note that it suffices to express $\frac{1}{2n}$ as a finite sum of reciprocal of consecutive integers.
- (b) Observe that

$$\frac{1}{2n} = \frac{1}{n} - \frac{1}{2n}$$

holds.

Solution 1. Note that

$$\frac{1}{2n} = \left(\frac{1}{n} - \frac{1}{n+1}\right) + \left(\frac{1}{n+1} - \frac{1}{n+2}\right) + \dots + \left(\frac{1}{2n+1} - \frac{1}{2n}\right)$$

holds. This yields that $\frac{1}{n}$ is the sum of the reciprocals of

$$\frac{n(n+1)}{2}$$
, $\frac{(n+1)(n+2)}{2}$, ..., $\frac{(2n+1)2n}{2}$,

which are distinct triangular numbers since the map $x \mapsto \frac{x(x+1)}{2}$ from $\mathbb{R} \to \mathbb{R}$ is injective.

Exercise 1.2 (British Mathematical Olympiad Round 1 2019 P1). Show that there are at least three prime numbers p less than 200 for which p+2, p+6, p+8 and p+12 are all prime. Show also that there is only one prime number q for which q+2, q+6, q+8, q+12 and q+14 are all prime.

Walkthrough —

- (a) Let p be a prime number such that p, p+2, p+6, p+8 and p+12 are all prime.
- **(b)** Show that *p* is odd.

- (c) Using that p+6, p+8 are primes greater than 3, show that $p \equiv 2 \pmod{3}$.
- (d) Using that p+6, p+8, p+12 are primes greater than 5, show that p=5 or $p\equiv 1\pmod 5$.
- (e) Using that p+2, p+6, p+8, p+12 are primes greater than 7, show that p=7 or p is congruent to either 3 or 4 modulo 7.
- (f) Using the above congruence conditions modulo 3, 5 and 7, show that if $p \le 200$, then p is equal to one of the integers

- (g) Complete the first part of the problem.
- (h) For the second part of the problem, show that if q is a prime number such that q, q+2, q+6, q+8, q+12 and q+14 are all prime, then q is at most 5.

Solution 2. Let p be a prime number such that p, p + 2, p + 6, p + 8 and p + 12 are all prime. Note that p is odd. Since p + 6, p + 8 are primes greater than 3, it follows that

$$p \not\equiv 0 \pmod{3}, \quad p \not\equiv 1 \pmod{3},$$

which implies that $p \equiv 2 \pmod{3}$. Since p+6, p+8, p+12 are primes greater than 5, it follows that

$$p \not\equiv 4 \pmod{5}$$
, $p \not\equiv 2 \pmod{5}$, $p \not\equiv 3 \pmod{5}$,

which implies that p=5 or $p\equiv 1\pmod 5$. Note that if p=5, then p+2,p+6,p+8,p+12 are all prime. Henceforth, let us assume that $p\equiv 1\pmod 5$. Note that p+2,p+6,p+8,p+12 are all primes greater than 7. It follows that p not congruent to any of 5,1,6,2 modulo 7. This shows that p=7 or p is congruent to either 3 or 4 modulo 7. Note that if p=7, then p+2 is not a prime. This implies that p is congruent to either 3 or 4 modulo 7. Since $p\equiv 2\pmod 3$ and $p\equiv 1\pmod 5$, it follows that p is congruent to 11 modulo 15. If $p\le 200$, then p is equal to one of the integers

Among the above integers, only 11, 101 satisfy the required congruence condition modulo 7. Note that if p=11, then p+2, p+6, p+8, p+12 are all prime. Moreover, if p=101, then p+2, p+6, p+8, p+12 are all prime. This shows that there are precisely three prime numbers p less than 200 for which p+2, p+6, p+8, p+12 are all prime, and these are 5, 11, 101.

Let q be a prime number such that q, q+2, q+6, q+8, q+12, q+14 are all prime. Since q+6, q+8 are primes greater than 3, it follows that $q \equiv 2 \pmod{3}$. Note that q is odd, and hence, q is at least 5. Since q+6, q+8, q+12, q+14 are primes greater than 5, it follows that q is equal to 5. Note that if q=5,

then q+2, q+6, q+8, q+12, q+14 are all prime. This shows that there is only one prime number q for which q+2, q+6, q+8, q+12, q+14 are all prime, and this is 5.

Exercise 1.3 (British Mathematical Olympiad Round 1 2016/17 P3). Determine all pairs (m, n) of positive integers which satisfy the equation $n^2 - 6n = m^2 + m - 10$.

Walkthrough —

(a) Complete the square on both sides, and rearrange to get a suitable factorization.

Solution 3. Let m, n be positive integers satisfying

$$n^2 - 6n = m^2 + m - 10.$$

This yields

$$(n-3)^2 = m^2 + m - 1,$$

which implies

$$(n-3)^2 = \left(m + \frac{1}{2}\right)^2 - \frac{5}{4}.$$

Rearranging gives

$$(2m+1)^2 - (2(n-3))^2 = 5.$$

Factorizing yields

$$(2m+1-2(n-3))(2m+1+2(n-3))=5.$$

Using $n^2 - 6n = m^2 + m - 10$, it follows that n is not an odd integer. Note that if n = 2, then the given equation holds yields m = 1. It remains to consider the case that $n \ge 4$, which we assume from now on. Note that

$$2m + 1 - 2(n - 3) \le 2m + 1 + 2(n - 3)$$

holds, and hence we obtain

$$2m + 1 - 2(n - 3) = 1$$
, $2m + 1 + 2(n - 3) = 5$.

This gives m = 1, n = 4.

Moreover, if m = 1, n = 4, then $n^2 - 6n = m^2 + m - 10$ holds. Further, if m = 1, n = 2, then also the given equation holds.

Therefore, the pairs (m, n) of positive integers which satisfy the equation $n^2 - 6n = m^2 + m - 10$ are precisely (1, 2) and (1, 4).

Exercise 1.4 (British Mathematical Olympiad Round 1 2023 P4). Find all positive integers n such that $n \times 2^n + 1$ is a perfect square.

Walkthrough —

- (a) Write $n \times 2^n + 1 = k^2$ for some positive integer k.
- **(b)** Rearranging gives $n \times 2^n = k^2 1 = (k-1)(k+1)$.
- (c) Show that k-1 and k+1 are consecutive even integers.
- (d) Using that one of k-1 and k+1 is not divisible by 4, show that one of k-1 and k+1 is divisible by 2^{n-1} .
- (e) Deduce that $n \leq 4$.

Solution 4. Let n be a positive integer such that $n \times 2^n + 1 = k^2$ for some positive integer k. Rearranging gives $n \times 2^n = k^2 - 1 = (k-1)(k+1)$. Since the product (k-1)(k+1) of the consecutive integers k-1 and k+1 is even, it follows that k-1, k+1 are both even. Thus, we can write k-1=2a and k+1=2b for some positive integers a and b with b=a+1. Note that the greatest common divisor of the integers k-1 and k+1 is 2. Therefore, the greatest common divisor of the integers a and b is 1. This shows that at least one of the integers a and b is odd. Consequently, one of the integers k-1 and k+1 is divisible by 2^{n-1} . This shows that

$$n \times 2^n \ge 2^{n-1}(2^{n-1} - 2)$$

holds, which simplifies to $n \geq 2^{n-2} - 1$. Using induction, it follows that $2^{m-2} > m+1$ holds for all integers $m \geq 5$. Therefore, we have $n \leq 4$. Note that n is not equal to any of the integers 1, 4. Moreover, if n=2, then $n \times 2^n + 1 = 9$, which is a perfect square. Finally, if n=3, then $n \times 2^n + 1 = 25$, which is a perfect square. Thus, the only positive integer n such that $n \times 2^n + 1$ is a perfect square is n=2 and n=3.

References

[Che25] EVAN CHEN. The OTIS Excerpts. Available at https://web.evanchen.cc/excerpts.html. 2025, pp. vi+289 (cited p. 1)