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Suggested readings

• Evan Chen’s advice On reading solutions, available at https://blog.

evanchen.cc/2017/03/06/on-reading-solutions/.

• Evan Chen’s Advice for writing proofs/Remarks on English, available at
https://web.evanchen.cc/handouts/english/english.pdf.

• Notes on proofs by Evan Chen from OTIS Excerpts [Che25, Chapter 1].

• Tips for writing up solutions by Edward Barbeau, available at https:
//www.math.utoronto.ca/barbeau/writingup.pdf.

• Evan Chen discusses why math olympiads are a valuable experience for
high schoolers in the post on Lessons from math olympiads, available at
https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/.
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§1
Exercise 1.1 (British Mathematical Olympiad Round 2 2025 P1). Prove that
if n is a positive integer, then 1

n can be expressed as a finite sum of reciprocals
of different triangular numbers. (A triangular number is an integer which is

equal to k(k+1)
2 for some positive integer k.)

Walkthrough —

(a) Note that it suffices to express 1
2n

as a finite sum of reciprocal of consec-
utive integers.

(b) Observe that
1

2n
=

1

n
− 1

2n

holds.

Solution 1. Note that

1

2n
=

(
1

n
− 1

n+ 1

)
+

(
1

n+ 1
− 1

n+ 2

)
+ · · ·+

(
1

2n+ 1
− 1

2n

)
holds. This yields that 1

n is the sum of the reciprocals of

n(n+ 1)

2
,
(n+ 1)(n+ 2)

2
, . . . ,

(2n+ 1)2n

2
,

which are distinct triangular numbers since the map x 7→ x(x+1)
2 from R → R

is injective. ■

Exercise 1.2 (British Mathematical Olympiad Round 1 2019 P1). Show that
there are at least three prime numbers p less than 200 for which p+ 2, p+ 6,
p+ 8 and p+ 12 are all prime. Show also that there is only one prime number
q for which q + 2, q + 6, q + 8, q + 12 and q + 14 are all prime.

Walkthrough —

(a) Let p be a prime number such that p, p+ 2, p+ 6, p+ 8 and p+ 12 are
all prime.

(b) Show that p is odd.
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(c) Using that p+6, p+8 are primes greater than 3, show that p ≡ 2 (mod 3).

(d) Using that p+ 6, p+ 8, p+ 12 are primes greater than 5, show that p = 5
or p ≡ 1 (mod 5).

(e) Using that p+ 2, p+ 6, p+ 8, p+ 12 are primes greater than 7, show that
p = 7 or p is congruent to either 3 or 4 modulo 7.

(f) Using the above congruence conditions modulo 3, 5 and 7, show that if
p ≤ 200, then p is equal to one of the integers

11, 41, 71, 101, 131, 161, 191.

(g) Complete the first part of the problem.

(h) For the second part of the problem, show that if q is a prime number
such that q, q + 2, q + 6, q + 8, q + 12 and q + 14 are all prime, then q is
at most 5.

Solution 2. Let p be a prime number such that p, p + 2, p + 6, p + 8 and
p+ 12 are all prime. Note that p is odd. Since p+ 6, p+ 8 are primes greater
than 3, it follows that

p ̸≡ 0 (mod 3), p ̸≡ 1 (mod 3),

which implies that p ≡ 2 (mod 3). Since p+ 6, p+ 8, p+ 12 are primes greater
than 5, it follows that

p ̸≡ 4 (mod 5), p ̸≡ 2 (mod 5), p ̸≡ 3 (mod 5),

which implies that p = 5 or p ≡ 1 (mod 5). Note that if p = 5, then p+ 2, p+
6, p+ 8, p+ 12 are all prime. Henceforth, let us assume that p ≡ 1 (mod 5).
Note that p + 2, p + 6, p + 8, p + 12 are all primes greater than 7. It follows
that p not congruent to any of 5, 1, 6, 2 modulo 7. This shows that p = 7 or p
is congruent to either 3 or 4 modulo 7. Note that if p = 7, then p+ 2 is not a
prime. This implies that p is congruent to either 3 or 4 modulo 7. Since p ≡ 2
(mod 3) and p ≡ 1 (mod 5), it follows that p is congruent to 11 modulo 15. If
p ≤ 200, then p is equal to one of the integers

11, 41, 71, 101, 131, 161, 191.

Among the above integers, only 11, 101 satisfy the required congruence condition
modulo 7. Note that if p = 11, then p + 2, p + 6, p + 8, p + 12 are all prime.
Moreover, if p = 101, then p + 2, p + 6, p + 8, p + 12 are all prime. This
shows that there are precisely three prime numbers p less than 200 for which
p+ 2, p+ 6, p+ 8, p+ 12 are all prime, and these are 5, 11, 101.

Let q be a prime number such that q, q + 2, q + 6, q + 8, q + 12, q + 14 are all
prime. Since q+6, q+8 are primes greater than 3, it follows that q ≡ 2 (mod 3).
Note that q is odd, and hence, q is at least 5. Since q + 6, q + 8, q + 12, q + 14
are primes greater than 5, it follows that q is equal to 5. Note that if q = 5,

Some style files, prepared by Evan Chen, have been adapted here. 3

https://github.com/vEnhance/dotfiles/blob/main/texmf/tex/latex/evan/evan.sty
https://web.evanchen.cc/otis.html


11 October 2025 https://jpsaha.github.io/MOTP/

then q+2, q+6, q+8, q+12, q+14 are all prime. This shows that there is only
one prime number q for which q + 2, q + 6, q + 8, q + 12, q + 14 are all prime,
and this is 5. ■

Exercise 1.3 (British Mathematical Olympiad Round 1 2016/17 P3). Deter-
mine all pairs (m,n) of positive integers which satisfy the equation n2 − 6n =
m2 +m− 10.

Walkthrough —

(a) Complete the square on both sides, and rearrange to get a suitable
factorization.

Solution 3. Let m,n be positive integers satisfying

n2 − 6n = m2 +m− 10.

This yields
(n− 3)2 = m2 +m− 1,

which implies

(n− 3)2 =

(
m+

1

2

)2

− 5

4
.

Rearranging gives
(2m+ 1)2 − (2(n− 3))2 = 5.

Factorizing yields

(2m+ 1− 2(n− 3))(2m+ 1 + 2(n− 3)) = 5.

Using n2−6n = m2+m−10, it follows that n is not an odd integer. Note that
if n = 2, then the given equation holds yields m = 1. It remains to consider
the case that n ≥ 4, which we assume from now on. Note that

2m+ 1− 2(n− 3) ≤ 2m+ 1 + 2(n− 3)

holds, and hence we obtain

2m+ 1− 2(n− 3) = 1, 2m+ 1 + 2(n− 3) = 5.

This gives m = 1, n = 4.
Moreover, if m = 1, n = 4, then n2 − 6n = m2 +m− 10 holds. Further, if

m = 1, n = 2, then also the given equation holds.
Therefore, the pairs (m,n) of positive integers which satisfy the equation

n2 − 6n = m2 +m− 10 are precisely (1, 2) and (1, 4). ■

Exercise 1.4 (British Mathematical Olympiad Round 1 2023 P4). Find all
positive integers n such that n× 2n + 1 is a perfect square.

4 The content posted here and at this blog by Evan Chen are quite useful.
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Walkthrough —

(a) Write n× 2n + 1 = k2 for some positive integer k.

(b) Rearranging gives n× 2n = k2 − 1 = (k − 1)(k + 1).

(c) Show that k − 1 and k + 1 are consecutive even integers.

(d) Using that one of k − 1 and k + 1 is not divisible by 4, show that one of
k − 1 and k + 1 is divisible by 2n−1.

(e) Deduce that n ≤ 4.

Solution 4. Let n be a positive integer such that n× 2n + 1 = k2 for some
positive integer k. Rearranging gives n× 2n = k2 − 1 = (k − 1)(k + 1). Since
the product (k − 1)(k + 1) of the consecutive integers k − 1 and k + 1 is even,
it follows that k − 1, k + 1 are both even. Thus, we can write k − 1 = 2a and
k + 1 = 2b for some positive integers a and b with b = a+ 1. Note that the
greatest common divisor of the integers k − 1 and k + 1 is 2. Therefore, the
greatest common divisor of the integers a and b is 1. This shows that at least
one of the integers a and b is odd. Consequently, one of the integers k − 1 and
k + 1 is divisible by 2n−1. This shows that

n× 2n ≥ 2n−1(2n−1 − 2)

holds, which simplifies to n ≥ 2n−2 − 1. Using induction, it follows that
2m−2 > m+ 1 holds for all integers m ≥ 5. Therefore, we have n ≤ 4. Note
that n is not equal to any of the integers 1, 4. Moreover, if n = 2, then
n×2n+1 = 9, which is a perfect square. Finally, if n = 3, then n×2n+1 = 25,
which is a perfect square. Thus, the only positive integer n such that n× 2n+1
is a perfect square is n = 2 and n = 3. ■
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