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Suggested readings

e Evan Chen’s advice On reading solutions, available at https://blog.
evanchen.cc/2017/03/06/on-reading-solutions/.

e Evan Chen’s Advice for writing proofs/Remarks on English, available at
https://web.evanchen.cc/handouts/english/english.pdf.

e Notes on proofs by Evan Chen from OTIS Excerpts [Che25, Chapter 1].

e Tips for writing up solutions by Edward Barbeau, available at https:
//www.math.utoronto.ca/barbeau/writingup.pdf.

e Evan Chen discusses why math olympiads are a valuable experience for
high schoolers in the post on Lessons from math olympiads, available at

https://blog.evanchen.cc/2018/01/05/1lessons-from-math-olympiads/.
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§1 Irreducibility

Example 1.1. [WH96, Problem 27| Let p1,...,p, denote n > 1 distinct
integers. Show that the polynomial

(z—p1)* (@ —p2)® - (x—pn)? +1

cannot be expressed as the product of two non-constant polynomials with
integral coefficients.

Solution 1. On the contrary, let us assume that the polynomial
P(z):= (x—p1)*(x = p2)* - (x = pp)* +1

can be expressed as the product of two non-constant polynomials f(z), g(x)
with integral coefficients.
Let us first establish the following Claims.

Claim — Replacing f, g by —f, —g respectively (if necessary), we may
assume that f, g take positive values at all real arguments.

Proof of the Claim. Note that the polynomial P(x)—1 vanishes at = py, ..., pn.
Since the product of the leading coefficients of f(z) and g(z) is equal to the
leading coefficient of P(z), we may replace f(z),g(x) by —f(x), —g(x) respec-
tively (if necessary) to assume that the leading coefficients of f(z), g(x) are
positive. Since P = fg and P does not have a real root, it follows that the
polynomials f, g do not have any real roots. At large enough real arguments,
the polynomials f, g take positive values. Since f,g have no real roots, we
conclude that they take positive values at all real arguments. O

Claim — The polynomials f, g are of degree n. Moreover, these polyno-
mials are equal.
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Proof of the Claim. On the contrary, let us asssume that the degrees of f, g
are not equal. Interchanging f, g if necessary, we assume that deg(f) < deg(g).
Since the sum of the degrees of f, g is equal to 2n, it follows that deg(f) < n.

For any 1 < i < n, the integers f(p;),g(p;) are equal to 1 or —1. Since
f,g take positive values at all real arguments, we obtain f(p;) = 1 for any
1 <4 < n. This shows that the polynomial f — 1 has at least n distinct roots.
Using deg(f) < n, we conclude that f — 1 is the zero polynomial, which is
impossible since f is a non-constant polynomial. Therefore, the hyothesis that
the degrees of f, g are not equal is not tenable. This completes the proof of
the first part of the Claim.

Note that f, g are polynomials of degree n with equal leading coefficients.
This shows that the polynomial f(z) — g(z) has degree less than n and it
vanishes at the n distinct points py,...,p,. It follows that f = g.

O

Using the above Claim, note that
F@) = (@ =pi)(x —p2) - (@ —pa)* = 1,
or equivalently,
(f(@) + (@ =p1)(@ = p2) - (2 = pn)) (f(2) = (@ —p1)(@ = p2) - (& — )
=1,
which implies that the polynomials

f(@) + (z = p)(@ —pa) -+ (& = pn), f(2) = (2 = p1)(z = p2) -~ (x = pn)

are constant polynomials, and both of them are equal. Consequently, the
polynomial (z—p1)(z—p2) - - - (x—py,) is the zero polynomial, which is impossible.
This shows that the hypothesis that the given polynomial can be expressed as
the product of two non-constant polynomials with integral coefficients is not
tenable. This completes the proof. |

Example 1.2. Let n be a positive integer. Show that the polynomial
(z—1)(xz—-2)---(x—n)—1

is irreducible over the field of rational numbers.

Solution 2. Note that the given polynomial is irreducible if n = 1. It suffices
to consider the case n > 2. On the contrary, let us assume that the polynomial
is reducible over the rationals. Then, by Gauss’s lemma, it is also reducible
over the integers. Thus, there exist non-constant polynomials f(x), g(x) with
integer coefficients such that

(z—1D(z=2)---(z—n)—-1= f(z)9(r).
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Note that for any integer 1 < k < n, we have

F(k)g(k) = ~1.

This implies that both f(k) and g(k) are non-zero integers whose product is
equal to —1. Hence, for any integer 1 < k < n, the pair (f(k), g(k)) is either
(=1,1) or (1,—1). This shows that the polynomial f(z) 4 g(x), which has
degree less than n, has at least n distinct roots. Hence, f(z) + g(z) is the zero
polynomial, which yields

(@=1)(z=2) - (z—n) — 1= fla)g(x) = —f(2)*.

This is a contradiction since the leading coefficient of the polynomial on the
left-hand side is positive. This completes the proof. |

Example 1.3. Let n be a positive integer with n # 4. Show that the polynomial
(z=D(x—-2)---(x—n)+1
is irreducible over the field of rational numbers.

Solution 3. Note that the given polynomial is irreducible if n = 1. If n = 2,
then the given polynomial is equal to

x2—3x+3,

which has no rational root, and hence is irreducible over the rationals. It
suffices to consider the case n > 3 with n # 4. On the contrary, let us assume
that the given polynomial is reducible over the rationals. Then, by Gauss’s
lemma, it is also reducible over the integers. Thus, there exist non-constant
polynomials f(z), g(x) with integer coefficients such that

(@ =1)(x=2)---(z =n) + 1= f(x)g(x).

Note that for any integer 1 < k < n, we have

f(k)g(k) = 1.

This shows that the polynomial f(z) — g(x), which has degree less than n, has
at least n distinct roots. Hence, f(x) — g(x) is the zero polynomial, which
yields

(¢ =1z —2)- (& —n)+1= f(z)g(z) = fx)*
This implies that n is an even positive integer. Since n # 4, it follows that
n > 6. Note that
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Remark. After obtaining

(@—1(@-2)--(—n)+1=(f=)

one can also argue as follows to complete the proof. Note that n is an even
positive integer. For ¢ € {1, —1}, let

Si ={ke{1,2,...,n}: f(k) =1i}.

Note that both S1 and S_; are disjoint subsets of {1,2,...,n} whose union is
equal to {1,2,...,n}. Moreover, each of the sets S and S_1 contain at most
5 elements since f(z) is a non-constant polynomial. This shows that both S;
and S_; contain exactly % elements.

Note that some element of one of the sets S1,S_1 differs from some element
of the other set at least by 3. Indeed, if S; contains 1, then using that S;

contains 5 elements and

1+(n—3)>g

holds for n > 6, it follows that S_; must contain an element greater than or
equal to 4. This shows that there exist elements a € S; and b € S_; such that
|a — b| > 3. This yields

fla) = f(b) =2

is divisible by |a — b|, which is impossible.

Remark. Note that
(z—1)(z—2)(z—3)(z—4)+1 = (2> =5z +4) (2> -5z +6)+1 = (z° — 5z +5)°,

which is reducible over the rationals.

Some style files, prepared by Evan Chen, have been adapted here.

which is impossible. This shows that the given polynomial is irreducible over
the rationals.
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Example 1.4. Let p be an odd prime number. Show that the polynomial
Plz)=a? —x+p

is irreducible over the field of rational numbers.

Solution 4. On the contrary, let us assume that the polynomial P(z) is

reducible over the rationals. Then, by Gauss’s lemma, it is also reducible over

the integers. Thus, there exist non-constant polynomials f(z), g(x) € Z[z] such
that

Since the leading coefficient of P(z) is 1, by multiplying f(z), g(x) by —1 if
necessary, we may assume that both f(z) and g(x) are monic polynomials.
Since p is a prime number, by reordering f(z),g(x) if necessary, we may
assume that |f(0)] = p. Let ai,...,ar denote the roots of f(x) over the
complex numbers (counted with multiplicities). Since f is a monic polynomials,
by Viete’s formulas, we have

g - - o = [£(0)] = p.
In particular, at least one of the roots, say «, satisfies
ja| = p'/k.

Since P(«) = 0, we have
ol —a+p=0,
which implies
p=laf’ —la| = lal(ja~t = 1) = p/F (T 1) > pl/ =D (p - 1).

This shows that

-0 <q L
— p_17

1 \*!
p§(1+1) < 3.
o

which gives

Since p is a prime number, we have p = 2. This is a contradiction since p is
odd. This completes the proof. |
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Theorem 1 (Eisenstein’s criterion)
Let
f(@) = anz™ + -+ a1 +ag

be a polynomial with integer coefficients. Let p be a prime number and
assume that

an Z 0 mod p,
An—1s---,00 = 0 mod p,
ao # 0 mod p?

holds. Then f(x) cannot be expressed as a product of two non-constant
polynomials with rational coeflicients.

J

Example 1.5. [Art91, Chapter 11, Exercise 4.10, p. 444] Let
f(@) = agnp12®™ T + a9 2®™ + -+ arz + ap

be a polynomial of degree 2n + 1 with integer coefficients. Let p be a prime
number and assume that

azn+1 #Z 0 mod p,

_ 2
ag, a1, ...,ay, =0 mod p~,
Apt1,y- -, a2, = 0 mod p,

ao # 0 mod p°.

Show that f(x) cannot be expressed as a product of two non-constant polyno-
mials with rational coefficients.

Example 1.6. For any prime p, show that there exist non-constant monic
polynomials f,(z), gp(x) with integer coefficients such that

z* — 1022 + 1 = f,(2)g,(2) mod p

holds. Can the polynomial z* — 1022 4+ 1 be expressed as the product of two
non-constant polynomials with rational coefficients?

Example 1.7. Prove that the polynomial 2™ + 4 is irreducible over Z[z] if and
only if n is not a multiple of 4.

Solution 5. If n is a multiple of 4, then we can write n = 4k for some positive
integer k. In this case, we have

2" 44 =2 4 = (22 — 22F 1+ 2)(2®* + 22F 1 2),

Some style files, prepared by Evan Chen, have been adapted here. 7


https://github.com/vEnhance/dotfiles/blob/main/texmf/tex/latex/evan/evan.sty
https://web.evanchen.cc/otis.html

https://jpsaha.github.io/MOTP/

which shows that 2™ + 4 is reducible over Z[z].

Now, suppose that n is not a multiple of 4. We will show that =™ + 4 is
irreducible over Z[x]. Assume for the sake of contradiction that =™ + 4 is
reducible over Z[x]. Then we can write

e +4 = f(z)g(x),

where f(z),g(x) € Z[z] are non-constant polynomials with degrees less than n.
Since the roots of ™ + 4 in C are of absolute value 4'/", the roots of f(z) are
also of absolute value 4/". Let the degree of f(z) be d. The absolute value of
the constant term of f(z) is then (4'/7)¢ = 224/ Since the constant term of
f(z) is an integer, it follows that n divides 2d. Since d < n, we must have that
n = 2d. Since n is not a multiple of 4, it follows that d is odd. Thus, f(z) is a
monic polynomial of odd degree with integer coefficients. Hence, it has a real
root, implying that ™ + 4 has a real root, which is impossible since n is even.
This shows that ™ 4 4 is irreducible over Z[z].

This completes the proof. |
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