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Suggested readings

• Evan Chen’s advice On reading solutions, available at https://blog.

evanchen.cc/2017/03/06/on-reading-solutions/.

• Evan Chen’s Advice for writing proofs/Remarks on English, available at
https://web.evanchen.cc/handouts/english/english.pdf.

• Notes on proofs by Evan Chen from OTIS Excerpts [Che25, Chapter 1].

• Tips for writing up solutions by Edward Barbeau, available at https:
//www.math.utoronto.ca/barbeau/writingup.pdf.

• Evan Chen discusses why math olympiads are a valuable experience for
high schoolers in the post on Lessons from math olympiads, available at
https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/.
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§1 Part A

Example 1.1 (Bay Area MO 2000 P1). Prove that any integer greater than
or equal to 7 can be written as a sum of two relatively prime integers, both
greater than 1.

Walkthrough — Consider the case of an odd integer, the case of a multiple
of 4, and the case of an even integer, which is not a multiple of 4.

Solution 1. Note that any odd integer can be expressed as the sum of two
relatively prime integers. Indeed, for any integer n, the integer 2n+ 1 is the
sum of the relatively prime integers n, n+ 1.

For any integer k, note that

4k = (2k − 1) + (2k + 1)

holds, and the integers 2k − 1, 2k + 1 are relatively prime since any of their
common divisors is odd and divides (2k + 1)− (2k − 1) = 2.
For any integer ℓ, note that

4ℓ+ 2 = (2ℓ− 1) + (2ℓ+ 3)

holds, and the integers 2ℓ − 1, 2ℓ + 3 are relatively prime since any of their
common divisors is odd and divides (2ℓ+ 3)− (2ℓ− 1) = 4. ■
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Example 1.2 (Moscow MO 1973 Day 1 Grade 8 P4). Prove that the equation

1

x
+

1

y
=

1

p
,

where x, y are positive integers, has exactly 3 solutions if p is a prime and the
number of solutions is greater than three if p > 1 is not a prime. We consider
solutions (a, b) and (b, a) for a ̸= b distinct.

Walkthrough — Is the given equation equivalent to

(x− p)(y − p) = p2?

Example 1.3 (cf. Moscow MO 1973 Day 1 Grade 8 P4 Example 1.2). For
any positive integer n, show that the number of ordered pairs (x, y) of positive
integers for which

1

x
+

1

y
=

1

n

is equal to the number of positive divisors of n2.

Walkthrough — Is the given equation equivalent to

(x− n)(y − n) = n2?

Solution 2. For positive integers x, y, note that

1

x
+

1

y
=

1

n

holds if and only if
(x− n)(y − n) = n2

holds. Observe that if x, y are positive integers satisfying the given equation,
then x > n and y > n holds. This shows that the solutions of the given
equation over the positive integers are in one-to-one correspondence with pairs
of positive integers (a, b) such that ab = n2, through the map

(a+ n, b+ n) ↔ (a, b).

This completes the proof. ■

Example 1.4 (India INMO 1991 P10, cf. Moscow MO 1973 Day 1 Grade 8
P4 Example 1.2). For any positive integer n, let S(n) denote the number of
ordered pairs (x, y) of positive integers for which

1

x
+

1

y
=

1

n

(for instance, S(2) = 3). Determine the set of positive integers n for which
S(n) = 5.

Some style files, prepared by Evan Chen, have been adapted here. 3
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Walkthrough — Is the given equation equivalent to

(x− n)(y − n) = n2?

Solution 3. For positive integers x, y, note that

1

x
+

1

y
=

1

n

holds if and only if
(x− n)(y − n) = n2

holds. Observe that if x, y are positive integers satisfying the given equation,
then x > n and y > n holds. This shows that the solutions of the given
equation over the positive integers are in one-to-one correspondence with the
pairs of positive integers (a, b) such that ab = n2, through the map

(a+ n, b+ n) ↔ (a, b).

Hence, the set of positive integers n satisfying S(n) = 5 is equal to the set of
positive integers n such that n2 has precisely 5 positive divisors. Note that any
such integer n is larger than 1. Writing n as a product of powers of distinct
primes, it follows that n2 has precisely 5 positive divisors if and only if n is the
square of a prime. Indeed, if p1, . . . , pr are distinct primes, and a1, . . . , ar are
positive integers, then the integer (pa1

1 . . . par
r )2 has precisely 5 positive divisors

if and only if
(2a1 + 1)(2a2 + 1) . . . (2ar + 1) = 5

holds, which is equivalent to r = 1, a1 = 2. This proves that the positive
integers satisfying S(n) = 5 are precisely the squares of the primes. ■

Example 1.5 (India RMO 1992 P2, cf. Moscow MO 1973 Day 1 Grade 8 P4
Example 1.2). If 1

a + 1
b = 1

c , where a, b, c are positive integers with no common
factor, prove that (a+ b) is the square of an integer.

Walkthrough — Is the given equation equivalent to

(a− c)(b− c) = c2?

Solution 4. Let a, b, c be positive integers satisfying the given equation.
Assume that a, b have no common prime factors. Note that (a− c)(b− c) =
c2 holds. Also note that any common prime divisor of a − c, b − c divides
(a− c)(b− c) = c2, and hence it divides the integers a, b, which is impossible.
This shows that the integers a − c, b − c are relatively prime, and satisfy
(a− c)(b− c) = c2. Note also that a > c holds. Hence, there exist relatively

4 The content posted here and at this blog by Evan Chen are quite useful.
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prime positive integers x, y such that c = xy, a− c = x2 and b− c = y2 holds.
This gives

a = c+ x2 = xy + x2, b = c+ y2 = xy + y2.

This implies that a+ b is a perfect square. ■

Example 1.6 (UK BMO 2005 Round 2 P1, cf. Moscow MO 1973 Day 1 Grade
8 P4 Example 1.2). The integer N is positive. There are exactly 2005 ordered
pairs (x, y) of positive integers satisfying

1

x
+

1

y
=

1

N
.

Show that N is a perfect square.

Walkthrough —

(a) Is the given equation equivalent to

(x−N)(y −N) = N2?

(b) Note that it suffices to show that if N2 has precisely 2005 positive divisors
for some positive integer N , then N is a perfect square.

(c) Note that 2005 = 5 · 401.
(d) Observe that 401 is a prime, and hence, all the prime factors of 2005 are

congruent to 1 modulo 4.

Example 1.7 (India RMO 1994 P5). Let A be a set of 16 positive integers
with the property that the product of any two distinct numbers of A will not
exceed 1994. Show that there are two numbers a and b in A which are not
relatively prime.

Walkthrough —

(a) Suppose A is a set of 16 positive integers, and assume that A does not
satisfy the conclusion of the problem, that is, it is false that some two
numbers in A are not relatively prime. In other words, A has the property
that any two numbers in A are relatively prime.

(b) Prove that such a set A would fail to satisfy the given condition, which
states that the product of any two distinct elements of A is smaller than
1994. In other words, show that the product of some two elements of A
is greater than or equal to 1994.

Some style files, prepared by Evan Chen, have been adapted here. 5
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Remark. Observe that the above argument shows that if a set of 16 positive
integers violates the conclusion of the problem, then it does not satisfy the
given condition. Convince yourself that doing so does prove that if a set of 16
positive integers satisfy the given condition, then there is no way that it would
fail to satisfy the conclusion.

Further, also convince yourself that establishing that the failure of the
conclusion forces the failure of the given condition a is equivalent to establishing
that the given condition implies the stated conclusion.

aWhen there are more than one condition, the given conditions are to be considered
together, and the failure of the totality of the given conditions means the failure
of at least one of the given conditions.

Solution 5. Note that if n ≥ 1, and a1, . . . , an are distinct and pairwise
coprime positive integers such that ai ≥ 2 for all i, then one of them admits a
prime factor which is at least as large as the n-th prime. Indeed, for each i, if
we fix a prime divisor pi of ai, then using that a1, . . . , an are pairwise coprime,
it follows that p1, . . . , pn are distinct primes, and hence the largest among them
is at least as large as the n-th prime. Consequently, if n ≥ 2, and a1, . . . , an
are distinct and pairwise coprime positive integers, then at least (n − 1) of
them are greater than 1, and hence one of them is divisible by a prime at least
as large as the (n− 1)-st prime.

If possible, let us assume that the elements of A are pairwise coprime. Hence,
A contains an element x which is divisible by a prime at least as large as the
15th prime. Similarly, A \ {x} has an element y which is divisible by a prime
at least as large as the 14th prime. Since the 14th and 15th primes are 43, 47
respectively, it follows that x ≥ 47, y ≥ 43, and consequently,

xy ≥ 47 · 43 = 2021 > 1994,

which contradicts the hypothesis. This proves that there are two numbers a
and b in A which are not relatively prime. ■

Remark. Note that the above problem is similar to the following problem in
spirit.

Example 1.8. For a set A of consisting of positive integers, let ℓ(A) denote the
largest integer which can be expressed as the product of two distinct elements
of A. What is the smallest element of the set which consists of the integers
of the form ℓ(A) as A runs over the sets of size 16 and consisting of positive
integers?

6 The content posted here and at this blog by Evan Chen are quite useful.
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Bogus Solution. Since ℓ(A) is to be minimized as A runs over the sets 16
pairwise coprime integers and ℓ(A) denotes the maximum of the products
of the pairs of elements of A, it follows that the minimum value of ℓ(A) is
achieved precisely when the elements of A are as small as possible. This
shows that the minimum value of ℓ(A) occurs when

A = {1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47} .

Hence, the minimum value of ℓ(A) is 43 ∗ 47 = 2021.

Exercise 1.9. What goes wrong with the above?

Example 1.10 (India RMO 1994 P3). Find all 6-digit natural numbers
a1a2a3a4a5a6 formed by using the digits 1, 2, 3, 4, 5, 6, once each such that the
number a1a2 . . . ak is divisible by k, for 1 ≤ k ≤ 6.

Walkthrough —

(a) Show that a2, a4, a6 are equal to 2, 4, 6 in some order.

(b) Prove that a5 = 5, and a1, a3 are equal to 1, 3 in some order.

(c) Using that 3 divides a1a2a3, determine a2.

(d) Using the divisibility condition by 4, show that a4 = 6, and conclude that
a6 = 4.

Solution 6. Since a1a2, a1a2a3a4, a1a2a3a4a5a6 are divisible by 2, it follows
that a2, a4, a6 are even, and hence they are equal to 2, 4, 6 in some order. Using
that a1a2a3a4a5 is divisible by 5, we get that a5 = 5. So a1, a3 are equal to
1, 3 in some order. Using that a1a2a3 is a multiple of 3, we obtain

a1 + a2 + a3 ≡ 0 mod 3,

which yields
a2 ≡ 2 mod 3,

and hence, a2 = 2 holds. Note that 1234, 3214 are not divisible by 4. This
shows that a4 = 6, and hence a6 = 4. It follows that a1a2a3a4a5a6 is equal to
321654, or 123654. Note that the integers 321654, 123654 satisfy the required
conditions too. This proves that 321654, 123654 are precisely all the 6-digit
numbers satisfying the given condition. ■

Example 1.11 (Tournament of Towns, India RMO 1995 P3). [Tao06, Problem
2.1] Prove that among any 18 consecutive three digit numbers there is at least
one number which is divisible by the sum of its digits.

Some style files, prepared by Evan Chen, have been adapted here. 7
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Walkthrough —

(a) Show that one among any such consecutive integers is divisible by 18.

(b) Prove that its sum of digits, is a multiple of 9, and conclude that it is
equal to one of 9, 18, 27.

(c) Show that the sum of its digits is not 27.

Solution 7. Note that among 18 consecutive three digit numbers, there is an
integer divisible by 18. Denote it by n = 100a+ 10b+ c with a, b, c denoting
integers lying between 0 and 9. It follows that 9 divides n, and hence 9 divides
a + b + c. This shows that a + b + c is equal to one of 9, 18, 27. Note that
a + b + c = 27 holds only if n = 999. Since 18 divides n, it follows that
a+ b+ c ̸= 27, and hence, a+ b+ c is equal to one of 9, 18. This proves that
a+ b+ c divides n. ■

Example 1.12 (Australian MO 1982, India RMO 2004 P6). Let (p1, p2, p3, . . . , pn, . . . )
be a sequence of primes, defined by p1 = 2 and for n ≥ 1, pn+1 is the largest
prime factor of p1p2 · · · pn + 1. Prove that pn ̸= 5 for any n.

Walkthrough —

(a) Show that p1p2p3 · · · pn + 1 is odd for any n ≥ 1, and pn is odd for any
n ≥ 2. Deduce that p1p2p3 . . . pn + 1 is not a multiple of 3. (If you are
stuck, then does verifying this statement for small values of n help?)

(b) What can be said about the smallest prime divisor of p1p2p3 . . . pn + 1?

(c) If it is a power of 5, then p1p2p3 . . . pn is divisible by 4. Arrive at a
contradiction.

Solution 8. Note that p1p2 . . . pn + 1 is odd for any n ≥ 1, and hence pn is
odd for any n ≥ 2. Since p1 = 2 and p2 = 3, it follows that for any n ≥ 2, the
integer p1p2 . . . pn +1 is not divisible by any one of 2 and 3. So the least prime
divisor of p1p2 . . . pn + 1 is at least 5 for any n ≥ 2. If possible, suppose 5 is
the largest prime divisor of p1p2 . . . pn + 1 for some integer n ≥ 2. This yields

p1p2 . . . pn + 1 = 5k

for some k ≥ 1. This implies that 4 divides p1p2 · · · pn, which is impossible
since p1 = 2, and pr is odd for any integer r ≥ 2. This shows that pn+1 is not
equal to 5 for any integer n ≥ 2. Consequently, it follows that pn ̸= 5 for any
integer n ≥ 1. ■

Example 1.13 (India RMO 2005 P2). If x, y are integers and 17 divides both
the expressions x2 − 2xy+ y2 − 5x+7y and x2 − 3xy+2y2 + x− y, then prove
that 17 divides xy − 12x+ 15y.

8 The content posted here and at this blog by Evan Chen are quite useful.
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Walkthrough —

(a) Factorize x2 − 3xy + 2y2 + x− y to show that

x ≡ y (mod 17), or x ≡ 2y − 1 (mod 17)

holds.

(b) Consider the above cases seperately, and use the divisibility of the other
expression by 17 to obtain some congruence conditions on y. Using these
conditions to read xy − 12x+ 15y modulo 17.

Solution 9. Let x, y be integers such that 17 divides both the expressions
x2 − 2xy + y2 − 5x+ 7y and x2 − 3xy + 2y2 + x− y. Note that

x2 − 3xy + 2y2 + x− y = (x− y)(x− 2y + 1),

which is divisible by 17. It follows that

x ≡ y mod 17, or x ≡ 2y − 1 mod 17

holds.
Let us consider the case that x ≡ y mod 17. It follows that

x2 − 2xy + y2 − 5x+ 7y ≡ (x− y)2 − 5x+ 7y ≡ 2y mod 17.

Since 17 divides x2 − 2xy + y2 − 5x+ 7y, we get 2y ≡ 0 mod 17, which yields
x ≡ y ≡ 0 mod 17, and hence 17 divides xy − 12x+ 15y.

Let us consider the case that x ≡ 2y− 1 mod 17. Using x2 − 2xy+ y2 − 5x+
7y ≡ 0 mod 17, we obtain

(2y − 1)2 − 2(2y − 1)y + y2 − 5(2y − 1) + 7y ≡ 0 mod 17,

which yields y2−5y+6 ≡ 0 mod 7. This implies that (y−2)(y−3) ≡ 0 mod 17.
This shows that either x ≡ 3 mod 17, y ≡ 2 mod 17 holds, or x ≡ 5 mod 17, y ≡
3 mod 17 holds. If x ≡ 3 mod 17, y ≡ 2 mod 17 holds, then

xy − 12x+ 15y ≡ 6− 36 + 30 ≡ 0 mod 17

holds. If x ≡ 5 mod 17, y ≡ 3 mod 17 holds, then we obtain

xy − 12x+ 15y ≡ 15− 60 + 45 ≡ 0 mod 17.

This proves that 17 divides xy − 12x+ 15y. ■
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