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§1 Irreducibility

Example 1.1. [WH96, Problem 27] Let p1, . . . , pn denote n ≥ 1 distinct
integers. Show that the polynomial

(x− p1)
2(x− p2)

2 · · · (x− pn)
2 + 1

cannot be expressed as the product of two non-constant polynomials with
integral coefficients.

Solution 1. On the contrary, let us assume that the polynomial

P (x) := (x− p1)
2(x− p2)

2 · · · (x− pn)
2 + 1

can be expressed as the product of two non-constant polynomials f(x), g(x)
with integral coefficients.

Let us first establish the following Claims.

Claim — Replacing f, g by −f,−g respectively (if necessary), we may
assume that f, g take positive values at all real arguments.

Proof of the Claim. Note that the polynomial P (x)−1 vanishes at x = p1, . . . , pn.
Since the product of the leading coefficients of f(x) and g(x) is equal to the
leading coefficient of P (x), we may replace f(x), g(x) by −f(x),−g(x) respec-
tively (if necessary) to assume that the leading coefficients of f(x), g(x) are
positive. Since P = fg and P does not have a real root, it follows that the
polynomials f, g do not have any real roots. At large enough real arguments,
the polynomials f, g take positive values. Since f, g have no real roots, we
conclude that they take positive values at all real arguments.

Claim — The polynomials f, g are of degree n. Moreover, these polyno-
mials are equal.
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Proof of the Claim. On the contrary, let us asssume that the degrees of f, g
are not equal. Interchanging f, g if necessary, we assume that deg(f) < deg(g).
Since the sum of the degrees of f, g is equal to 2n, it follows that deg(f) < n.
For any 1 ≤ i ≤ n, the integers f(pi), g(pi) are equal to 1 or −1. Since

f, g take positive values at all real arguments, we obtain f(pi) = 1 for any
1 ≤ i ≤ n. This shows that the polynomial f − 1 has at least n distinct roots.
Using deg(f) < n, we conclude that f − 1 is the zero polynomial, which is
impossible since f is a non-constant polynomial. Therefore, the hyothesis that
the degrees of f, g are not equal is not tenable. This completes the proof of
the first part of the Claim.
Note that f, g are polynomials of degree n with equal leading coefficients.

This shows that the polynomial f(x) − g(x) has degree less than n and it
vanishes at the n distinct points p1, . . . , pn. It follows that f = g.

Using the above Claim, note that

f(x)2 − ((x− p1)(x− p2) · · · (x− pn))
2
= 1,

or equivalently,(
f(x) + (x− p1)(x− p2) · · · (x− pn)

)(
f(x)− (x− p1)(x− p2) · · · (x− pn)

)
= 1,

which implies that the polynomials

f(x) + (x− p1)(x− p2) · · · (x− pn), f(x)− (x− p1)(x− p2) · · · (x− pn)

are constant polynomials, and both of them are equal. Consequently, the
polynomial (x−p1)(x−p2) · · · (x−pn) is the zero polynomial, which is impossible.
This shows that the hypothesis that the given polynomial can be expressed as
the product of two non-constant polynomials with integral coefficients is not
tenable. This completes the proof. ■

Example 1.2. Let n be a positive integer. Show that the polynomial

(x− 1)(x− 2) · · · (x− n)− 1

is irreducible over the field of rational numbers.

Solution 2. Note that the given polynomial is irreducible if n = 1. It suffices
to consider the case n ≥ 2. On the contrary, let us assume that the polynomial
is reducible over the rationals. Then, by Gauss’s lemma, it is also reducible
over the integers. Thus, there exist non-constant polynomials f(x), g(x) with
integer coefficients such that

(x− 1)(x− 2) · · · (x− n)− 1 = f(x)g(x).

Some style files, prepared by Evan Chen, have been adapted here. 3
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Note that for any integer 1 ≤ k ≤ n, we have

f(k)g(k) = −1.

This implies that both f(k) and g(k) are non-zero integers whose product is
equal to −1. Hence, for any integer 1 ≤ k ≤ n, the pair (f(k), g(k)) is either
(−1, 1) or (1,−1). This shows that the polynomial f(x) + g(x), which has
degree less than n, has at least n distinct roots. Hence, f(x) + g(x) is the zero
polynomial, which yields

(x− 1)(x− 2) · · · (x− n)− 1 = f(x)g(x) = −f(x)2.

This is a contradiction since the leading coefficient of the polynomial on the
left-hand side is positive. This completes the proof. ■

Example 1.3. Let n be a positive integer with n ̸= 4. Show that the polynomial

(x− 1)(x− 2) · · · (x− n) + 1

is irreducible over the field of rational numbers.

Solution 3. Note that the given polynomial is irreducible if n = 1. If n = 2,
then the given polynomial is equal to

x2 − 3x+ 3,

which has no rational root, and hence is irreducible over the rationals. It
suffices to consider the case n ≥ 3 with n ̸= 4. On the contrary, let us assume
that the given polynomial is reducible over the rationals. Then, by Gauss’s
lemma, it is also reducible over the integers. Thus, there exist non-constant
polynomials f(x), g(x) with integer coefficients such that

(x− 1)(x− 2) · · · (x− n) + 1 = f(x)g(x).

Note that for any integer 1 ≤ k ≤ n, we have

f(k)g(k) = 1.

This shows that the polynomial f(x)− g(x), which has degree less than n, has
at least n distinct roots. Hence, f(x) − g(x) is the zero polynomial, which
yields

(x− 1)(x− 2) · · · (x− n) + 1 = f(x)g(x) = f(x)2.

This implies that n is an even positive integer. Since n ̸= 4, it follows that
n ≥ 6. Note that

f

(
n− 1

2

)2
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=

(
n− 1

2
− 1

)(
n− 1

2
− 2

)
· · ·

(
n− 1

2
− (n− 1)

)(
n− 1

2
− n

)
+ 1

= −1

2

(
1− 1

2

)(
2− 1

2

)
· · ·

(
(n− 1)− 1

2

)
+ 1

< 1− 1

4

(
2− 1

2

)
· · ·

(
(n− 1)− 1

2

)
≤ 1− 1

4

(
2− 1

2

)(
3− 1

2

)(
4− 1

2

)
(since n ≥ 6)

= 1− 3 · 5 · 7
32

< 0,

which is impossible. This shows that the given polynomial is irreducible over
the rationals. ■

Remark. After obtaining

(x− 1)(x− 2) · · · (x− n) + 1 = (f(x))2,

one can also argue as follows to complete the proof. Note that n is an even
positive integer. For i ∈ {1,−1}, let

Si = {k ∈ {1, 2, . . . , n} : f(k) = i}.

Note that both S1 and S−1 are disjoint subsets of {1, 2, . . . , n} whose union is
equal to {1, 2, . . . , n}. Moreover, each of the sets S1 and S−1 contain at most
n
2
elements since f(x) is a non-constant polynomial. This shows that both S1

and S−1 contain exactly n
2
elements.

Note that some element of one of the sets S1, S−1 differs from some element
of the other set at least by 3. Indeed, if Si contains 1, then using that Si

contains n
2
elements and

1 + (n− 3) >
n

2
holds for n ≥ 6, it follows that S−i must contain an element greater than or
equal to 4. This shows that there exist elements a ∈ S1 and b ∈ S−1 such that
|a− b| ≥ 3. This yields

f(a)− f(b) = 2

is divisible by |a− b|, which is impossible.

Remark. Note that

(x−1)(x−2)(x−3)(x−4)+1 = (x2−5x+4)(x2−5x+6)+1 = (x2−5x+5)2,

which is reducible over the rationals.
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Example 1.4. Let p be an odd prime number. Show that the polynomial

P (x) = xp − x+ p

is irreducible over the field of rational numbers.

Solution 4. On the contrary, let us assume that the polynomial P (x) is
reducible over the rationals. Then, by Gauss’s lemma, it is also reducible over
the integers. Thus, there exist non-constant polynomials f(x), g(x) ∈ Z[x] such
that

P (x) = f(x)g(x).

Since the leading coefficient of P (x) is 1, by multiplying f(x), g(x) by −1 if
necessary, we may assume that both f(x) and g(x) are monic polynomials.
Since p is a prime number, by reordering f(x), g(x) if necessary, we may
assume that |f(0)| = p. Let α1, . . . , αk denote the roots of f(x) over the
complex numbers (counted with multiplicities). Since f is a monic polynomials,
by Viete’s formulas, we have

|α1 · · ·αk| = |f(0)| = p.

In particular, at least one of the roots, say α, satisfies

|α| ≥ p1/k.

Since P (α) = 0, we have

αp − α+ p = 0,

which implies

p ≥ |α|p − |α| = |α|(|α|p−1 − 1) ≥ p1/k(p(p−1)/k − 1) ≥ p1/(p−1)(p− 1).

This shows that

p1/(p−1) ≤ 1 +
1

p− 1
,

which gives

p ≤
(
1 +

1

p− 1

)p−1

< 3.

Since p is a prime number, we have p = 2. This is a contradiction since p is
odd. This completes the proof. ■
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Theorem 1 (Eisenstein’s criterion)

Let
f(x) = anx

n + · · ·+ a1 + a0

be a polynomial with integer coefficients. Let p be a prime number and
assume that

an ̸≡ 0 mod p,

an−1, . . . , a0 ≡ 0 mod p,

a0 ̸≡ 0 mod p2

holds. Then f(x) cannot be expressed as a product of two non-constant
polynomials with rational coefficients.

Example 1.5. [Art91, Chapter 11, Exercise 4.10, p. 444] Let

f(x) = a2n+1x
2n+1 + a2nx

2n + · · ·+ a1x+ a0

be a polynomial of degree 2n+ 1 with integer coefficients. Let p be a prime
number and assume that

a2n+1 ̸≡ 0 mod p,

a0, a1, . . . , an ≡ 0 mod p2,

an+1, . . . , a2n ≡ 0 mod p,

a0 ̸≡ 0 mod p3.

Show that f(x) cannot be expressed as a product of two non-constant polyno-
mials with rational coefficients.

Example 1.6. For any prime p, show that there exist non-constant monic
polynomials fp(x), gp(x) with integer coefficients such that

x4 − 10x2 + 1 ≡ fp(x)gp(x) mod p

holds. Can the polynomial x4 − 10x2 + 1 be expressed as the product of two
non-constant polynomials with rational coefficients?

Example 1.7. Prove that the polynomial xn +4 is irreducible over Z[x] if and
only if n is not a multiple of 4.

Solution 5. If n is a multiple of 4, then we can write n = 4k for some positive
integer k. In this case, we have

xn + 4 = x4k + 4 = (x2k − 2xk + 2)(x2k + 2xk + 2),
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which shows that xn + 4 is reducible over Z[x].
Now, suppose that n is not a multiple of 4. We will show that xn + 4 is

irreducible over Z[x]. Assume for the sake of contradiction that xn + 4 is
reducible over Z[x]. Then we can write

xn + 4 = f(x)g(x),

where f(x), g(x) ∈ Z[x] are non-constant polynomials with degrees less than n.
Since the roots of xn + 4 in C are of absolute value 41/n, the roots of f(x) are
also of absolute value 41/n. Let the degree of f(x) be d. The absolute value of
the constant term of f(x) is then (41/n)d = 22d/n. Since the constant term of
f(x) is an integer, it follows that n divides 2d. Since d < n, we must have that
n = 2d. Since n is not a multiple of 4, it follows that d is odd. Thus, f(x) is a
monic polynomial of odd degree with integer coefficients. Hence, it has a real
root, implying that xn + 4 has a real root, which is impossible since n is even.
This shows that xn + 4 is irreducible over Z[x].

This completes the proof. ■
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