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§1 Counting

Example 1.1. Show that an n-gon has n(n− 3)/2 diagonals.

Solution 1. Let A1 · · ·An be an n-gon. To get a diagonal passing through A1,
we can join it to any vertex of the n-gon other than itself and its two adjacent
vertices, i.e., we can join A1 to n− 1− 2 = n− 3 vertices of the n-gon to get
all the diagonals passing through A1. A similar statement holds for any vertex
of the n-gon. In this way, we would get n(n − 3) diagonals. However, note
that we have counted each diagonal twice, for example, the diagonal AiAj

is counted once while counting diagonals passing through Ai and one more
time while counting diagonals passing through Aj . So an n-gon has n(n− 3)/2
diagonals. ■
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Example 1.2. In how many ways can we fill a bag with 50 fruits using bananas
and apples such that number of bananas is even, number of apples is a multiple
of 3?

Solution 2. We need to determine in how many ways a nonnegative multiple
of 2 and a nonnegative multiple of 3 add up to 50, i.e., we need to solve the
equation 2x+ 3y = 50 in the nonnegative integers. Note that this equation is
equivalent to 2x + 3y = 50 · 3 − 50 · 2, that is, 2(x + 50) = 3(50 − y). Since
2, 3 are coprime, it follows that 3 divides x+ 50 and 2 divides 50− y. So the
solutions to 2x + 3y = 50 in the integers are of the form (3k − 50, 50 − 2k)
for some integer k. Note that both of 3k − 50, 50− 2k are nonnegative if and
only if 17 ≤ k ≤ 25, that is, 3k − 50 and 50− 2k are nonnegative for 9 values
of k. Consequently, under the given conditions, the bag can be filled in nine
ways. ■

Example 1.3. [PK74, Problem 46.1] In a tennis tournament, there are 2n
participants. In the first round of the tournament each participant plays just
once, so there are n games, each occupying a pair of players. Show that the
pairing for the first round can be arranged in exactly

1× 3× 5× 7× 9× · · · × (2n− 1)

different ways.

Solution 3. The pairing can be arranged in

1

n!
×
(
2n

2

)
·
(
2n− 2

2

)
· · · · ·

(
4

2

)
·
(
2

2

)
=

1

n!
× (2n)(2n− 1)

2
× (2n− 2)(2n− 3)

2
× · · · × 4 · 3

2
× 2 · 1

2

=
1

n!
× n!× (2n− 1)× (2n− 3)× · · · × 3× 1

= (2n− 1)× (2n− 3)× · · · × 3× 1

ways. ■

Example 1.4 (India RMO 1993 P3). Suppose A1A2 · · ·A20 is a 20-sided
regular polygon. How many non-isosceles (scalene) triangles can be formed
whose vertices are among the vertices of the polygon but whose sides are not
the sides of the polygon?

Walkthrough —

(a) Determine the number of the triangles with vertices among those of
A1A2 · · ·A20.

(b) Determine the number of the triangles with vertices among those of
A1A2 · · ·A20, which share at most two sides with the polygon.

Some style files, prepared by Evan Chen, have been adapted here. 3
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(c) Determine the number of the triangles with vertices among those of
A1A2 · · ·A20, which share no side with the polygon.

(d) Observe that there are no equilateral triangles among them (why?), and
determine the number of isosceles triangles among them.

Solution 4. There are
(
20
3

)
triangles whose vertices are among the vertices

of the polygon. Among them, there are 20 triangles that share two sides with
the polygon and there are 20 × (20 − 4) triangles that share only side with
the polygon. So there are

(
20
3

)
− 20 − 20 × (20 − 4) triangles whose vertices

are among the vertices of the polygon, but whose sides are not the sides of
the polygon. Among these, there are no equilateral triangles and there are
20×

(
1
2 (20− 2)− 1

)
= 160 triangles that are isosceles. So there are(

20

3

)
− 20− 20× (20− 4)− 160 = 1140− 500 = 640

scalene triangles whose vertices are among the vertices of the polygon but
whose sides are not the sides of the polygon. ■

Example 1.5 (India RMO 1995 P6). Suppose A1A2 · · ·A21 is a 21-sided
regular polygon inscribed in a circle with centre O. How many triangles
AiAjAk, 1 ≤ i < j < k ≤ 21, contain the centre point O in their interior?

Solution 5. We first count the number of triangles with A1 as one of the
vertices. Suppose A1AiAj is a triangle with O in its interior. Note that both of
i, j cannot be > 11. Renaming the vertices if necessary, assume that 2 ≤ i ≤ 11.
Let Γ denote the circumcircle of the polygon, and let A′ (resp. A′

i) denote the
diametrically opposite point of A (resp. A′

i). Then Aj has to lie in the small
arc A′A′

i. Note that there are (i− 1) vertices of the 21-sided regular polygon
that lie within the small arc A′A′

i. So there are

(2− 1) + (3− 1) + · · ·+ (11− 1) = 1 + 2 + · · ·+ 10 = 55

triangles containing O in their interior and passing through A1. Hence the total
number of triangles satisfying the required condition is equal to 1

3 × 55× 21 =
385. ■

Example 1.6 (India RMO 2000 P4). All the 7-digit numbers containing each
of the digits 1, 2, 3, 4, 5, 6, 7 exactly once, and not divisible by 5, are arranged
in increasing order. Find the 2000-th number in this list.

Solution 6. In this list, first 6! − 5! = 600 numbers has 1 as their first
digit. Similarly, the next 600 numbers begin with 2 and next to them, there
are exactly 600 numbers that begin with 3. The next 5! − 4! = 96 numbers
begin with 41, and the next 5! − 4! = 96 numbers begin with 42. Note that

4 The content posted here and at this blog by Evan Chen are quite useful.
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2000 − 600 − 600 − 600 − 96 − 96 = 8, and hence we need to find the 8-th
among the numbers in this list that begin with 431. Among them, there are
3! − 2! = 4 numbers that begin with 4, 3, 1, 2. The next few numbers are
4315267, 4315276, 4315627, 4315672, 4315726, 4315762. Hence, 2000th number
in this list is 4315672. ■

Example 1.7 (India RMO 2001 P4). Consider an n× n array of numbers
a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n
...

...
...

. . .
...

an1 an2 an3 . . . ann

 .

Suppose each row consists of the n numbers 1, 2, . . . , n in some order and
aij = aji for i = 1, 2, . . . , n and j = 1, 2, . . . , n. If n is odd, prove that the
numbers a11, a22, a33, . . . , ann are 1, 2, . . . , n in some order.

Solution 7. Let 1 ≤ k ≤ n be an integer. Since aij is equal to aji for all
1 ≤ i, j ≤ n, the number of occurences of k outside the diagonal is even. Since
k appears in each row exactly once, there are total n many k’s in this array.
So the number of occurences of k on the diagonal differs from n by an even
number. Since n is odd, it follows that k appears at least once on the diagonal,
which holds for all 1 ≤ k ≤ n. Hence, the numbers a11, a22, a33, . . . , ann are
equal to 1, 2, . . . , n in some order. ■

Example 1.8 (India BMath 2005). In how many ways an n× n chessboard
can be filled with ±1 so that the product of the entries in each row and each
column equals −1?

Solution 8. Let us establish the following Claim.

Claim — Any filling of the upper left (n− 1)× (n− 1)-square (denoted
by S) by ±1 can be completed uniquely to a filling of the full chessboard
by ±1 so that the required condition holds.

Proof of the Claim. Note that any filling of the upper left (n − 1) × (n − 1)-
square by ±1 can be uniquely completed to a filling of the n× n chessboard
except the lower right square such that the product of the entries in each row
and each column, except for the last row and the last column, is equal to −1.
Thus it remains to show that given such a filling of an n× n chessboard except
its lower right square, there is a unique way to fill the lower right square such
that the product of the entries in each row and each column is equal to −1,
which would follow if we prove that the product (say p1) of the entries of the

Some style files, prepared by Evan Chen, have been adapted here. 5
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first (n − 1) squares of the bottom row is equal to the product (say p2) of
the entries of the first (n− 1) squares of the right column. Let P denote the
product of all the entries of the upper left (n− 1)× (n− 1) square. Note that
p1 ×P is equal to (−1)n−1 and p2 ×P is equal to (−1)n−1. So p1, p2 are equal
as P is nonzero. This proves the claim.

By the above Claim, an n × n chessboard can be filled in 2(n−1)2 ways so
that required condition holds. ■

Example 1.9 (India RMO 2005 P4). Find the number of all 5-digit numbers
(in base 10) each of which contains the block 15 and is divisible by 15. (For
example, 31545, 34155 are two such numbers.)

Solution 9. Note that any such number ends with 5 or 0, so is one of the follow-
ing types: abc15, ab150, ab155, a15b0, a15b5, 15ab0, 15ab5. The 5-digit numbers
of the form abc15 which are divisible by 5 are 10215, 10515, 10815, . . . , 99915,
so there are 1 + 1

3 (999 − 102) = 300 such numbers. The 5-digit numbers of
the form ab150, divisible by 3 are 12150, 15150, 18150, . . . , 99150, so there are
1 + 1

3 (99− 12) = 30 such numbers. Similarly, there are 1 + 1
3 (97− 10) = 30

five digit numbers of the form ab150, divisible by 3. Also there are 30 numbers
of the each of the following forms: a15b0, a15b5. For the form 15ab0 (resp.
15ab5), we get 1 + 1

3 (99− 00) = 34 (resp. 1 + 1
3 (97− 01) = 33) numbers. So

there are exactly

300 + 4 · 30 + 34 + 33 = 487

many 5-digit numbers which contain the block 15 and are divisible by 15. ■

Example 1.10 (India RMO 2007 P4). How many 6-digit numbers are there
such that

(a) the digits of each number are all from the set {1, 2, 3, 4, 5},

(b) any digit that appears in the number appears at least twice?

For example, 225252 is valid while 222133 is not.

Solution 10. Such a 6-digit number is formed

1. using a, a, a, a, a, a for some a ∈ {1, 2, 3, 4, 5}, or

2. using a, a, a, a, b, b or a, a, b, b, b, b for some a, b ∈ {1, 2, 3, 4, 5} with a ̸= b,
or

3. using a, a, a, b, b, b for some a, b ∈ {1, 2, 3, 4, 5} with a ̸= b, or

4. using a, a, b, b, c, c for three distinct elements a, b, c ∈ {1, 2, 3, 4, 5}.

6 The content posted here and at this blog by Evan Chen are quite useful.
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So there are

5 +

(
5

2

)(
6!

2!4!
+

6!

2!4!

)
+

(
5

2

)
6!

3!3!
+

(
5

3

)
6!

2!2!2!

= 5 +

(
5

2

)
(15 + 15 + 20 + 90)

= 1405

many 6-digit numbers satisfying the given conditions. ■

Example 1.11 (India RMO 2008 P4). Find the number of all 6-digit natural
numbers such that the sum of their digits is 10 and each of the digits 0, 1, 2, 3
occurs at least once in them.

Solution 11. If 0, 1, 2, 3, a, b denotes the digits of a 6-digit number such that
the sum of their digits is 10, then a+ b = 4, i.e., {a, b} is equal to {0, 4}, {1, 3}
or {2, 2}. So the digits of the 6-digit numbers satisfying the given conditions
are 0, 0, 1, 2, 3, 4, or 0, 1, 1, 2, 3, 3, or 0, 1, 2, 2, 2, 3. So the number of the 6-digit
numbers satisfying the given conditions is(

6!

2!
− 5!

)
+

(
6!

2!2!
− 5!

2!2!

)
+

(
6!

3!
− 5!

3!

)
= 240 + 150 + 100 = 490.

■

Example 1.12 (India RMO 2010 P3). Find the number of 4-digit numbers
(in base 10) having non-zero digits and which are divisible by 4 but not by 8.

Solution 12. For any 1 ≤ a, b, c ≤ 9, the four consecutive even integers

1000a+ 100b+ 10c+ 2, 1000a+ 100b+ 10c+ 4,

1000a+ 100b+ 10c+ 6, 1000a+ 100b+ 10c+ 8

are congruent to 0, 2, 4, 6 (mod 8) in some order. So exactly one of them (which
is congruent to 4 modulo 8) is divisible by 4 but not by 8. Hence for any three
integers 1 ≤ a, b, c ≤ 9, there is a unique nonzero digit d (that is, 1 ≤ d ≤ 9)
such that 1000a+ 100b+ 10c+ d is divisible by 4, but not by 8. So there are
9 · 9 · 9 = 729 four-digit numbers (in base 10) with nonzero digits which are
divisible by 4, but not by 8. ■

Example 1.13 (India RMO 2011b P4). Find the number of 4-digit numbers
with distinct digits chosen from the set {0, 1, 2, 3, 4, 5} in which no two adjacent
digits are even.

Some style files, prepared by Evan Chen, have been adapted here. 7
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A16

A17

A18

A19 A20

Figure 1: India RMO 2011, Example 1.14

Solution 13. The 4-digit numbers whose no two adjacent digits are even are
of the form

eooo, eooe, eoeo, oeoo, oeoe, ooeo, oooe

where e (resp. o) denotes the evenness (resp. oddness) of the corresponding
digit. The numbers of 4-digit numbers of these types with distinct digits chosen
from {0, 1, 2, 3, 4, 5} and not containing two even numbers as adjacent digits
are

2 · 3!, 2 · 3 · 2 · 2, 2 · 3 · 2 · 2, 3 · 3!, 3 · 2 · 3 · 2, 3 · 3!, 3 · 3!

respectively. Hence, there are

2 · 3! + 2 · 3 · 2 · 2 + 2 · 3 · 2 · 2 + 3 · 3! + 3 · 2 · 3 · 2 + 3 · 3! + 3 · 3! = 150

4-digit numbers satisfying the given conditions. ■

Example 1.14 (India RMO 2011a P4). Consider a 20-sided convex polygon
K, with vertices A1, A2, . . . , A20 in that order. Find the number of ways in
which three sides of K can be chosen so that every pair among them has at
least two sides of K between them. (For example (A1A2, A4A5, A11A12) is an
admissible triple while (A1A2, A4A5, A19A20) is not.)

Solution 14. In the following, by an admissible triple, we mean a three-element
subset of the set of sides of K, satisfying the required condition. Thus, a triple

8 The content posted here and at this blog by Evan Chen are quite useful.
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is not ordered. Note that the pair (A1A2, A4A5) can be completed to the
following admissible triples

(A1A2, A4A5, A7A8), (A1A2, A4A5, A8A9), . . . , (A1A2, A4A5, A18A19),

and these are all the admissible triples containing the pair (A1A2, A4A5).
Thus there are exactly 18 − 7 + 1 = 12 admissible triples containing the
pair (A1A2, A4A5). More generally, for any 4 ≤ i ≤ 15, there are exactly
18− (i+ 3) + 1 = 16− i admissible triples containing the pair (A1A2, AiAi+1).
Thus it follows that there are exactly

15∑
i=4

(16− i) = 1 + 2 + · · ·+ 12 = 78

admissible triples containing the side A1A2. So the required number of admis-
sible triples is 78·20

3 = 520. ■

Example 1.15 (India RMO 2013e P3). A finite non-empty set of integers is
called 3-good if the sum of its elements is divisible by 3. Find the number of
3-good subsets of {0, 1, 2, . . . , 9}.

Solution 15. For any subset of S of {0, 1, 2, . . . , 9}, denote by s0 (resp. s1, s2)
the number of elements S which are congruent to 0 (resp. 1, 2) modulo 3.
Note that a nonempty subset S of {0, 1, 2, . . . , 9} is 3-good if and only if
0 · s0 + 1 · s1 + 2 · s2 ≡ 0 mod 3, that is, s1 ≡ s2 mod 3. The elements of
{0, 1, 2, . . . , 9} congruent to 0 (resp. 1, 2) modulo 3 are 0, 3, 6, 9 (resp. 1, 4, 7,
and 2, 5, 8). So the number of 3-good subsets of {0, 1, 2, . . . , 9} is equal to(

3

0

)2

(24 − 1) +

(
3

1

)2

24 +

(
3

2

)2

24 +

(
3

3

)2

24 +

(
3

0

)(
3

3

)
24 +

(
3

3

)(
3

0

)
24

= 24(1 + 9 + 9 + 1 + 1 + 1)− 1

= 351.

■

Example 1.16. Let n,m be positive integers. Show that the number of
solutions of

x1 + x2 + · · ·+ xm = n (1)

in positive integers (resp. nonnegative integers) is equal to
(
n−1
m−1

)
(resp.(

n+m−1
m−1

)
=

(
n+m−1

n

)
).

Solution 16. Note that the solutions of x1 + · · · + xm = n in nonnegative
integers are in one-to-one correspondence with the solutions of y1 + · · ·+ ym =
n + m in positive integers. Indeed, such a correspondence is obtained by

Some style files, prepared by Evan Chen, have been adapted here. 9
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sending a solution (a1, . . . , am) of the first equation in nonnegative integers
to (a1 + 1, . . . , am + 1), which is a solution of the second equation in positive
integers. Thus it suffices to show that the number of solutions of Eq. (1) in
positive integers is as stated. We represent a positive integer k as a string of
k strokes, for example, 5 as | | | | |. Note that a solution of Eq. (1) in positive
integers corresponds to placing m− 1 plus signs among the spaces between a
string of n strokes. Since there are n− 1 spaces among n strokes, the number
of solutions of Eq. (1) in positive integers is equal to

(
n−1
m−1

)
. ■

Example 1.17 (India RMO 2013c P1). Find the number of eight-digit numbers
the sum of whose digits is 4.

Solution 17. Note that number of eight-digit numbers with sum of digits
equal to 4 is same as the number of solutions of

x1 + x2 + · · ·+ x8 = 4

with x1 ≥ 1 and 0 ≤ x1, . . . , x8 ≤ 9. It is also equal to the number of solutions
of

y1 + y2 + · · ·+ y8 = 3

in nonnegative integers, which is
(
3+8−1
8−1

)
=

(
10
7

)
= 120. ■

Example 1.18 (India RMO 2014e P4). A person moves in the x-y plane
moving along points with integer co-ordinates x and y only. When she is at a
point (x, y), she takes a step based on the following rules:

(a) if x+ y is even she moves to either (x+ 1, y) or (x+ 1, y + 1),

(b) if x+ y is odd she moves to either (x, y + 1) or (x+ 1, y + 1).

How many distinct paths can she take to go from (0, 0) to (8, 8) given that she
took exactly three steps to the right ((x, y) to (x+ 1, y))?

Solution 18. If R,U,D denote the number of steps taken to the right, upwards
and along the diagonal, then the coordinate of the final point is (R+D,U +D).
Since R is equal to 3, it follows that D is equal to 5 and U is equal to 3. Note
that between two consecutive steps to the right, there is an odd number of
upward steps. So between two consecutive steps to the right, there is exactly
one upward step. Thus the moves to the right and the upward moves form the
sequence RURURU or URURUR. Since the sum of the coordinates of the
initial point is even and a diagonal move does change the parity of this sum, a
move to the right is taken before the first upward move. So the moves to the
right and the upward moves form the sequence RURURU . Hence given a path
from (0, 0) to (8, 8), the five diagonal moves are placed in the blanks below (a
blank space might contain no diagonal move or more than one diagonal move).

10 The content posted here and at this blog by Evan Chen are quite useful.
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Conversely, any filling of the following blanks with five D’s give us a path from
(0, 0) to (8, 8).

−R− U −R− U −R− U−
So the number of distinct paths is equal to the number of solutions of the
equation

x1 + x2 + · · ·+ x7 = 5

in nonnegative integers, which is equal to
(
5+7−1

6

)
=

(
11
6

)
. ■

Example 1.19. Let A,B be two finite sets. Denote by BA the set of functions
from A → B. Show that BA has cardinality (#B)#A when A ̸= ∅.

Solution 19. Given an element a in A, its image can be any one of the #B
elements of B. So there are (#B)#A functions from A to B. ■

Example 1.20. Determine the number of maps f from the set {1, 2, 3} into
the set {1, 2, 3, 4, 5} such that f(i) ≤ f(j) whenever i < j.

Solution 20. The number of such maps is(
5

3

)
+ 2

(
5

2

)
+

(
5

1

)
= 35.

■

Example 1.21 (India RMO 2015a P4, India RMO 2015b P4, India RMO
2015d P4, India RMO 2015e P4). Suppose n objects are placed along a circle
at equal distances with n ∈ {28, 32, 36, 40}. In how many ways can 3 objects
be chosen from among them so that no two of the three chosen objects are
adjacent nor diametrically opposite?

Solution 21. Let m be an even number. Fix a regular polygon P with m
vertices. Then three vertices can be chosen in

(
m
3

)
ways. Note that exactly m

of these choices contain two pairs of adjacent vertices, and exactly m(m− 4)
of these choices contain only a single pair of adjacent vertices. This shows that
three vertices of P can be chosen in

(
m
3

)
−m−m(m− 4) ways so that no two

of the chosen vertices are adjacent. Note that among these type of choices
of three vertices, exactly m

2 (m − 6) contain a pair of diametrically opposite
vertices. So the required number is equal to(

m

3

)
−m−m(m− 4)− m

2
(m− 6)

=

(
m

3

)
−m(m− 3)− m

2
(m− 6)

=
m

6
(m2 − 12m+ 38).

■

Some style files, prepared by Evan Chen, have been adapted here. 11

https://artofproblemsolving.com/community/c190666h1176106p5675594
https://artofproblemsolving.com/community/c6h1715250p11076884
https://artofproblemsolving.com/community/c190666h1170807p5622150
https://artofproblemsolving.com/community/c190666h1170807p5622150
https://artofproblemsolving.com/community/c6h1715253p11076913
https://github.com/vEnhance/dotfiles/blob/main/texmf/tex/latex/evan/evan.sty
https://web.evanchen.cc/otis.html


3 March 2025 https://jpsaha.github.io/MOTP/

Example 1.22 (India RMO 2015c P2). Determine the number of 3 digit
numbers in base 10 having at least one digit equal to 5 and at most one digit
equal to 3.

Solution 22. Note that the number of three digit numbers satisfying the
given conditions is equal to the number ordered triples (a, b, c) such that a ̸= 0,
0 ≤ a, b, c ≤ 9, at least one of a, b, c is equal to 5 and at most one of them
is equal to 3. The number of triples (a, b, c) with a ̸= 0, 0 ≤ a, b, c ≤ 9 is
equal to 9× 10× 10 = 900. Note that the number of triples (a, b, c) such that
a ̸= 0, a, b, c ∈ {0, 1, 2, 3, 4, 6, 7, 8, 9} is equal to 8× 9× 9 = 9× 72. So there are
900− 9× 72 = 9× 28 = 252 triples (a, b, c) such that a ̸= 0, 0 ≤ a, b, c ≤ 9, at
least one of a, b, c is equal to 5. Note that among such triples, there are three
triples which contain more than one 3 (namely, (5, 3, 3), (3, 5, 3), (3, 3, 5)). So
the required number is 252− 3 = 249. ■

Solution 23. Let A0 denote the number of three digit numbers with no digit
equal to 3, let A1 denote the number of three digit numbers with exactly one
digit equal to 3, and let B denote the number of three digit numbers with no
digit equal to 5. We need to determine the size of the set Bc∩ (A0∪A1), where
Bc denotes the complement of B in the set of three digit numbers. Note that

|Bc ∩ (A0 ∪A1)| = |A0 ∪A1| − |(A0 ∪A1) ∩B|
= |A0|+ |A1| − |A0 ∩B| − |A1 ∩B|.

Observe that

|A0| = 8 · 9 · 9,
|A1| = 9 · 9 + 8 · 9 + 8 · 9,

and similarly,

|A0 ∩B| = 7 · 8 · 8,
|A1 ∩B| = 8 · 8 + 7 · 8 + 7 · 8.

This yields

|Bc ∩ (A0 ∪A1)| = 9 · 9 · 9 + 2 · 8 · 9− 8 · 8 · 8− 2 · 7 · 8
= 2 · 2 · 8 + 81 + 72 + 64

= 249.

■

Example 1.23 (India RMO 2016a P4). Find the number of all 6-digit natural
numbers having exactly three odd digits and three even digits.

12 The content posted here and at this blog by Evan Chen are quite useful.
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Solution 24. The required number is equal to(
6

3

)
× 53 × 53 −

(
5

3

)
× 53 × 52

= 20× 56 − 10× 55

= 56(20− 2)

= 281250.

■

Example 1.24 (India RMO 2016b P4). How many 6-digit natural numbers
containing only the digits 1, 2, 3 are there in which 3 occurs exactly twice and
the number is divisible by 9?

Solution 25. Note that

1 + 1 + 1 + 1 + 3 + 3 ≡ 1 (mod 9),

1 + 1 + 1 + 2 + 3 + 3 ≡ 2 (mod 9),

1 + 1 + 2 + 2 + 3 + 3 ≡ 3 (mod 9),

1 + 2 + 2 + 2 + 3 + 3 ≡ 4 (mod 9),

2 + 2 + 2 + 2 + 3 + 3 ≡ 5 (mod 9)

hold. This shows that 9 does not divide the sum of a, b, c, d, 3, 3 for any choice
of a, b, c, d ∈ {1, 2}. Hence, there are no 6-digit natural numbers satisfying the
given conditions. ■

Example 1.25. [Sob13, Exercise 5.1] Find the number of surjective functions
{1, 2, . . . , n+ 1} → {1, 2, . . . , n}.

Solution 26. To arrange n + 1 elements in n slots keeping no vacant slot,
we could first choose two elements from n + 1 elements and treat these two
elements as a pair. Then arrange this pair along with the remaining n − 1
elements in n slots. Note that all the required arrangements can be obtained
in this way. So there

(
n+1
2

)
× n! surjective functions.

Alternatively, note that for each solution of the equation x1+ · · ·+xn = n+1
in positive integers, we could choose two elements from {1, 2, . . . , n+ 1} and
permute the rest. So there are n ×

(
n+1
2

)
× (n − 1)! =

(
n+1
2

)
× n! surjective

functions. ■

Example 1.26 (India RMO 2016f P2). At an international event there are 100
countries participating, each with its own flag. There are 10 distinct flagpoles
at the stadium, labelled #1,#2, . . . ,#10 in a row. In how many ways can all
the 100 flags be hoisted on these 10 flagpoles, such that for each i from 1 to
10, the flagpole #i has at least i flags? (Note that the vertical order of the
flagpoles on each flag is important)

Some style files, prepared by Evan Chen, have been adapted here. 13
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Solution 27. Let us determine the number of solutions of

x1 + · · ·+ x10 = 100

in the positive integers satisfying xi ≥ i for all 1 ≤ i ≤ 10. Note that the
solutions are in one-to-one correspondence with the solutions of

y1 + · · ·+ y10 = 100− (1 + 2 + · · ·+ 9)

in the positive integers. Hence, there are
(
54
9

)
solutions of

x1 + · · ·+ x10 = 100

in the positive integers satisfying xi ≥ i for all 1 ≤ i ≤ 10. Note that
corresponding to each such solution there are 100! arrangements of the flags.
Hence the flags can be hoisted in 100!×

(
54
9

)
ways. ■
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