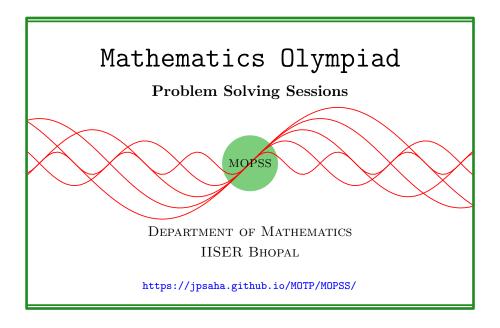
Inclusion-exclusion principle

MOPSS

27 February 2025



Suggested readings

- Evan Chen's
 - advice On reading solutions, available at https://blog.evanchen. cc/2017/03/06/on-reading-solutions/.
 - Advice for writing proofs/Remarks on English, available at https://web.evanchen.cc/handouts/english/english.pdf.
- Evan Chen discusses why math olympiads are a valuable experience for high schoolers in the post on Lessons from math olympiads, available at https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/.

List of problems and examples

1.1	Example	2
1.2	Example (India RMO 1993 P8)	2
1.3	Example (India RMO 2015f P6)	3
1.4	Example (India RMO 2019b P5)	4

§1 Inclusion-exclusion principle

Example 1.1. How many positive integers not exceeding 1000 are divisible by 7 or 11?

Solution 1. Let A (resp. B) denote the set of integers not exceeding 1000 that are divisible by 7 (resp. 11). Then the size of $A \cup B$ is equal to

$$\#A + \#B - \#A \cap B = \left\lfloor \frac{1000}{7} \right\rfloor + \left\lfloor \frac{1000}{11} \right\rfloor - \left\lfloor \frac{1000}{77} \right\rfloor = 142 + 90 - 12 = 220.$$

Example 1.2 (India RMO 1993 P8). I have 6 friends and during a vacation I met them during several dinners. I found that I dined with all the 6 exactly on 1 day; with every 5 of them on 2 days; with every 4 of them on 3 days; with every 3 of them on 4 days; with every 2 of them on 5 days. Further every friend was present at 7 dinners and every friend was absent at 7 dinners. How many dinners did I have alone?

Walkthrough —

- (a) Denote the friends by F_1, \ldots, F_6 . For $1 \le i \le 6$, let D_i denote the set of the dinners where F_i was present.
- (b) Show that the total number of dinners is 14.
- (c) Let n denote the number of dinners that I had alone.
- (d) Note that the size of the set $A_1 \cup \cdots \cup A_6$ is equal to 14 n.

Solution 2. Denote the friends by F_1, \ldots, F_6 . For $1 \le i \le 6$, let D_i denote the set of the dinners where F_i was present. Let n denote the number of dinners that I had alone. Since every friend was present in 7 dinners, and was absent in 7 dinners, it follows that the total number of dinners is 14. Consequently, the size of the set $A_1 \cup \cdots \cup A_6$ is equal to 14 - n. By the inclusion-exclusion principle, we obtain

$$14 - n = \sum_{i=1}^{6} |A_i| - \sum_{1 \le i_1 < i_2 \le 6} |A_{i_1} \cap A_{i_2}|$$

$$\begin{split} &+\sum_{1\leq i_1< i_2< i_3\leq 6}|A_{i_1}\cap A_{i_2}\cap A_{i_3}| - \sum_{1\leq i_1< i_2< i_3< i_4\leq 6}|A_{i_1}\cap A_{i_2}\cap A_{i_3}\cap A_{i_4}| \\ &+\sum_{1\leq i_1< i_2< i_3< i_4< i_5\leq 6}|A_{i_1}\cap A_{i_2}\cap A_{i_3}\cap A_{i_4}\cap A_{i_5}| \\ &-|A_{i_1}\cap A_{i_2}\cap A_{i_3}\cap A_{i_4}\cap A_{i_5}\cap A_{i_6}| \\ &=\binom{6}{1}7-\binom{6}{2}5+\binom{6}{3}4-\binom{6}{4}3+\binom{6}{5}2-1 \\ &=42-75+80-45+12-1 \\ &=13. \end{split}$$

This shows that n = 1. In other words, I dined alone only on one day.

Example 1.3 (India RMO 2015f P6). From the list of natural numbers 1, 2, 3, ..., suppose we remove all multiples of 7, 11 and 13.

- At which position in the resulting list does the number 1002 appear?
- What number occurs in the position 3600?

Solution 3. Let S denote the set of all positive integers none of which is divisible by 7, 11 or 13. Note that the sum of $\#\{x \in S \mid x \leq 1002\}$ and the number of positive integers ≤ 1002 divisible by 7, 11 or 13 is equal to 1002. Moreover, by the inclusion-exclusion principle, the number of positive integers ≤ 1002 divisible by 7, 11 or 13 is equal to

$$\left\lfloor \frac{1002}{7} \right\rfloor + \left\lfloor \frac{1002}{11} \right\rfloor + \left\lfloor \frac{1002}{13} \right\rfloor - \left\lfloor \frac{1002}{7 \cdot 11} \right\rfloor - \left\lfloor \frac{1002}{11 \cdot 13} \right\rfloor - \left\lfloor \frac{1002}{13 \cdot 7} \right\rfloor + \left\lfloor \frac{1002}{7 \cdot 11 \cdot 13} \right\rfloor$$

$$= 143 + 91 + 77 - 13 - 7 - 11 + 1 = 281.$$

Note that 1002 belongs to S and hence it appears at the $1002-281=721\mathrm{st}$ position.

Suppose n occurs at the 3600th position. So the number of positive integers $\leq n$ divisible by 7, 11 or 13 is equal to n-3600. Using the inclusion-exclusion principle, we obtain

$$n - 3600 = \left\lfloor \frac{n}{7} \right\rfloor + \left\lfloor \frac{n}{11} \right\rfloor + \left\lfloor \frac{n}{13} \right\rfloor - \left\lfloor \frac{n}{7 \cdot 11} \right\rfloor - \left\lfloor \frac{n}{11 \cdot 13} \right\rfloor - \left\lfloor \frac{n}{13 \cdot 7} \right\rfloor + \left\lfloor \frac{n}{7 \cdot 11 \cdot 13} \right\rfloor. \tag{1}$$

This gives

$$\begin{split} &\frac{n}{7}-1+\frac{n}{11}-1+\frac{n}{13}-1-\frac{n}{7\cdot 11}-\frac{n}{11\cdot 13}-\frac{n}{13\cdot 7}+\frac{n}{7\cdot 11\cdot 13}-1\\ &\leq n-3600\\ &\leq \frac{n}{7}+\frac{n}{11}+\frac{n}{13}-\frac{n}{7\cdot 11}+1-\frac{n}{11\cdot 13}+1-\frac{n}{13\cdot 7}+1+\frac{n}{7\cdot 11\cdot 13}, \end{split}$$

which is equivalent to

$$-4 \le n\left(1 - \frac{1}{7} - \frac{1}{11} - \frac{1}{13} + \frac{1}{7 \cdot 11} + \frac{1}{11 \cdot 13} + \frac{1}{13 \cdot 7} - \frac{1}{7 \cdot 11 \cdot 13}\right) - 3600 < 3.$$

Noting that

$$\left(1 - \frac{1}{7} - \frac{1}{11} - \frac{1}{13} + \frac{1}{7 \cdot 11} + \frac{1}{11 \cdot 13} + \frac{1}{13 \cdot 7} - \frac{1}{7 \cdot 11 \cdot 13}\right) = \frac{6 \cdot 10 \cdot 12}{7 \cdot 11 \cdot 13},$$

we obtain

$$-4\times\frac{7\cdot11\cdot13}{6\cdot10\cdot12}\leq n-5\cdot7\cdot11\cdot13\leq 3\times\frac{7\cdot11\cdot13}{6\cdot10\cdot12},$$

which yields

$$-\frac{7 \cdot 11 \cdot 13}{180} \leq n - 5 \cdot 7 \cdot 11 \cdot 13 \leq \frac{7 \cdot 11 \cdot 13}{240},$$

and consequently, any solution of the Eq. (1) satisfies

$$-5 \le n - 5 \cdot 7 \cdot 11 \cdot 13 \le 4.$$

Note that $n = 5 \cdot 7 \cdot 11 \cdot 13$ is the unique solution to

$$n\left(1 - \frac{1}{7} - \frac{1}{11} - \frac{1}{13} + \frac{1}{7 \cdot 11} + \frac{1}{11 \cdot 13} + \frac{1}{13 \cdot 7} - \frac{1}{7 \cdot 11 \cdot 13}\right) - 3600 = 0,$$

and it is a multiple of the pairwise coprime integers 7,11,13. Hence, it is a solution to Eq. (1). Also note that $5 \cdot 7 \cdot 11 \cdot 13 - 1$ is also a solution to Eq. (1). Moreover, no integer lying in $[-6+5\cdot 7\cdot 11\cdot 13, 4+5\cdot 7\cdot 11\cdot 13]$, other than $5\cdot 7\cdot 11\cdot 13-1$ and $5\cdot 7\cdot 11\cdot 13$ is a solution to Eq. (1). Observe that $5\cdot 7\cdot 11\cdot 13-1$ lies in S.

We conclude that the number that occurs in the 3600th position is $5 \cdot 7 \cdot 11 \cdot 13 - 1 = 5004$.

Example 1.4 (India RMO 2019b P5). There is a pack of 27 distinct cards, and each card has three values on it. The first value is a shape from $\{\Delta, \Box, \odot\}$; the second value is a letter from $\{A, B, C\}$; and the third value is a number from $\{1, 2, 3\}$. In how many ways can we choose an unordered set of 3 cards from the pack, so that no two of the chosen cards have two matching values. For example we can chose $\{\Delta A1, \Delta B2, \odot C3\}$. But we cannot choose $\{\Delta A1, \Box B2, \Delta C1\}$.

Solution 4. Let \mathcal{A} denote the set of ordered tuples (u, v, w) with $u, v, w \in (\mathbb{Z}/3\mathbb{Z})^3$ such that no two among u, v, w have two equal coordinates. For $u \in (\mathbb{Z}/3\mathbb{Z})^3$, let \mathcal{A}_u denote the set of ordered tuples lying in \mathcal{A} with the

first coordinate equal to u. Note that $(u, v, w) \mapsto (u, v, w) - (u, u, u)$ defines a bijection between \mathcal{A}_u and \mathcal{A}_0 . Hence, the number of ways of choosing an unordered set of 3 cards satisfying the given conditions is $\frac{1}{3!} \cdot 27 \cdot |\mathcal{A}_0|$. Note that

$$\mathcal{A}_0 = \{ (0, v, w) \mid v \notin \langle e_1 \rangle \cup \langle e_2 \rangle \cup \langle e_3 \rangle, w \notin \langle e_1 \rangle \cup \langle e_2 \rangle \cup \langle e_3 \rangle, \\ w \notin (v + \langle e_1 \rangle) \cup (v + \langle e_2 \rangle) \cup (v + \langle e_3 \rangle) \},$$

and hence

$$|\mathcal{A}_{0}| = \sum_{v \notin \langle e_{1} \rangle \cup \langle e_{2} \rangle \cup \langle e_{3} \rangle} \left| (\langle e_{1} \rangle \cup \langle e_{2} \rangle \cup \langle e_{3} \rangle)^{c} \bigcap ((v + \langle e_{1} \rangle) \cup (v + \langle e_{2} \rangle) \cup (v + \langle e_{3} \rangle))^{c} \right|.$$

For any subset S of $(\mathbb{Z}/3\mathbb{Z})^3$ and an element $v \in (\mathbb{Z}/3\mathbb{Z})^3$, we have

$$\begin{split} |S^c \cap (v+S)^c| &= 27 - |(S^c \cap (v+S)^c)^c| \\ &= 27 - |S \cup (v+S)| \\ &= 27 - |S| - |v+S| + |S \cap (v+S)| \\ &= 27 - 7 - 7 + |S \cap (v+S)| \\ &= 13 + |S \cap (v+S)|. \end{split}$$

Henceforth, S denotes the subset $\langle e_1 \rangle \cup \langle e_2 \rangle \cup \langle e_3 \rangle$ of $(\mathbb{Z}/3\mathbb{Z})^3$, and v denotes an element of $(\mathbb{Z}/3\mathbb{Z})^3$ lying outside S.

First, let us consider the case when v has exactly two nonzero coordinates. It follows that v lies in exactly one of $\langle e_1 \rangle - \langle e_2 \rangle$, $\langle e_2 \rangle - \langle e_3 \rangle$, $\langle e_3 \rangle - \langle e_1 \rangle$. Observe that the set $S \cap (v+S)$ is equal to the union of $\langle e_i \rangle \cap (v+\langle e_j \rangle)$ for $1 \leq i, j \leq n$. It follows that $S \cap (v+S)$ has size two.

Now, let us consider the case when all coordinates of v are nonzero. Note that $\langle e_i \rangle \cap (v + \langle e_j \rangle)$ is empty for any $1 \leq i, j \leq n$. Hence, so is the set $S \cap (v + S)$.

Note that the number of elements of $(\mathbb{Z}/3\mathbb{Z})^3$ having exactly two nonzero coordinates is $3 \cdot 2 \cdot 2 = 12$, and the number of elements of $(\mathbb{Z}/3\mathbb{Z})^3$ having all coordinates nonzero is $2^3 = 8$. It follows that

$$|\mathcal{A}_0| = 12 \cdot (13+2) + 8 \cdot (13+0) = 284.$$

Hence, the number of ways of choosing an unordered set of 3 cards satisfying the given conditions is $\frac{1}{3!} \cdot 27 \cdot 284 = 1278$.