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§1 Quadratic polynomials

Example 1.1 (Hungary MO 2001/02, Grades 11 and 12 — technical schools,
P2). Consider the following 2000 equations:

1x2 + 2 · 2x+ 3 = 0

2x2 + 2 · 3x+ 4 = 0

3x2 + 2 · 4x+ 5 = 0

...

2000x2 + 2 · 2001x+ 2002 = 0.

For each equation, consider the product of the sum of the real roots and the
sum of their reciprocals (if it exists). What is the product of these products?

Solution 1. Note that a quadratic polynomial with nonzero constant term
has nonzero roots, and hence the reciprocals of its roots exist. Moreover, if
α, β denote the roots of a quadratic polynomial ax2 + bx+ c with ac ̸= 0, then
1/α, 1/β are the roots of quadratic polynomial cx2 + bx+ a. Note that

α+ β = − b

a
,
1

α
+

1

β
= −b

c

Since

(2(n+ 1))
2 − 4n(n+ 2) = 4n2 + 8n+ 4− 4n2 − 8n = 4 ≥ 0,

it follows that the given 2000 equations have real roots. The product of the
products considered is equal to

22 · 22

1 · 3
× 22 · 32

2 · 4
× 22 · 42

3 · 5
× 22 · 52

4 · 6
× · · · × 22 · 20002

1999 · 2001
× 22 · 20012

2000 · 2002
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=
42000

1 · 2
22 · 32 · · · · · 20012

32 · 42 · · · · 20002
1

2001 · 2002

=
42000 · 22 · 20012

1 · 2 · 2001 · 2002

=
2001

1001
× 24000.

■

Example 1.2 (Canada CMO 1971 P4). Determine all real numbers a such
that the two polynomials x2 + ax+ 1 and x2 + x+ a have at least one root in
common.

Solution 2. Let a be a real nuber such that the two polynomials x2 + ax+ 1
and x2 + x+ a have at least one root in common. Let α denote a common root
of these polynomials. The equations

α2 + aα+ 1 = 0, α2 + α+ a = 0

yield
(a− 1)α = a− 1.

If a ̸= 1, then α = 1 and hence a = −2. This proves that a = 1,−2.
If a = 1, then the given polynomials have at least one root in common. If

a = −2, then the given polynomials vanish at 1.
We conclude that a = 1,−2 are precisely all the real numbers such that the

given polynomials have at least one common root. ■

Example 1.3 (India RMO 2003 P6). Find all real numbers a for which the
equation

x2 + (a− 2)x+ 1 = 3|x|

has exactly three distinct real solutions for x.

Solution 3. Let a be a real number such that x2 + (a − 2)x+ 1 = 3|x| has
exactly three distinct real solutions. Note that the equation

(x2 + (a− 2)x+ 1− 3x)(x2 + (a− 2)x+ 1 + 3x) = 0

also has exactly three distinct real solutions. It follows that the discriminant
of one of the polynomials x2 + (a − 2)x + 1 − 3x, x2 + (a − 2)x + 1 + 3x
vanishes, and the discriminant of the other is positive. The discriminants of
these polynomials are

(a− 5)2 − 4 = a2 − 10a+ 21

= (a− 3)(a− 7),
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(a+ 1)2 − 4 = a2 + 2a− 3

= (a+ 3)(a− 1)

respectively. It follows that a does not belong to (−∞,−3) ∪ (−3, 1) ∪ (1, 3) ∪
(3, 7) ∪ (7,∞), or equivalently, a belongs to {−3, 1, 3, 7}.

Let us determine whether the given equation has three distinct real roots
if a lies in {−3, 1, 3, 7}. Let us assume that a lies in {−3, 1, 3, 7}. Note that
then one of (a− 3)(a− 7), (a+ 3)(a− 1) vanishes and another is positive, and
consequently, one of the polynomials

x2 + (a− 2)x+ 1− 3x, x2 + (a− 2)x+ 1 + 3x

have distinct real roots, and the other has a double root, which is a real number.
Observe that if x2 + (a − 2)x + 1 − 3x has a double root, then that root is
equal to −a−5

2 . Note that(
a− 5

2

)2

− (a+ 1)

(
a− 5

2

)
+ 1 =

1

4

(
a2 − 10a+ 25− 2a2 + 8a+ 10 + 4

)
=

1

4

(
−a2 − 2a+ 39

)
,

which has a negative discriminant. This shows that if x2 + (a− 2)x+ 1− 3x
has a real double root, then that cannot be a zero of x2 + (a− 2)x+ 1 + 3x.
Also note that(

a+ 1

2

)2

− (a− 5)
a+ 1

2
+ 1 =

1

4

(
a2 + 2a+ 1− 2a2 + 8a+ 10 + 4

)
=

1

4

(
−a2 + 10a+ 15

)
,

whose roots are not integers. Using that a is an integer, it follows that if
x2 + (a− 2)x+ 1 + 3x has a real double root, then that cannot be a root of
x2 + (a− 2)x+ 1− 3x. We conclude that if a lies in {−3, 1, 3, 7}, then

(x2 + (a− 2)x+ 1− 3x)(x2 + (a− 2)x+ 1 + 3x) = 0

has exactly three distinct real solutions, or equivalently, the equation

x2 + (a− 2)x+ 1 = 3|x|

has exactly three distinct real solutions for x.
So the required real numbers are a = −3, 1, 3, 7. ■

Example 1.4 (All-Russian MO 2007 Grade 8 P1). If a, b, c are real numbers,
show that at least one of the equations

x2 + (a− b)x+ (b− c) = 0,

4 The content posted here and at this blog by Evan Chen are quite useful.
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x2 + (b− c)x+ (c− a) = 0,

x2 + (c− a)x+ (a− b) = 0

has a real solution.

Solution 4. The sum of the discriminants of the above quadratic polynomials
is

(a− b)2 − 4(b− c) + (b− c)2 − 4(c− a) + (c− a)2 − 4(a− b)

= (a− b)2 + (b− c)2 + (c− a)2,

which is positive if not all of a, b, c are equal. Consequently, if not all of the three
real numbers a, b, c are equal, then at least one of the quadratic polynomials

x2 + (a− b)x+ (b− c), x2 + (b− c)x+ (c− a), x2 + (c− a)x+ (a− b)

has positive discriminant, and hence admits real solutions. Moreover, if all of
a, b, c are equal, at least one (in fact, all) of the above polynomials admits a
real root. ■

Example 1.5 (India RMO 2007 P3). Find all pairs (a, b) of real numbers
such that whenever α is a root of x2 + ax+ b = 0, α2 − 2 is also a root of the
equation.

Solution 5. Let a, b be real numbers such that for any root α of x2+ax+b = 0,
α2 − 2 is also a root. Denote the roots of x2 + ax+ b by α, β. There are the
following possibilities.

(1) α2 − 2 = α, β2 − 2 = β,

(2) α2 − 2 = β, β2 − 2 = α,

(3) α2 − 2 = β2 − 2 = α,

(4) α2 − 2 = β2 − 2 = β.

If α = β, then these four cases are equivalent to

α2 − 2 = β2 − 2 = α = β,

which shows that α is equal to 2 or −1, and hence (a, b) is equal to (−4, 4) or
(2, 1).

It remains to consider the case that α ̸= β, which we assume from now on.
In Case (1), α, β satisfy the equation X2 −X − 2 = 0. So (α, β) is equal to

(2,−1) or (−1, 2), and hence (a, b) is equal to (−1,−2).
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In Case (2), we have α2 − β2 = β−α, which gives α+ β = −1 (since α ̸= β).
So

αβ =
1

2
(α+ β)2 − 1

2
(α2 + β2) =

1

2
(α+ β)2 − 1

2
(α+ β + 4) =

1

2
− 3

2
= −1.

This shows that α, β are roots of the quadratic polynomial x2 + x − 1, and
hence, (a, b) is equal to (1,−1).

In Case (3), note that α is equal to 2 or −1. Using β2 = 2+ α and α ≠ β, it
follows that (α, β) is equal to (2,−2) or (−1, 1), and hence (a, b) is equal to
(0,−4) or (0,−1).

Similarly, in Case (4), (α, β) is equal to (−2, 2) or (−1, 1), which shows (a, b)
is equal to (0,−4) or (0,−1).
So (a, b) is equal to one of (−4, 4), (2, 1), (−1,−2), (1,−1), (0,−4), (0,−1).
Moreover, if (a, b) is equal to any of these six pairs, then it can be checked

that for any root α of x2 + ax+ b = 0, α2 − 2 is also a root.
We conclude that all the required pairs are (−4, 4), (2, 1), (−1,−2), (1,−1),

(0,−4), (0,−1). ■

Example 1.6 (India RMO 2010 P2). Let

P1(x) = ax2 − bx− c, P2(x) = bx2 − cx− a, P3(x) = cx2 − ax− b

be three quadratic polynomials where a, b, c are nonzero real numbers. Suppose
there exists a real number α such that P1(α) = P2(α) = P3(α). Prove that
a = b = c.

Solution 6. Since P1(α), P2(α) are equal, we get

(a− b)α2 = (b− c)α+ (c− a),

which gives
(a− b)(α2 + 1) = (b− c)(α− 1).

Similarly, using P2(α) = P3(α), we obtain

(b− c)(α2 + 1) = (c− a)(α− 1).

If α = 1, then it follows that a = b = c. Henceforth, let us assume that α ̸= 1.
Then the above yields

(a− b)(c− a) = (b− c)2.

Using a similar argument as above, it follows that

(b− c)(a− b) = (c− a)2, (c− a)(b− c) = (a− b)2.

Adding these equations, we obtain

a2 + b2 + c2 = ab+ bc+ ca.

Since a, b, c are real, it follows that a = b = c. This completes the proof. ■

6 The content posted here and at this blog by Evan Chen are quite useful.

https://jpsaha.github.io/MOTP/
https://artofproblemsolving.com/community/c6h380962p2108534
https://web.evanchen.cc/
https://blog.evanchen.cc/
https://www.youtube.com/c/vEnhance


1 Quadratic polynomials Typos may be reported to jpsaha@iiserb.ac.in.

Example 1.7 (India RMO 2012f P1). Find nonzero real numbers a, b such
that x2 + ax+ b, x2 + x+ ab, ax2 + x+ b are three distinct polynomials with a
common root.

Solution 7. Let a, b be real numbers such that x2+ax+b, x2+x+ab, ax2+x+b
are three distinct polynomials with a common root α ∈ C. We obtain

α2 + aα+ b = α2 + α+ ab = aα2 + α+ b = 0,

which gives aα+ b = α+ ab, that is, (a− 1)(α− b) = 0. Since x2 + ax+ b, x2 +
x+ ab, ax2 + x+ b are distinct, it follows that a ≠ 1. This shows that α = b.
Since the polynomials x2 + x+ ab, ax2 + x+ b vanish at x = α = b, we obtain

b(a+ b+ 1) = b(ab+ 2) = 0.

Using b is nonzero, we get a+ b+ 1 = ab+ 2 = 0. Note that 1 + ab− a− b = 0.
Since a ̸= 1, we obtain b = 1, which combined with ab + 2 = 0 implies that
a = −2.
Also note that for a = −2, b = 1, the given polynomials are equal to

x2 − 2x+ 1, x2 + x− 2,−2x2 + x+ 1,

which are all distinct and they vanish at x = 1.
We conclude that precisely for (a, b) = (−2, 1), the given polynomials are all

distinct and have a common root. ■

Example 1.8 (India RMO 2015d P2). Let P (x) = x2 + ax+ b be a quadratic
polynomial with real coefficients. Suppose there are real numbers s is not equal
to t such that P (s) = t and P (t) = s. Prove that b−st is a root of the equation
x2 + ax+ b− st = 0.

Solution 8. We have

s2 + as+ b = t, t2 + at+ b = s.

Taking their difference, we obtain (s − t)(s + t + a + 1) = 0, which gives
s+ t+ a+ 1 = 0 since s ̸= t. Using the above, we obtain

s(s2 + as+ b)− t(t2 + at+ b) = 0,

or equivalently,

(s− t)(b+ a(s+ t) + s2 + st+ t2) = 0.

Combining the above with s+ t+ a+ 1 = 0 and s ̸= t, we obtain

b− (s+ t)− st = 0.

Some style files, prepared by Evan Chen, have been adapted here. 7

https://artofproblemsolving.com/community/c6h1715570p11079673
https://artofproblemsolving.com/community/c190666h1170805p5622148
https://github.com/vEnhance/dotfiles/blob/main/texmf/tex/latex/evan/evan.sty
https://web.evanchen.cc/otis.html


5 July 2024 https://jpsaha.github.io/MOTP/

Note that

(b− st)2 + a(b− st) + b− st = (b− st)(b− st+ a+ 1)

= (b− st)(s+ t+ a+ 1)

= 0.

This completes the proof. ■

Example 1.9 (India RMO 2015a P2). Let P (x) = x2 + ax+ b be a quadratic
polynomial where a, b are real numbers. Suppose ⟨P (−1)2, P (0)2, P (1)2⟩ is an
AP of positive integers. Prove that a, b are integers.

Solution 9. Note that P (−1)2, P (0)2, P (1)2 are equal to

1 + a2 + b2 − 2a+ 2b− 2ab, b2, 1 + a2 + b2 + 2a+ 2b+ 2ab

respectively. Since they form an arithmetic progression, we obtain

1 + a2 + b2 − 2a+ 2b− 2ab+ 1 + a2 + b2 + 2a+ 2b+ 2ab = 2b2,

or equivalently, a2 + 2b+ 1 = 0. It follows that

b2 − 2a− 2ab, b2, b2 + 2a+ 2ab

form an arithmetic progression of positive integers. Note that

(2a+ 2ab)2 = 4a2(b+ 1)2

= −4(2b+ 1)(b+ 1)2

= −4(2b3 + 5b2 + 4b+ 1)

= −4((2b2 + 4)b+ 5b2 + 1).

Since b2 is an integer, it follows that b is rational number. Since b is rational
and b2 is an integer, it follows that b is an integer. Using a2 + 2b+ 1 = 0, it
follows that a2 is an integer. Moreover, if b = −1, then a is an integer. If
b ̸= −1, then using that 2a+ 2ab is an integer, we obtain a is rational. Since
a2 is an integer and a is rational, it follows that a is an integer. This completes
the proof. ■

Example 1.10 (India RMO 2015b P2). Let P (x) = x2+ax+ b be a quadratic
polynomial where a is real and b ̸= 2, is rational. Suppose P (0)2, P (1)2, P (2)2

are integers, prove that a and b are integers.

Solution 10. Since b is rational and P (0)2 = b2 is an integer, it follows that b
is an integer. Note that

P (1)2 = (1 + a+ b)2

8 The content posted here and at this blog by Evan Chen are quite useful.
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= 1 + a2 + b2 + 2a+ 2b+ 2ab,

P (2)2 = (4 + 2a+ b)2

= 16 + 4a2 + b2 + 16a+ 8b+ 4ab.

Since b is an integer, the given conditions imply that a2+2a+2ab, 4a2+16a+4ab
are integers. This shows that

4a2 + 16a+ 4ab− 2(a2 + 2a+ 2ab) = 2a2 + 12a,

4a2 + 16a+ 4ab− 4(a2 + 2a+ 2ab) = 8a− 4ab

are integers. Since b ≠ 2 and b is an integer, it follows that a is a rational
number. Combining this with the fact that 2a2 +12a is rational, it follows that
a is equal to n

2 for some integer n. Indeed, write a = x
y where x, y are integers

with y ≥ 1 and gcd(x, y) = 1. Note that 2x2

y + 12x is an integer. Since x and
y are relatively prime, this implies that y divides 2. Consequently, a is equal

to n
2 for some integer n. Using that 2a2 + 12a is an integer, we get that n2

2
is also an integer. This shows that n is even, and hence a is an integer. This
completes the proof. ■

Example 1.11 (India RMO 2015e P2). Let P1(x) = x2+a1x+b1 and P2(x) =
x2 + a2x+ b2 be two quadratic polynomials with integer coefficients. Suppose
a1 ̸= a2 and there exist integers m ̸= n such that P1(m) = P2(n), P2(m) =
P1(n). Prove that a1 − a2 is even.

Solution 11. Using P1(m) = P2(n), we get

m2 + a1m+ b1 = n2 + a2n+ b2,

that is,
(m2 − n2) + (a1m− a2n) + b1 − b2 = 0.

Similarly, using P1(n) = P2(m), we get

(n2 −m2) + (a1n− a2m) + b1 − b2 = 0.

This yields
2(m2 − n2) + (a1 + a2)(m− n) = 0.

Since m ̸= n, we get 2(m+ n) + a1 + a2 = 0. It follows that a1 + a2 is even,
and hence, so is a1 + a2 − 2a2 = a1 − a2. ■
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