$a^3 + b^3 + c^3 - 3abc$

MOPSS

18 June 2024

Suggested readings

- [Evan Chen'](https://web.evanchen.cc/)s
	- advice On reading solutions, available at $https://blog.everyanche.m.$ [cc/2017/03/06/on-reading-solutions/](https://blog.evanchen.cc/2017/03/06/on-reading-solutions/).
	- $-$ Advice for writing proofs/Remarks on English, available at [https:](https://web.evanchen.cc/handouts/english/english.pdf) [//web.evanchen.cc/handouts/english/english.pdf](https://web.evanchen.cc/handouts/english/english.pdf).
- [Evan Chen](https://www.youtube.com/c/vEnhance) discusses why math olympiads are a valuable experience for high schoolers in the post on Lessons from math olympiads, available at <https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/>.

List of problems and examples

$$
§1 a3 + b3 + c3 - 3abc
$$

Example 1.1. Let a, b, c be real numbers. Show that

$$
a^{3} + b^{3} + c^{3} - 3abc = (a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ca)
$$

= (a + b + c) ((a + b + c)^{2} - 3(ab + bc + ca))
= $\frac{1}{2}(a + b + c) ((a - b)^{2} + (b - c)^{2} + (c - a)^{2}).$

Remark. An immediate approach would be to begin from the expression $(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$ at RHS (the right-hand side), multiply it out and the cancellations would lead to the expression $a^3 + b^3 + c^3 - 3abc$. This would definitely provide a proof of the above. However, there is another way to argue as below.

Solution 1. Observe that

$$
a^{2} + b^{2} + c^{2} - ab - bc - ca
$$

= $a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ca - 3(ab + bc + ca)$
= $(a + b + c)^{2} - 3(ab + bc + ca)$,
 $2(a^{2} + b^{2} + c^{2} - ab - bc - ca)$
= $a^{2} - 2ab + b^{2} + b^{2} - 2bc + c^{2} + c^{2} - 2ca + a^{2}$
= $(a - b)^{2} + (b - c)^{2} + (c - a)^{2}$.

Note that

$$
a3 + b3 + c3 - 3abc
$$

= $(a + b)3 - 3ab(a + b) + c3 - 3abc$
= $(a + b)3 + c3 - 3ab(a + b) - 3abc$
= $(a + b)3 + c3 - 3ab(a + b + c)$

$$
= (a+b+c)^3 - 3(a+b)c(a+b+c) - 3ab(a+b+c)
$$

= $(a+b+c)((a+b+c)^2 - 3(a+b)c - 3ab)$
= $(a+b+c)(a^2 + b^2 + c^2 + 2ab + 2bc + 2ca - 3ab - 3bc - 3ca)$
= $(a+b+c)(a^2 + b^2 + c^2 - ab - bc - ca)$.

Remark. There is another way to prove the above identity.

Solution 2. Consider the polynomial

$$
P(X) = X^3 - (a+b+c)X^2 + (ab+bc+ca)X - abc.
$$

Since a, b, c are the roots^{[1](#page-2-1)} of the equation $P(X) = 0$, we obtain

$$
a3 - (a + b + c)a2 + (ab + bc + ca)a - abc = 0,
$$

\n
$$
b3 - (a + b + c)b2 + (ab + bc + ca)b - abc = 0,
$$

\n
$$
c3 - (a + b + c)c2 + (ab + bc + ca)c - abc = 0.
$$

Adding them yields

 $a^3 + b^3 + c^3 - (a+b+c)(a^2 + b^2 + c^2) + (ab+bc+ca)(a+b+c) - 3abc = 0.$ This proves that

$$
a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca).
$$

The above identity has the following immediate consequence.

Corollary

If a, b, c are real numbers satisfying $a + b + c = 0$, then

$$
a^3 + b^3 + c^3 = 3abc.
$$

Example 1.2 (Moscow MO 1940 Grades 7–8 P1). Factor $(x - y)^3 + (y - z)^3 +$ $(z-x)^3$.

Solution 3. Note that if $a + b + c = 0$, then $a^3 + b^3 + c^3 = 3abc$. This gives

$$
(x - y)3 + (y - z)3 + (z - x)3 = 3(x - y)(y - z)(z - x).
$$

■

■

¹If it is not clear, then the following equalities may directly be verified.

Remark. The following proof is direct, and of course, it works.

$$
(x - y)^3 + (y - z)^3 + (z - x)^3
$$

= $x^3 - 3x^2y + 3xy^2 - y^3$
+ $y^3 - 3y^2z + 3yz^2 - z^3$
+ $z^3 - 3z^2x + 3zx^2 - x^3$
= $-3x^2y + 3xy^2 - 3y^2z + 3yz^2 - 3z^2x + 3zx^2$
= $-3xy(x - y) - 3y^2z + 3zx^2 + 3yz^2 - 3z^2x$
= $-3xy(x - y) - 3y^2z + 3zx^2 + 3yz^2 - 3z^2x$
= $-3xy(x - y) + 3z(x^2 - y^2) - 3z^2(x - y)$
= $-3xy(x - y) + 3z(x - y)(x + y) - 3z^2(x - y)$
= $3(x - y)(-xy + z(x + y) - z^2)$
= $3(x - y)(-xy + zx + zy - z^2)$
= $3(x - y)(-xy + zx + zy - z^2)$
= $3(x - y)(-x(y - z) + z(y - z))$
= $3(x - y)(-x(y - z) + z(y - z))$
= $3(x - y)(y - z)(z - x)$.

However, the former solution is less cumbersome, and more elegant.

Example 1.3 [\(India RMO 2002 P2\)](https://artofproblemsolving.com/community/c6h58240p356515). Solve the following equation for real x:

$$
(x2 + x - 2)3 + (2x2 - x - 1)3 = 27(x2 - 1)3.
$$

Solution 4. The given equation is equivalent to

$$
(x2 + x - 2)3 + (2x2 - x - 1)3 + (-3x2 + 3)3 = 0.
$$

Note that $x^2 + x - 2$, $2x^2 - x - 1$, $-3x^2 + 3$ add up to zero. This implies

$$
(x2 + x - 2)3 + (2x2 - x - 1)3 + (-3x2 + 3)3
$$

= 3(x² + x - 2)(2x² - x - 1)(-3x² + 3)
= -9(x+2)(x-1)(x-1)(2x-1)(x-1)(x+1).

Thus the required solutions for x are

$$
-2,-1,\frac{1}{2},1.
$$

Example 1.4 [\(Formula of Unity/The Third Millennium 2022/2023 Qualifying](https://www.formulo.org/wp-content/uploads/2023/01/fdi_tm_22_23_math_en_sol.pdf) [Round Grade R11 P5\)](https://www.formulo.org/wp-content/uploads/2023/01/fdi_tm_22_23_math_en_sol.pdf). Find all real a, b, c such that

$$
27^{a^2+b+c+1} + 27^{b^2+c+a+1} + 27^{c^2+a+b+1} = 3.
$$

Solution 5. For any three real numbers a, b and c , note that

$$
27^{a^2+b+c+1} + 27^{b^2+c+a+1} + 27^{c^2+a+b+1}
$$

\n
$$
\geq 3 \cdot 3^{a^2+b+c+1} \cdot 3^{b^2+c+a+1} \cdot 3^{c^2+a+b+1}
$$

\n(sing Example 1.1 and that $3^x \geq 0$ for any real number x)
\n
$$
= 3 \cdot 3^{a^2+b^2+c^2+2a+2b+2c+3}
$$

\n
$$
= 3 \cdot 3^{(a+1)^2+(b+1)^2+(c+1)^2}
$$

hold. This shows that if a, b, c are real numbers satisfying the given condition, then

$$
a = b = c = -1.
$$

Moreover, note that for $a = b = c = -1$, the equality

$$
27^{a^2+b+c+1} + 27^{b^2+c+a+1} + 27^{c^2+a+b+1} = 3
$$

holds. Hence, the solution of the given equation is

$$
a=b=c=-1.
$$

Example 1.5 [\(Formula of Unity/The Third Millennium 2023/2024 Qualifying](https://www.formulo.org/wp-content/uploads/2024/01/fdi_tm_23_24_math_q_sol_en.pdf) [Round Grade R11 P3,](https://www.formulo.org/wp-content/uploads/2024/01/fdi_tm_23_24_math_q_sol_en.pdf) S. Pavlov). Let a, b, c be nonzero real numbers such that

$$
\frac{a}{b} + \frac{b}{c} + \frac{c}{a} = 6, \quad \frac{b}{a} + \frac{c}{b} + \frac{a}{c} = 2.
$$

What could be the value of the expression

$$
\frac{a^3}{b^3} + \frac{b^3}{c^3} + \frac{c^3}{a^3}?
$$

Solution 6. Write $x = \frac{a}{b}$, $y = \frac{b}{c}$, $z = \frac{c}{a}$. Note that

$$
x + y + z = 6, \quad xy + yz + zx = 2.
$$

This yields

$$
x^3 + y^3 + z^3 = 3 + (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)
$$

= 3 + (x + y + z) ((x + y + z)^2 - 3(xy + yz + zx))
= 3 + 6 \times (6² - 3 \cdot 2)
= 183.

Example 1.6 [\(India INMO 2002 P2\)](https://artofproblemsolving.com/community/c6h55477p344617). Find the smallest positive value taken by $a^3 + b^3 + c^3 - 3abc$ for positive integers a, b, c. Find all a, b, c which give the smallest value.

■

Walkthrough —

- (a) Note that $a = b = c = 1$ won't work, not even taking all of a, b, c to be equal would be of any use. In other words, at least two of a, b, c have to be unequal.
- (b) By taking $a = 1, b = 2, c = 1$, one can find that $a^3 + b^3 + c^3 3abc = 4$. Next, we need determine whether $a^3 + b^3 + c^3 - 3abc$ can be equal to $1, 2, 3$ or 4 for positive integers a, b, c .
- (c) Use

$$
a^{3} + b^{3} + c^{3} - 3abc = (a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ca)
$$

= $\frac{1}{2}(a + b + c)((a - b)^{2} + (b - c)^{2} + (c - a)^{2})$

to get a lower bound on $a^3 + b^3 + c^3 - 3abc$.

Solution 7. Let a, b, c be positive integers such that $a^3 + b^3 + c^3 - 3abc$ is positive. Note that they cannot be equal, and hence at least two of them are distinct. Since $a^3 + b^3 + c^3 - 3abc$ $a^3 + b^3 + c^3 - 3abc$ $a^3 + b^3 + c^3 - 3abc$ is symmetric^{[2](#page-5-0)} in a, b, c, we may assume³ that $a \neq b$.

Apart from the integers a and b , there is another pair of two integers among a, b, c which are not equal, i.e. $b \neq c$ or $c \neq a$ holds. Indeed, if both of these two inequalities fail to hold, then $b = c$ and $c = a$ hold, and then we would have $a = b$, which is a contradiction. Note that

$$
a^{3} + b^{3} + c^{3} - 3abc
$$

= $(a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ca)$
= $\frac{1}{2}(a + b + c)((a - b)^{2} + (b - c)^{2} + (c - a)^{2})$
 $\geq \frac{1}{2}(a + b + c)(1^{2} + 1^{2})$

(since at least two of $a - b$, $b - c$, $c - a$ are nonzero, and $a + b + c > 0$) $> a + b + c$ $> 1+2+1$ (since at least two of $a-b, b-c, c-a$ are nonzero, and $a, b, c > 1$)

$$
= 4.
$$

Also note that if $c > 1$, then

$$
a^3 + b^3 + c^3 - 3abc > 4.
$$

For $a = 1, b = 2, c = 1$, we obtain

$$
a^3 + b^3 + c^3 - 3abc = 4.
$$

²A reader unfamiliar with this term may require to look online.

³How we may do so? It does require a thought.

Hence, the smallest positive value taken by $a^3 + b^3 + c^3 - 3abc$, for positive integers a, b, c , is equal to 4.

Moreover, if a, b, c are positive integers such that $a^3 + b^3 + c^3 - 3abc$ takes the value 4, then at least two of a, b, c are unequal, and the above argument shows that

$$
a + b + c \le a^3 + b^3 + c^3 - 3abc \le 4,
$$

and consequently, two of a, b, c are equal to 1 and the remaining one is equal to 2. Hence, $a^3 + b^3 + c^3 - 3abc$ takes the value 4 precisely when

$$
(a, b, c) = (1, 1, 2), (1, 2, 1), (2, 1, 1).
$$

For more exercises around this theme, we refer to [[AE11](#page-6-0), §1.1].

References

[AE11] TITU ANDREESCU and BOGDAN ENESCU. Mathematical Olympiad treasures. Second. Birkhäuser/Springer, New York, 2011, pp. viii+253. isbn: 978-0-8176-8252-1; 978-0-8176-8253-8 (cited p. [7\)](#page-6-1)