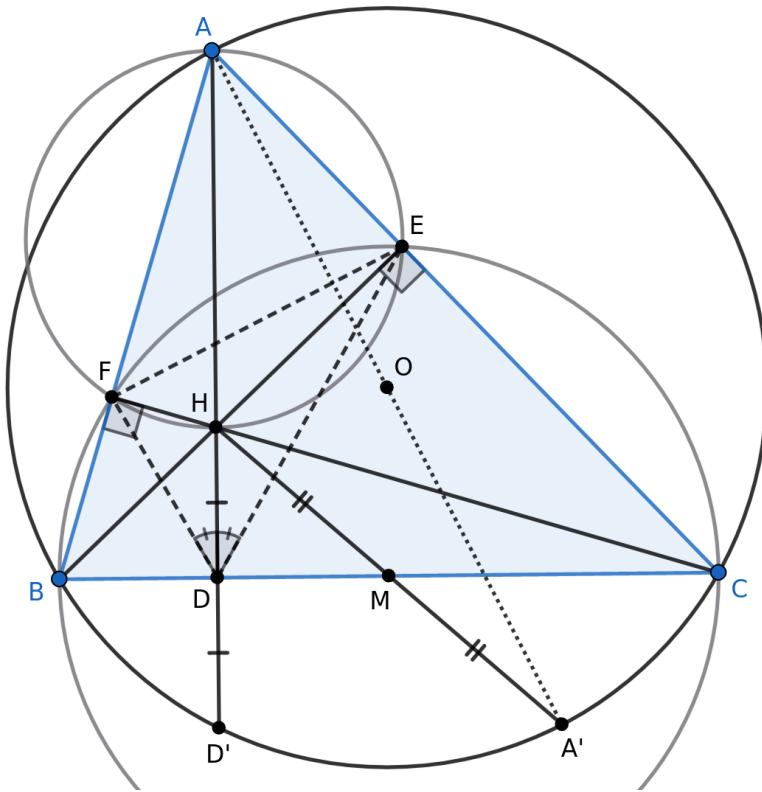


Orthocentre and Circumcentre

Amit Kumar Mallik

January 4, 2026



1 Properties

In $\triangle ABC$, AD, BE, CF : altitudes, H : orthocentre, O : circumcentre, M : midpoint of BC

- (i) $\angle BAH = 90 - B$, $\angle CAH = 90 - C$, $\angle BHC = 180 - A$
- (ii) $\angle BAO = 90 - C$, $\angle CAO = 90 - B$, $\angle BOC = 2A$
- (iii) Quadrilaterals $AEHF, BFHD, CDHE$ are cyclic.
- (iv) Quadrilaterals $BEFC, CDFA, AEDB$ are cyclic.
- (v) H is the incentre of $\triangle DEF$.
- (vi) Reflection of H in BC lies on (ABC) .
- (vii) Reflection of H in M lies on (ABC) , it is also diametrically opposite to A .

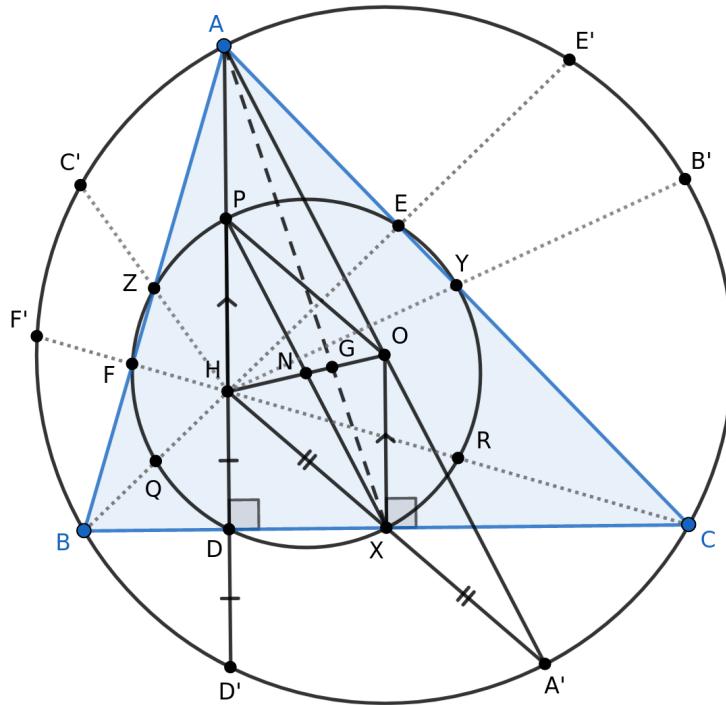
Problem 1. *ME and MF are tangents to (AEF) .*

Problem 2. *Let X be the foot of perpendicular from H on AM . Then B, H, C, X are cyclic.*

Nine-point-centre

Amit Kumar Mallik

January 4, 2026



Properties

In $\triangle ABC$, N : nine-point-centre, G : centroid, X : midpoint of BC , P : midpoint of AH

- (i) $P \in (DEF)$ similarly Q, R
- (ii) $PRXD$ is cyclic $\implies X \in (DEF)$ similarly Y, Z
- (iii) $D, E, F, P, Q, R, X, Y, Z$ lie on a circle called as nine-point-circle
- (iv) its centre N (nine-point-centre) is midpoint of OH
- (v) its radius is half the circumradius ($NP = \frac{1}{2}OA$)
- (vi) $\frac{1}{2}AH = AP = PH = OX$, $PHXO$ and $APXO$ are $\parallel gm$
- (vii) $[ABG] = [BCG] = [CAG]$, $AG = 2GX$
- (viii) $G \in OH$, $HG = 2GO$

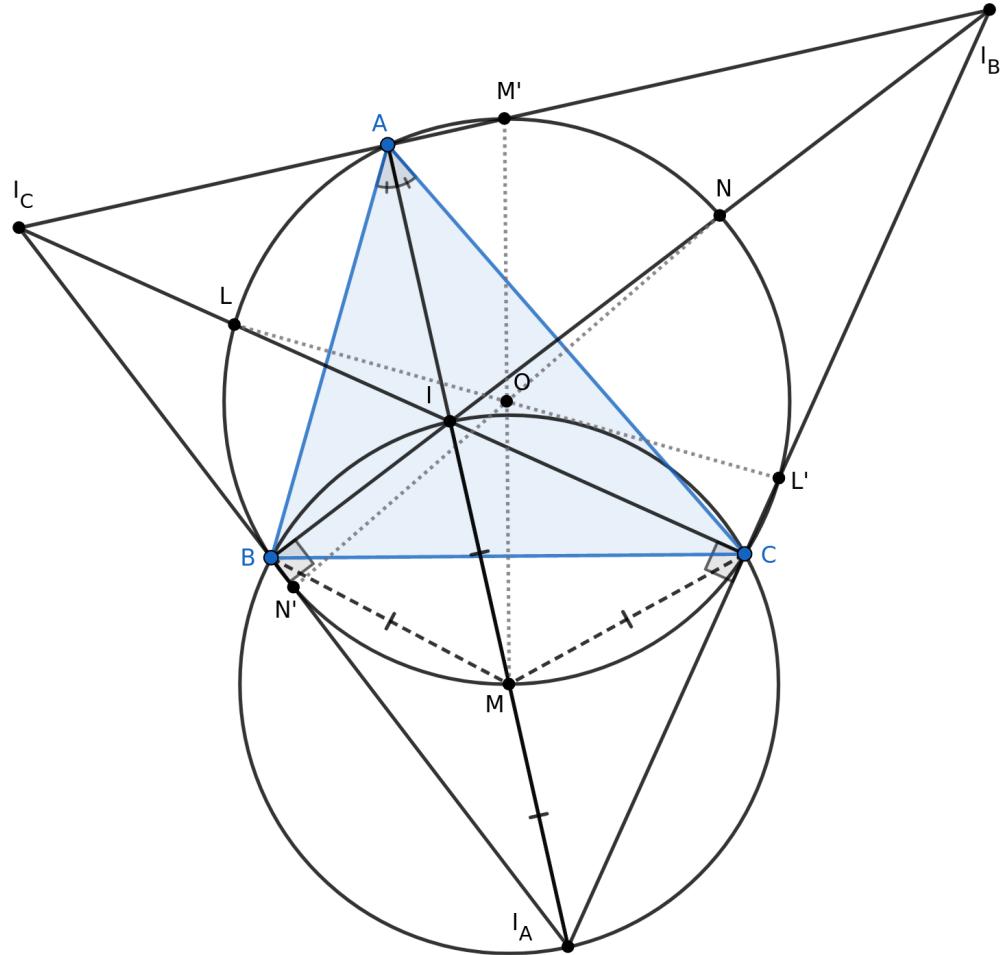
Problem 3. For any point T on (ABC) , midpoint of TH lies on (DEF) .

Problem 4. Points P, G and A' are collinear.

Incentre and Excentre

Amit Kumar Mallik

January 4, 2026



Properties

In $\triangle ABC$, M : midpoint of \widehat{BC} , I : Incentre, I_A : A -excentre

- (i) $\angle BIC = 90 + \frac{A}{2}$, $\angle IBI_A = \angle ICI_A = 90^\circ$
- (ii) B, I, C, I_A are cyclic, its centre is the midpoint of \widehat{BC} (Incentre-Excentre-Lemma)
- (iii) I is the orthocentre of $\triangle I_A I_B I_C$.
- (iv) (ABC) is the nine-point-circle of $\triangle I_A I_B I_C$

Problem 5. Let D and D' be the points where Incircle and A -excircle touches BC . Let X be the diametrically opposite point to D . Show that A, X, D are collinear.