More on polynomials

MOPSS

23 June 2024

Suggested readings

- [Evan Chen'](https://web.evanchen.cc/)s
	- advice On reading solutions, available at $https://blog.everyanche.m.$ [cc/2017/03/06/on-reading-solutions/](https://blog.evanchen.cc/2017/03/06/on-reading-solutions/).
	- $-$ Advice for writing proofs/Remarks on English, available at [https:](https://web.evanchen.cc/handouts/english/english.pdf) [//web.evanchen.cc/handouts/english/english.pdf](https://web.evanchen.cc/handouts/english/english.pdf).
- [Evan Chen](https://www.youtube.com/c/vEnhance) discusses why math olympiads are a valuable experience for high schoolers in the post on Lessons from math olympiads, available at <https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/>.

List of problems and examples

§1 More on polynomials

Example 1.1 [\(India RMO 2012e P2\)](https://artofproblemsolving.com/community/c6h509809p2865295). cf. [[GA17](#page-3-0), Problem 141] Let $P(x) =$ $x^{n} + a_{n-1}x^{n-1} + \cdots + a_{0}$ be a polynomial of degree $n \geq 3$. Knowing that $a_{n-1} = -\binom{n}{1}$ and $a_{n-2} = \binom{n}{2}$, and that all the roots of P are real, find the remaining coefficients. Note that $\binom{n}{r} = \frac{n!}{(n-r)!r!}$.

Solution 1. Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ denote the roots of P. Note that

$$
\sum_{1 \le i, j \le n, i \ne j} (\alpha_i - \alpha_j)^2
$$
\n
$$
= 2(n - 1) \sum_{1 \le i \le n} \alpha_i^2 - 2 \sum_{1 \le i, j \le n, i \ne j} \alpha_i \alpha_j
$$
\n
$$
= 2(n - 1) \sum_{1 \le i \le n} \alpha_i^2 - 4 \sum_{1 \le i < j \le n} \alpha_i \alpha_j
$$
\n
$$
= 2(n - 1) \left(\sum_{1 \le i \le n} \alpha_i \right)^2 - 4(n - 1) \left(\sum_{1 \le i < j \le n} \alpha_i \alpha_j \right) - 4 \sum_{1 \le i < j \le n} \alpha_i \alpha_j
$$
\n
$$
= 2n^2(n - 1) - 4n \sum_{1 \le i < j \le n} \alpha_i \alpha_j
$$
\n
$$
= 2n^2(n - 1) - 4n {n \choose 2}
$$
\n
$$
= 0.
$$

Since $\alpha_1, \ldots, \alpha_n$ are real, it follows that they are all equal. Using $\alpha_1 + \cdots + \alpha_n =$ n, we get

$$
\alpha_1 = \alpha_2 = \cdots = \alpha_n = 1.
$$

This implies that $a_i = -\binom{n}{i}$ for any $0 \le i \le n-1$.

Solution 2. Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ denote the roots of $P(x)$. Note that

$$
(\alpha_1 - 1)^2 + (\alpha_2 - 1)^2 + \dots + (\alpha_n - 1)^2
$$

= $\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2 + n - 2(\alpha_1 + \alpha_2 + \dots + \alpha_n)$
= $(\alpha_1 + \alpha_2 + \dots + \alpha_n)^2 - 2 \sum_{1 \le i < j \le n} \alpha_i \alpha_j + n - 2(\alpha_1 + \alpha_2 + \dots + \alpha_n)$

$$
= n2 - n(n - 1) + n - 2n
$$

= 0.

So the roots $\alpha_1, \alpha_2, \ldots, \alpha_n$ are all equal to 1. This implies that $P(x) = (x-1)^n$, and hence a_i is equal to $(-1)^i \binom{n}{i}$ for any $0 \le i \le n$.

Example 1.2 (D. A. Zvonkin, [Tournament of Towns, Spring 2014, Senior, A](https://www.math.toronto.edu/oz/turgor/archives/TT2014S_SAsolutions.pdf) [Level, P7\)](https://www.math.toronto.edu/oz/turgor/archives/TT2014S_SAsolutions.pdf). Consider a polynomial $P(x)$ such that

$$
P(0) = 1, \quad (P(x))^2 = 1 + x + x^{100}Q(x),
$$

where $Q(x)$ is also a polynomial. Prove that in the polynomial $(P(x) + 1)^{100}$, the coefficient of x^{99} is zero.

Example 1.3. [[WH96](#page-3-1), Problem 27] Let p_1, \ldots, p_n denote $n \geq 1$ distinct integers. Show that the polynomial

$$
(x-p_1)^2(x-p_2)^2\cdots(x-p_n)^2+1
$$

cannot be expressed as the product of two non-constant polynomials with integral coefficients.

Solution 3. On the contrary, let us assume that the polynomial

$$
P(x) := (x - p_1)^2 (x - p_2)^2 \cdots (x - p_n)^2 + 1
$$

can be expressed as the product of two non-constant polynomials $f(x), g(x)$ with integral coefficients.

Let us first establish the following Claims.

Claim — Replacing f, g by $-f, -g$ respectively (if necessary), we may assume that f, g take positive values at all real arguments.

Proof of the Claim. Note that the polynomial $P(x)$ –1 vanishes at $x = p_1, \ldots, p_n$. Since the product of the leading coefficients of $f(x)$ and $g(x)$ is equal to the leading coefficient of $P(x)$, we may replace $f(x)$, $g(x)$ by $-f(x)$, $-g(x)$ respectively (if necessary) to assume that the leading coefficients of $f(x)$, $g(x)$ are positive. Since $P = fg$ and P does not have a real root, it follows that the polynomials f, g do not have any real roots. At large enough real arguments, the polynomials f, g take positive values. Since f, g have no real roots, we conclude that they take positive values at all real arguments. \Box

Claim — The polynomials f, g are of degree n. Moreover, these polynomials are equal.

Proof of the Claim. On the contrary, let us assume that the degrees of f, g are not equal. Interchanging f, q if necessary, we assume that $\deg(f) < \deg(q)$. Since the sum of the degrees of f, g is equal to $2n$, it follows that $\deg(f) < n$.

For any $1 \leq i \leq n$, the integers $f(p_i), g(p_i)$ are equal to 1 or -1. Since f, g take positive values at all real arguments, we obtain $f(p_i) = 1$ for any $1 \leq i \leq n$. This shows that the polynomial $f - 1$ has at least n distinct roots. Using $\deg(f) < n$, we conclude that $f - 1$ is the zero polynomial, which is impossible since f is a non-constant polynomial. Therefore, the hyothesis that the degrees of f, g are not equal is not tenable. This completes the proof of the first part of the Claim.

Note that f, g are polynomials of degree n with equal leading coefficients. This shows that the polynomial $f(x) - g(x)$ has degree less than n and it vanishes at the *n* distinct points p_1, \ldots, p_n . It follows that $f = g$.

 \Box

Using the above Claim, note that

$$
f(x)^{2} - ((x - p_{1})(x - p_{2}) \cdots (x - p_{n}))^{2} = 1,
$$

or equivalently,

$$
(f(x) + (x - p_1)(x - p_2) \cdots (x - p_n))(f(x) - (x - p_1)(x - p_2) \cdots (x - p_n)) = 1,
$$

which implies that the polynomials

$$
f(x) + (x - p_1)(x - p_2) \cdots (x - p_n), f(x) - (x - p_1)(x - p_2) \cdots (x - p_n)
$$

are constant polynomials, and both of them are equal. Consequently, the polynomial $(x-p_1)(x-p_2)\cdots(x-p_n)$ is the zero polynomial, which is impossible. This shows that the hypothesis that the given polynomial can be expressed as the product of two non-constant polynomials with integral coefficients is not tenable. This completes the proof.

References

- [GA17] RAZVAN GELCA and TITU ANDREESCU. Putnam and beyond. Second. Springer, Cham, 2017, pp. xviii+850. isbn: 978-3-319-58986-2; 978- 3-319-58988-6. doi: [10.1007/978- 3- 319- 58988- 6](https://doi.org/10.1007/978-3-319-58988-6). url: [https:](https://doi.org/10.1007/978-3-319-58988-6) [//doi.org/10.1007/978-3-319-58988-6](https://doi.org/10.1007/978-3-319-58988-6) (cited p. [2\)](#page-1-1)
- [WH96] KENNETH S. WILLIAMS and KENNETH HARDY. The Red Book of mathematical problems. Corrected reprint of the it The Red Book: 100 practice problems for undergraduate mathematics competitions [Integer Press, Ottawa, ON, 1988]. Dover Publications, Inc., Mineola, NY, 1996, pp. x+174. isbn: 0-486-69415-1 (cited p. [3\)](#page-2-2)