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Suggested readings

• Evan Chen’s

– advice On reading solutions, available at https://blog.evanchen.
cc/2017/03/06/on-reading-solutions/.

– Advice for writing proofs/Remarks on English, available at https:
//web.evanchen.cc/handouts/english/english.pdf.

• Evan Chen discusses why math olympiads are a valuable experience for
high schoolers in the post on Lessons from math olympiads, available at
https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/.
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§1 Roots of unity

Some of the problems have been borrowed from Yufei Zhao’s handout on
polynomials.

Example 1.1 (India Pre-RMO 2012 P17). Let x1, x2, x3 be the roots of the
equation x3 + 3x+ 5 = 0. What is the value of the expression(

x1 +
1

x1

)(
x2 +

1

x2

)(
x3 +

1

x3

)
?

See also Example 1.2, USAMO 2014 P1.

Solution 1. Let P (x) denote the polynomial x3 + 3x+ 5. Note that(
x1 +

1

x1

)(
x2 +

1

x2

)(
x3 +

1

x3

)
=

1

x1x2x3
(x2

1 + 1)(x2
2 + 1)(x2

3 + 1)

=
1

x1x2x3
(x1 + i)(x2 + i)(x3 + i)(x1 − i)(x2 − i)(x3 − i)

=
1

x1x2x3
P (−i)P (i)

=
1

−5
|P (i)|2

=
1

−5
|5− 2i|2

= −29

5
.

■

Example 1.2 (USAMO 2014 P1). Let a, b, c, d be real numbers such that
b− d ≥ 5 and all zeros x1, x2, x3, x4 of the polynomial P (x) = x4 + ax3 + bx2 +
cx+ d are real. Find the smallest value the product

(x2
1 + 1)(x2

2 + 1)(x2
3 + 1)(x2

4 + 1)

2
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can take.

See also Example 1.1, India Pre-RMO 2012 P17.

Solution 2. Note that

(x2
1 + 1)(x2

2 + 1)(x2
3 + 1)(x2

4 + 1) = P (i)P (−i)

= (1− b+ d)2 + (a− c)2

= (b− d− 1)2 + (a− c)2

≥ 16.

Taking a = c and b = 5, d = 0, we obtain

(x2
1 + 1)(x2

2 + 1)(x2
3 + 1)(x2

4 + 1) = 16.

Hence, the smallest value the product (x2
1 +1)(x2

2 +1)(x2
3 +1)(x2

4 +1) can take
is equal to 16. ■

Example 1.3 (USAMO 1976 P5). If P (x), Q(x), R(x), and S(x) are all
polynomials such that

P (x5) + xQ(x5) + x2R(x5) = (x4 + x3 + x2 + x+ 1)S(x),

prove that x− 1 is a factor of P (x).

Solution 3. Denote the 5-th root of unity cos 2π
5 + i sin 2π

5 by ζ. Substituting
x = ζ, ζ2, ζ3, we obtain

P (1) + ζQ(1) + ζ2R(1) = 0,

P (1) + ζ2Q(1) + ζ4R(1) = 0,

P (1) + ζ3Q(1) + ζ6R(1) = 0.

Eliminating R(1) from the first two equations yields

(1− ζ2)P (1) + ζ2(1− ζ)Q(1) = 0,

and eliminating R(1) from the last two equations yields

(1− ζ2)P (1) + ζ3(1− ζ)Q(1) = 0.

Eliminating Q(1) from the above two equations, we obtain (1 − ζ)P (1) = 0,
which gives P (1) = 0. This shows that x− 1 is a factor of P (x). ■

Example 1.4 (Leningrad Math Olympiad 1991). A finite sequence a1, a2, . . . , an
is called p-balanced if any sum of the form

ak + ak+p + ak+2p + . . .

is the same for any k = 1, 2, 3, . . . . For instance the sequence

a1 = 1, a2 = 2, a3 = 3, a4 = 4, a5 = 3, a6 = 2

is 3-balanced. Prove that if a sequence with 50 members is p-balanced for
p = 3, 5, 7, 11, 13, 17, then all its members are equal zero.

Some style files, prepared by Evan Chen, have been adapted here. 3

https://artofproblemsolving.com/community/c4h1857874p12558023
https://artofproblemsolving.com/wiki/index.php/1976_USAMO_Problems/Problem_5
https://github.com/vEnhance/dotfiles/blob/main/texmf/tex/latex/evan/evan.sty
https://web.evanchen.cc/otis.html


9 March 2025 https://jpsaha.github.io/MOTP/

Summary — Consider the polynomial
∑n

i=1 aix
n.

Solution 4. Let a1, a2, . . . , a50 be a sequence. Assume that it is p-balanced
for p ∈ {3, 5, 7, 11, 13, 17}. For an integer n ≥ 1, denote the root of unity
cos 2π

n + i sin 2π
n by ζn. Let P (x) denote the polynomial

∑n
i=1 aix

i.
Let 3 ≤ p ≤ 17 be a prime. Since a1, a2, . . . , a50 is p-balanced, for any

1 ≤ ℓ < p, we obtain

P (ζℓp) =

p∑
k=1

(ak + ak+p + . . . )ζkℓp

= (a1 + a1+p + . . . )

p∑
k=1

ζkℓp

= 0,

where the final equality follows since ζℓp ̸= 1. This shows that the polynomial
P (x) vanishes at the elements of the set

∪p∈{3,5,7,11,13,17}{ζℓp | 1 ≤ ℓ < p},

which contains ∑
p∈{3,5,7,11,13,17}

(p− 1) = 2 + 4 + 6 + 10 + 12 + 16 = 50.

Moreover, P (x) also vanishes at 0. Note that P (x) is a polynomial of degree
50, and it has at least 51 zeroes. This gives that P (x) = 0, and hence, the
terms of the sequence a1, a2, . . . , a50 are all equal to zero. ■

Example 1.5. Show that any function f : R → R can be written as a sum of
an even function and an odd function.

Solution 5. Consider the functions f1, f−1 : R → R defined by

fε(x) =
1

2
(f(x) + εf(εx)), for all x ∈ R,

where ε ∈ {1,−1}. Note that f1 is an even function, f−1 is an odd function,
and that f = f1 + f−1 holds. ■

Remark. It seems from the above solution that we “knew” the functions f1, f−1

beforehand! Here is another solution to the above problem.
Let us assume that f can be expressed as the sum of an even function g and

an odd function h. Note that

f(x) = g(x) + h(x),

f(−x) = g(−x) + h(−x)

4 The content posted here and at this blog by Evan Chen are quite useful.
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= g(x)− h(x)

hold for all x ∈ R. Combining the above, we obtain

g(x) =
1

2
(f(x) + f(−x)),

h(x) =
1

2
(f(x)− f(−x))

for all x ∈ R.
Note that this is NOT a proof. We have observed that

g(x) =
1

2
(f(x) + f(−x)),

h(x) =
1

2
(f(x)− f(−x))

holds relying on the assumption that g is an even function, and h is an odd
function satisfying f = g + h. This observation is made under the hypothesis
that f = g + h where g (resp. h) is even (resp. odd), and cannot be a proof of
the hypothesis! However, this observation can be used to arrive at the above
proof, by defining the functions f1, f−1 as above, and showing that they have
the required properties.

Example 1.6. Let ω denote the root of unity cos 2π
3 + i sin 2π

3 . Show that any
function f : C → C can be written as a sum of three functions f0, f1, f2 : C → C
satisfying

fi(ωz) = ωiz for all z ∈ C.

Walkthrough — Assume that the function f can be expressed as stated, and
then determine some of the properties of the functions f0, f1, f2, as done in the
above remark. What remains left to do?

Example 1.7. Let P (x) be a monic polynomial with integer coefficients such
that all its zeroes lie on the unit circle. Show that all the zeroes of P (x) are
roots of unity, that is, P (x) divides (xn − 1)k for some positive integers n, k.

Walkthrough —

(a) Use the fundamental theorem of symmetric polynomials, to prove the
following claim.

Claim — Let f(x) be a monic polynomial of degree n with integer
coefficients. Let α1, . . . , αn denote its roots, counting multiplicities.
Then for any integer k ≥ 1, there is a monic polynomial of degree n
with integer coefficients, having αk

1 , α
k
2 , . . . , α

k
n as its roots.

(b) Applying the Claim, for each integer k ≥ 1, obtain a monic polynomial

Some style files, prepared by Evan Chen, have been adapted here. 5
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Pk(x) with integer coefficients, having degree same as that of P (x), whose
roots, counted with multiplicities, are the k-th powers of the roots of
P (x).

(c) Note that the polynomials P1(x), P2(x), . . . are of the same degree, and
the absolute values of the coefficients of any of them are bounded from
the above by suitable binomial coefficients, which is smaller than 2n,
where n denotes the degree of P (x). Since these polynomials have integer
coefficients, by the pigeonhole principle, it follows that there is a positive
integer k0 such that Pk(x) = Pk0(x) holds for infinitely many positive
integers k.

(d) Enumerate the roots of P (x), and matching the roots of Pk(x) with those
of Pk0(x) (for suitable k’s), we obtain a permutation of n letters. By
the pigeonhole principle, infinitely many k’s yield the same permutation,
which implies that there are positive integers k ̸= ℓ such that for any root
of P (x), its k-th and the ℓ-th powers are equal.

6 The content posted here and at this blog by Evan Chen are quite useful.
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