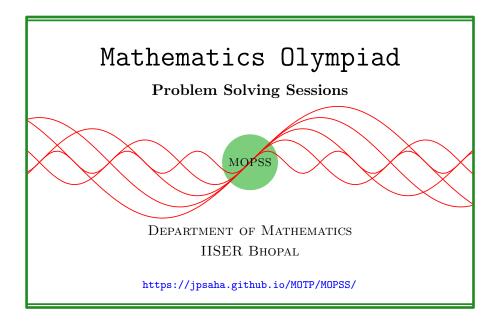
Grouping in pairs

MOPSS

23 February 2025



Suggested readings

- Evan Chen's
 - advice On reading solutions, available at https://blog.evanchen. cc/2017/03/06/on-reading-solutions/.
 - Advice for writing proofs/Remarks on English, available at https: //web.evanchen.cc/handouts/english/english.pdf.
- Evan Chen discusses why math olympiads are a valuable experience for high schoolers in the post on Lessons from math olympiads, available at https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/.

List of problems and examples

1.1	Example (India RMO 1994 P7)	2
1.2	Example (Putnam 2002 A3, India INMO 2013 P4)	2
1.3	Example (India RMO 2012f P6)	3

§1 Grouping in pairs

Example 1.1 (India RMO 1994 P7). Find the number of all rational numbers m/n such that

- 1. 0 < m/n < 1,
- 2. m and n are relatively prime,
- 3. mn = 25!.

Walkthrough —

- (a) Determine the number of pairs of relatively prime positive integers (m, n) satisfying mn = 25!.
- (b) Show that such pairs (m, n) with m > n, and the pairs with m < n are in one-to-one correspondence.

Solution 1. Note that 25! factors as a product of positive integral powers of the 9 primes 2, 3, 5, 7, 11, 13, 17, 19, 23. So 25! has 2^9 factorizations as a product of two relatively prime positive integers, that is, there are 2^9 pairs of positive integers (m, n) such that m, n are relatively prime and mn = 25!. Certainly, we have either m > n or m < n. Moreover, interchanging m, n gives a one-to-one correspondence between the factorizations 25! into relatively prime positive integers m, n with m > n and the factorizations 25! into relatively prime positive integers m, n with m < n, that is, the map $(m, n) \mapsto (n, m)$ (that is, interchanging m and n) defines a bijection between the sets

$$\begin{split} S &= \{(m,n)|m,n \text{ are relatively prime positive integers} \\ &\text{satisfying } mn = 25! \text{ and } \frac{m}{n} < 1\}, \\ T &= \{(m,n)|m,n \text{ are relatively prime positive integers} \\ &\text{satisfying } mn = 25! \text{ and } \frac{m}{n} > 1\}. \end{split}$$

Since $S \cup T$ has 2^9 elements, it follows that S has cardinality $2^8 = 256$.

Example 1.2 (Putnam 2002 A3, India INMO 2013 P4). [AF13, Exercise 4.8, p. 90] Let n be an integer greater than 1 and let T_n be the number of nonempty subsets S of $\{1, 2, ..., n\}$ with the property that the average of the elements of S is an integer. Prove that $T_n - n$ is always even.

Walkthrough -

- (a) Show that the average of any nonempty subset of $\{1, 2, ..., n\}$ lies between 1 and n.
- (b) Observe that it suffices to show that for any $1 \le a \le n$, the subsets of $\{1, 2, ..., n\}$ with average equal to a is an odd number.
- (c) Show that for any $1 \le a \le n$, the nonempty subsets of $\{1, 2, \ldots, n\}$ having average equal to a and not containing a, are in one-to-one correspondence with the subsets of $\{1, 2, \ldots, n\}$ having average equal to a, and which contain a. (Consider the averages of $\{1, 2, 3\}$ and $\{2\}$.)

Solution 2. Let \mathcal{T}_n denote the set of nonempty subsets of $\{1, 2, \ldots, n\}$ having integer average. Note that the average of the elements of any subset of $\{1, 2, \ldots, n\}$ lies between 1 and n. So if a nonempty subset S of $\{1, 2, \ldots, n\}$ has integer average a and S does not contain a, then $S \cup \{a\}$ is also a nonempty subset of $\{1, 2, \ldots, n\}$ with average a. Hence, for any integer $1 \le a \le n$, there is a bijection between the nonempty subsets of X with integer average a that does not contain a and the subsets of \mathcal{T}_n with average equal to a is an odd number for any $1 \le a \le n$. Hence $\mathcal{T}_n - n$ is even.

Example 1.3 (India RMO 2012f P6). Let S be the set $\{1, 2, ..., 10\}$. Let A be a subset of S. We arrange the elements of A in increasing order, that is, $A = \{a_1, a_2, ..., a_k\}$ with $a_1 < a_2 < \cdots < a_k$. Define WSUM for this subset as $3(a_1 + a_3 + \ldots) + 2(a_2 + a_4 + \ldots)$ where the first term contains the odd numbered terms and the second the even numbered terms. (For example, if $A = \{2, 5, 7, 8\}$, WSUM is 3(2+7) + 2(5+8).) Find the sum of WSUMs over all the subsets of S. (Assume that WSUM for the null set is 0.)

Walkthrough —

(a) Note that

 $WSUM(\{2, 5, 7, 8\}) = 3(2+7) + 2(5+8),$ $WSUM(\{1, 2, 5, 7, 8\}) = 3(1+5+8) + 2(2+7),$

which shows that

 $WSUM(\{2, 5, 7, 8\}) + WSUM(\{1, 2, 5, 7, 8\}) = 3 + 5(2 + 5 + 7 + 8).$

(b) Also note that the sum of all the elements of a subset of A of $\{2, 3, ..., 10\}$, and the sum of all the elements of its complement in $\{2, 3, ..., 10\}$, add up to the sum of all the elements of $\{2, 3, ..., 10\}$.

Solution 3. Note that the subsets of $\{1, 2, ..., 10\}$ can be obtained by considering the subsets of $\{2, 3, ..., 10\}$, along with the union of these subsets with

{1}. Using this observation, we decompose the required sum as follows.

$$\sum_{A \subseteq S} \text{WSUM}(A) = \sum_{A \subseteq \{2,3,\dots,10\}} \text{WSUM}(A) + \text{WSUM}(A \cup \{1\})$$
$$= \sum_{A \subseteq \{2,3,\dots,10\}} \left(3 + 5 \sum_{a \in A} a\right)$$
$$= 3 \cdot 2^9 + 5 \sum_{A \subseteq \{2,3,\dots,10\}} \sum_{a \in A} a$$
$$= 3 \cdot 2^9 + \frac{5}{2} \sum_{A \subseteq \{2,3,\dots,10\}} \left(\sum_{a \in A} a + \sum_{a \in A^c} a\right)$$
$$= 3 \cdot 2^9 + \frac{5}{2} \sum_{A \subseteq \{2,3,\dots,10\}} (2 + 3 + \dots + 10)$$
$$= 3 \cdot 2^9 + \frac{5}{2} \times 54 \times 2^9$$
$$= 138 \times 2^9.$$

References

[AF13] T. ANDREESCU and Z. FENG. A Path to Combinatorics for Undergraduates: Counting Strategies. Birkhäuser Boston, 2013. ISBN: 9780817681548. URL: https://books.google.de/books?id= 3mwQBwAAQBAJ (cited p. 2)