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Suggested readings

• Evan Chen’s

– advice On reading solutions, available at https://blog.evanchen.
cc/2017/03/06/on-reading-solutions/.

– Advice for writing proofs/Remarks on English, available at https:
//web.evanchen.cc/handouts/english/english.pdf.

• Evan Chen discusses why math olympiads are a valuable experience for
high schoolers in the post on Lessons from math olympiads, available at
https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/.
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§1 Warm up

Example 1.1 (India BMath 2006). A domino is a 2 by 1 rectangle. For what
integers m and n, can one cover an m by n rectangle with non-overlapping
dominoes?

Walkthrough —

(a) If an m × n rectangle admits a covering by non-overlapping dominos,
then show that at least one of the integers m,n has to be even.

(b) If at least one of m,n is even, then prove that an m× n rectangle admits
a covering by non-overlapping dominos.

Solution 1. In the following, an m× n rectangle is to be thought as an m× n
rectangular grid.
To be able to cover an m× n rectangle by non-overlapping dominoes, it is

necessary for the product mn to be even, and hence, at least one of m,n is
even. Indeed, if an m× n rectangle admits a covering using k non-overlapping
dominoes, then those dominoes together cover 2k unit squares, and this yields
that 2k = mn.
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Figure 1: India BMath 2006 (a tiling of a 5× 8 rectangle with non-overlapping
dominoes), Example 1.1

Moreover, when at least one of m,n is even, an m × n rectangle can be
covered by non-overlapping dominoes by covering each row by m/2 (resp. each
column by n/2) non-overlapping dominos if m (resp. n) is even.
This shows that an m × n rectangle can be covered by non-overlapping

dominoes if and only if at least one of m,n is even. ■

Remark. The above conclusion shows that an m × n rectangle admits a
covering by non-overlapping dominoes if and only if it admits a covering by
non-overlapping dominoes in the most obvious manner, i.e. a covering by non-
overlapping dominoes such that all of them are either horizontal or vertical (cf.
[Bru10, p. 6]).

The following problem is a more general version of Example 1.1.

Exercise 1.2. [Eng98, Problem 8, Chapter 2, p. 26] Show that an m × n
rectangle admits a covering by non-overlapping k × 1 rectangles if and only if
k divides m or k divides n.

Example 1.3 (India RMO 2003). Consider the set X = {1, 2, 3, . . . , 9, 10}.
Find two disjoint nonempty subsets A and B of X such that

(a) A ∪B = X,

(b) prod(A) is divisible by prod(B), where for any finite set of numbers C,
prod(C) denotes the product of all numbers in C,

(c) the quotient prod(A)/prod(B) is as small as possible.

Summary — It is equivalent to finding a subset B of {1, . . . , 10}, other than
∅, {1, . . . , 10}, such that prod(B)2 divides 10! and the quotient 10!/prod(B)2 is
minimized. To do so,

(a) write down the prime power factorization of 10!,
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(b) throw in enough elements in B so that prod(B) is maximized, and
prod(B)2 divides 10!.

Walkthrough —

(a) Observe that it is enough to find a nonempty proper subsetB of {1, 2, . . . , 10}
such that prod(B)2 divides 10! and prod(B) is the maximum.

(b) Writing down the prime power factorization of 10!, deduce that B does
not contain 7, it contains a multiple of 5, and also a multiple of 2 and a
multiple of 3.

(c) Prove that B contains exactly one multiple of 5, and not more that two
multiples of 3.

(d) Show that B is equal to one of the subsets {5, 3, 6, 23}, {5, 3, 6, 23, 1},
{5, 3, 6, 2, 22}, {5, 3, 6, 2, 22, 1}, {5, 9, 2, 23}, {5, 9, 2, 23, 1}, {10, 3, 6, 22},
{10, 3, 6, 22, 1}, {10, 9, 23}, {10, 9, 23, 1}, {10, 9, 23}, {10, 9, 23, 1}.

(e) Show that any of these three subsets also have the stated property.

First, let’s work on it. Let A,B be two nonempty disjoint subsets of X
satisfying the required conditions (note that such subsets exist since X can be
written as the union of two disjoint subsets in finitely many ways only). Due
to the equality

prod(A)

prod(B)
=

10!

(prod(B))2
,

it is equivalent to having a subset B of X such that prod(B)2 divides 10! and
prod(B) is the maximum. Note that 10! is equal to the product 28 · 34 · 52 · 7.
So prod(B) divides 24 · 32 · 5, and hence, B does not contain 7. Moreover,
B contains a multiple of 5, otherwise (prod(B ∪ {5}))2 would divide 10! and
prod(B ∪ {5}) would be strictly larger than prod(B), which contradicts the
choice of B. Similarly, B also contains a multiple of 2 and a multiple of 3. Note
that B contains exactly one multiple of 5 (since 53 ∤ 10!). Since (prod(B))2

divides 10! and prod(B) is the maximum, B is equal to one of the following
sets

• {5, 3, 2, 23}, {5, 3, 2, 23, 1}, {5, 6, 2, 23}, {5, 6, 2, 23, 1}, {5, 3, 6, 23}, {5, 3, 6, 23, 1},
{5, 3, 6, 2, 22}, {5, 3, 6, 2, 22, 1}, {5, 9, 2, 23}, {5, 9, 2, 23, 1} if B contains 5,

• {10, 3, 23}, {10, 3, 23, 1}, {10, 3, 2, 22}, {10, 3, 2, 22, 1}, {10, 6, 22}, {10, 6, 22, 1},
{10, 3, 6, 22}, {10, 3, 6, 22, 1}, {10, 9, 23}, {10, 9, 23, 1}, {10, 9, 2, 22}, {10, 9, 2, 22, 1}
if B contains 10.

For any of the above sets, the product of its elements is equal to 240, 480,
or 720. So B is equal to one of the sets {5, 3, 6, 23}, {5, 3, 6, 23, 1}, {5, 3, 6, 2, 22},
{5, 3, 6, 2, 22, 1}, {5, 9, 2, 23}, {5, 9, 2, 23, 1}, {10, 3, 6, 22}, {10, 3, 6, 22, 1}, {10, 9, 23},
{10, 9, 23, 1}, {10, 9, 23}, {10, 9, 23, 1}.
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Also note that if B denotes one of these subsets of {1, . . . , 10}, then prod(B)2

divides 10! and prod(B) is the maximum.
This proves that {5, 3, 6, 23}, {5, 3, 6, 23, 1}, {5, 3, 6, 2, 22}, {5, 3, 6, 2, 22, 1},

{5, 9, 2, 23}, {5, 9, 2, 23, 1}, {10, 3, 6, 22}, {10, 3, 6, 22, 1}, {10, 9, 23}, {10, 9, 23, 1},
{10, 9, 23}, {10, 9, 23, 1} are precisely all the subsets of {1, . . . , 10} having the
required property. Thus we could take A = {1, 2, 3, 4, 5, 6, 7}, B = {8, 9, 10} for
instance. ♣

Remark. Note that the above solution provides more than what has been
required. After observing that prod(B) divides 24 · 32 · 5, one may show that
there is a subset B with prod(B) equal to 24 ·32 ·5 (for instance, B = {8, 9, 10}),
and then conclude.

Solution 2. Let A,B be two nonempty disjoint subsets of X satisfying the
required conditions (note that such subsets exist since X can be written as the
union of two disjoint subsets in finitely many ways only). Due to the equality

prod(A)

prod(B)
=

10!

(prod(B))2
,

it is equivalent to having a subset B of X such that prod(B)2 divides 10! and
prod(B) is the maximum. Note that 10! is equal to the product 28 ·34 ·52 ·7. So
prod(B) divides 24 · 32 · 5. If B = {8, 9, 10}, then prod(B) is equal to 24 · 32 · 5.
Hence, A = {1, . . . , 7}, B = {8, 9, 10} are two disjoint nonempty subsets of
X = {1, . . . , 10} satisfying the required conditions. ■

Remark. Don’t be surprised that it took a bit long to arrive at the above
solution. It is often the case. Further, it is a standard practice to write down a
complete solution as the final one, without any reference to the prior attempts
(possibly several). Those attempts have their important role in providing
insights, which may lead to a solution. Here, the details of those attempts have
not been hidden from you, in order to take you along the journey. However, I
would like to highlight that a solution to a problem has to be complete, and
at the same time, has to be free from the prior thoughts that have no direct
role to play in that solution, though they might have played a significant role
in gaining insight.

Example 1.4 (India RMO 2014). In Fig. 2, can the numbers 1, 2, 3, 4, . . . , 18
be placed, one on each line segment, such that the sum of the numbers on the
three line segments meeting at each point is divisible by 3?

Summary — Since there are 18 line segments, it follows that if the integers
0, 1, 2 can be put on the segments, using each of them exactly six times, such
that 3 divides the sum of the integers on the segments meeting at any given
point, then it would be possible to place 1, 2, . . . , 18 satisfying the required
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Figure 2: India RMO 2014, Example 1.4
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Figure 3: India RMO 2014, Example 1.4
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condition.

Solution 3. Note that if the integers 0, 1, 2 can be put on the segments, using
each of them exactly six times, such that 3 divides the sum of the integers
on the segments meeting at any given point, then it would be possible to
place 1, 2, . . . , 18 satisfying the required condition (by replacing the 0’s (resp.
1’s, 2’s) by the six integers among 1, 2, . . . , 18 which are congruent to 0 (resp.
1, 2) modulo 3, and such a replacement can be carried out since there are six
elements among 1, 2, . . . , 18 congruent to i mod 3 for any i ∈ {0, 1, 2}). We
now show that such an arrangement of 0, 1, 2 exists. First, put 0’s on all the
vertical segments as in Fig. 3b, and then put 1’s on the ‘diagonal’ segments as
shown in Fig. 3c. This forces to put 2’s on the ‘diagonal’ segments as shown in
Figure 3d, which in turn, forces to write 1’s and 2’s on the horizontal segments
as in Figure 3e. Note that the sum of the numbers (as in Figure 3e) on the
three line segments meeting at each point is divisible by 3. So this gives an
arrangement of 0, 1, 2 satisfying the desired properties, then 1, 2, . . . , 18 can be
arranged satisfying the given conditions (as described above). ■

Example 1.4 leads to the following question.

Question 1.5. Under which conditions, does a k-regular graph admit an edge
coloring by the k-th roots of unity such that the sum of the colors incident at
any vertex equals to zero?

Example 1.6 (India RMO 2017). Consider a chessboard of size 8 units × 8
units (i.e. each small square on the board has a side length of 1 unit). Let S
be the set of all the 81 vertices of all the squares on the board. What is the
number of line segments whose vertices are in S, and whose length is a positive
integer? (The segments need not be parallel to the sides of the board.)

Summary — A segment having vertices in S and length a positive integer,
is horizontal or vertical, or the hypotenuse of a right-angled triangle whose
smaller sides are parallel to the sides of the board. To count such right-angled
triangles, note that they cannot have a too large hypotenuse.

Walkthrough —

(a) Determine the number of the horizontal segments with vertices in S and
whose lengths are positive integers.

(b) By symmetry, the number of such vertical segments is equal to the above.

(c) To determine the slanted ones, note that such a slanted segment is the
hypotenuse of a right-angled triangle whose smaller sides are parallel to
the sides of the board, and have integer lengths. Note that the diagonal
of an 8× 8 chessboard has length 8

√
2 < 12. Thus, the only right-angled

triangles, that can be fit within the board having sides parallel to the
sides of the board and of integer length, have side lengths equal to (3, 4, 5),
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(4, 3, 5), (6, 8, 10), (8, 6, 10).

(d) Does a symmetry argument help? For instance, flipping around a diagonal,
and then flipping around an axis (i.e. a line parallel to one of the sides of
the board and dividing the board in two equal halves).

Solution 4. Note that within each horizontal line, there are 8−ℓ+1 horizontal
segments of length ℓ for any 1 ≤ ℓ ≤ 8. This shows that the number of the
horizontal segments with vertices in S and whose lengths are positive integers
is equal to

8× (1 + 2 + · · ·+ 8)) =
1

2
82 · 9.

By symmetry, the number of such vertical segments is also equal to 1
28

2 · 9.
Hence, there are 82 · 9 segments parallel to the sides of the board, which have
vertices in S and whose lengths are positive integers.

Note that the diagonal of an 8× 8 chessboard has length 8
√
2 < 12. Thus,

the only right-angled triangles, that can be fit within the board having sides
parallel to the sides of the board and of integer length, have the side lengths
equal to (3, 4, 5), (4, 3, 5), (6, 8, 10), (8, 6, 10). The number of such right-angled
triangles, having the side lengths equal to (3, 4, 5), is equal to

4× (8− 3 + 1)× (8− 4 + 1).

The number of such right-angled triangles, having the side lengths equal to the
remaining triples, can be expressed in a similar way. This shows that the total
count of such triangles is

2× 4× ((8− 3 + 1)× (8− 4 + 1) + (8− 6 + 1)× (8− 8 + 1)) = 360.

Hence, the number of the line segments with the stated property is

82 · 9 + 1

2
· 360 = 756.

■

Remark. Note that the above argument considers the line segments whose
endpoints are distinct. There are 81 line segments having equal end-points and
end-points lying in S.

Example 1.7 (India RMO 2018). Suppose 100 points in the plane are coloured
using two colours, red and white, such that each red point is the centre of a
circle passing through at least three white points. What is the least possible
number of white points?

Some style files, prepared by Evan Chen, have been adapted here. 111
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(a) (b)

(c) (d)

Figure 4: India RMO 2017 — Several configurations of triangles with side
lengths (3, 4, 5), Example 1.6
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Summary — It relies on the fact that one can find enough points on the
plane such that no three of them are collinear and no four of them are concyclic.

Walkthrough —

(a) There is an upper bound on the number of the red points in terms of
the number of the white points. This gives an upper bound on the total
number of points, which is 100, in terms of the number of the white
points.

(b) Use this bound to guess the least possible number of the white points,
which would turn out to be 10.

(c) Begin with 10 white points on the plane in general position, and then,
introduce enough red points to construct a configuration of 100 points
with the stated properties.

Solution 5. Let n denote the number of white points. Since each red point
is the centre of a circle passing through at least three white points, it follows
that the number of red points is at most

(
n
3

)
. This shows that

n+

(
n

3

)
≥ 100.

Note that n 7→ n +
(
n
3

)
defines an increasing function on the nonnegative

integers. Observe that

9 +

(
9

3

)
= 93, 10 +

(
10

3

)
= 130.

This implies that n ≥ 10.
We claim that there is a configuration of 100 points on the plane such that it

admits a coloring using two colors, red and white, such that precisely 10 points
are colored white, and that each red point is the centre of a circle passing
through at least three white points. Indeed, consider 10 points on the plane
such that no three of them are collinear and no four of them are concyclic 1.
Color these 10 points white. These white points have

(
10
3

)
= 120 subsets of

size 3. Consider only 90 such subsets of the white points, and for any such
subset of size 3, color the center of the circle passing through them red. Since
no three white points are collinear and no four white points are concyclic, it
follows that there are precisely 90 pairwise distinct red points. So, the red and
the white points together form a set of 100 points such that each red point is
the centre of a circle passing through at least three white points. ■

1Why does such a collection exist? This could be intuitively clear, but can you write down
a precise proof? Does induction help?
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