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Suggested readings

• Evan Chen’s

– advice On reading solutions, available at https://blog.evanchen.
cc/2017/03/06/on-reading-solutions/.

– Advice for writing proofs/Remarks on English, available at https:
//web.evanchen.cc/handouts/english/english.pdf.

• Evan Chen discusses why math olympiads are a valuable experience for
high schoolers in the post on Lessons from math olympiads, available at
https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/.
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§1 Telescoping

Example 1.1 (IMOSL 1996 A7, Armenia). Let f : R → R be a function such
that for all x ∈ R, we have |f(x)| ≤ 1 and

f
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)
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)
= f(x) + f
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)
.

Show that f is periodic.

Solution 1. Consider the function g : R → R, defined by g(x) = f(x+ 1/7)−
f(x). Note that g(x+ 1/6) = g(x) holds for all x ∈ R. Let h : R → R denote
the function, defined by

h(x) = g(x) + g
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)
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)
.

Note that h(x) = f(x+ 1)− f(x) and h(x+ 1/6) = h(x) holds for all x ∈ R.
For any x ∈ R and any integer r ≥ 1, we have

f(x+ r)− f(x) = h(x) + h(x+ 1) + · · ·+ h(x+ r − 1) = rh(x),

and this shows that |rh(x)| ≤ 2. This implies that h is the zero function, and
hence, f is periodic. ■

Example 1.2 (India RMO 2018b P6). Define a sequence {an}n≥1 of real
numbers by

a1 = 2, an+1 =
a2n + 1

2
, for n ≥ 1.

Prove that
N∑
j=1

1

aj + 1
< 1

for every natural number N .

Solution 2. Note that
2(an+1 − 1) = a2n − 1

holds for any n ≥ 1. Also note that a1 > 1, and by induction, it follows that
an > 1 for any n ≥ 2. This shows that

1

an + 1
=

an + 1− 2

a2n − 1
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holds for any n ≥ 1. Consequently, for any natural number N , we obtain
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■

Some style files, prepared by Evan Chen, have been adapted here. 3

https://github.com/vEnhance/dotfiles/blob/main/texmf/tex/latex/evan/evan.sty
https://web.evanchen.cc/otis.html
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