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Suggested readings

• Evan Chen’s

– advice On reading solutions, available at https://blog.evanchen.
cc/2017/03/06/on-reading-solutions/.

– Advice for writing proofs/Remarks on English, available at https:
//web.evanchen.cc/handouts/english/english.pdf.

• Evan Chen discusses why math olympiads are a valuable experience for
high schoolers in the post on Lessons from math olympiads, available at
https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/.
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§1 Integer divisibility

Lemma 1

If P is a polynomial with integer coefficients and a, b are integers, then
P (a)− P (b) is a multiple of a− b.

Example 1.1. Let P (x) be a polynomial with integer coefficients such that
P (0), P (1) are odd. Show that P (x) does not have any integer root.

Solution 1. If P (x) admits an integer root α, then α, α− 1 are odd, which is
impossible. ■

Example 1.2 (India RMO 2016g P8). At some integer points a polynomial
with integer coefficients take values 1, 2 and 3. Prove that there exist not more
than one integer at which the polynomial is equal to 5.

Solution 2. Denote the polynomial by P (x). On the contrary, let us assume
that there are at least two distinct integers where P (x) takes the value 5.
Let a, b, c be integers such that

P (a) = 1, P (b) = 2, P (c) = 3.

Note that a − b divides P (a) − P (b), b − c divides P (b) − P (c). It follows
that a− b = ±1, b− c = ±1. Since a, b are of opposite parity, and so are the
integers b, c, we obtain that a, c are of the same parity. Noting that c − a
divides P (c) − P (a) = 2, it follows that c − a = ±2. Combining this with
a− b = ±1, b− c = ±1, we get a− b = b− c = 1 or a− b = b− c = −1.
This shows that P (b − 1) = 1, P (b) = 2, P (b+ 1) = 3 holds or P (b+ 1) =

1, P (b) = 2, P (b − 1) = 3 holds. Note that in the first case, the polynomial
R(x) := P (x − b) takes the values 1, 2, 3 at the integers −1, 0, 1 respectively.
In the second case, the polynomial S(x) = P (−x+ b) takes the values 1, 2, 3 at
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the integers −1, 0, 1 respectively. This proves that there is a polynomial Q(x)
with integer coefficients which takes the values 1, 2, 3 at −1, 0, 1 respectively.

From the hypothesis, it follows that there are distinct integers i, j such
that Q(i) = Q(j) = 5. Note that i − 1 divides Q(i) − Q(1) = 2, i divides
Q(i)−Q(0) = 3, i+ 1 divides Q(i)−Q(−1) = 4. Since i divdes 3, we obtain
i = ±1,±3. Using Q(−1) = 1, Q(1) = 3, we get i ̸= −1, i ̸= 1. This gives
i = ±3. Noting that i − 1 divides 2, we obtain i ̸= −3, and hence i = 3.
Similarly, it follows that j = 3. ■

Example 1.3. Let P (x) be a polynomial with integer coefficients such that
P (20), P (25) are of absolute value equal to 1. Show that P (x) does not vanish
at any integer.

Solution 3. On the contrary, let us assume that P (x) vanishes at an integer α.
Note that α− 20 divides 1, and so does α− 25. This shows that α− 20, α− 25
are absolute value equal to 1. Applying triangle inequality, we obtain

5 ≤ |α− 20|+ |α− 5| ≤ 2,

which is impossible. ■

Example 1.4 (USAMO 1974 P1). Let a, b, and c denote three distinct integers,
and let P denote a polynomial having all integral coefficients. Show that it is
impossible that P (a) = b, P (b) = c, and P (c) = a.

Solution 4. Note that

a− b | P (a)− P (b) = b− c | P (b)− P (c) | c− a | P (c)− P (a) = a− b.

Consequently, the integers a − b, b − c, c − a are of the same absolute value.
Denote their absolute value by k. Note that their sum is zero. However, the
sum is equal to mk, for some m ∈ {±1,±3}. Hence, k is equal to zero.

This yields that a = b = c. ■

Here is a more general result.

Example 1.5. Let P (x) be a polynomial with integer coefficients, and let n be
an odd positive integer. Suppose that x1, x2, . . . , xn is a sequence of integers
such that x2 = P (x1), x3 = P (x2), . . . , xn = P (xn−1), and x1 = P (xn). Prove
that all the xi’s are equal.

Walkthrough — Show that

a1 − a2 | a2 − a3 | a3 − a4 | · · · | an − a1 | a1 − a2.

Note that sum of these differences is an odd multiple of their absolute value.
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Lemma 2

Let P be a polynomial with integer coefficients. Suppose a is an integer
and k is a positive integer such that P k(a) = a, where P k denotes the
k-fold composite map from Z → Z. Show that P 2(a) = a.

Proof. Let ℓ denote the smallest positive integer such that P ℓ(a) = a. If ℓ = 1
or ℓ = 2, then we are done. Henceforth, we assume that ℓ ≥ 3.

Note that

P (a)− a | P 2(a)− P (a) | · · · | P ℓ(a)− P ℓ−1(a) = a− P ℓ−1(a) | P (a)− a.

Since a− P ℓ−1(a) is nonzero, it follows that the above differences are nonzero.
Consequently, for any 1 ≤ i ≤ ℓ,

P i+1(a)− P i(a) = ±(P i(a)− P i−1(a)).

If P i+1(a) = P i−1(a) holds for some 1 ≤ i ≤ ℓ, then applying P ℓ−i+1 to both
sides, we obtain P 2(a) = a, which contradicts the assumption that ℓ ≥ 3. It
follows that for any 1 ≤ i ≤ ℓ,

P i+1(a)− P i(a) = P (a)− a

holds, which implies that

ℓ−1∑
i=0

(P i+1(a)− P i(a)) = ℓ(P (a)− a).

This gives P (a) = a, which contradicts the assumption that ℓ ≥ 3. This
completes the proof.

Example 1.6 (IMO 2006 P5). (Dan Schwarz, Romania) Let P (x) be a
polynomial of degree n > 1 with integer coefficients, and let k be a positive
integer. Consider the polynomial Q(x) = P (P (. . . P (P (x)) . . .)), where P
occurs k times. Prove that there are at most n integers t such that Q(t) = t.

Solution 5. By the above lemma, it reduces to considering the case Q(x) =
P 2(x).
Suppose Q has more than n fixed points. Since P is not linear, it follows

that P cannot have n fixed points, and hence not all the fixed points of Q are
fixed points of P . Let b be a non-fixed point of P , and Q(b) = b. Suppose a be
a fixed point of Q, other than b.
Let us first consider the case that P (a) ̸= a. Note that

P (b)− a | P (a)− b | P (b)− a

4 The content posted here and at this blog by Evan Chen are quite useful.
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holds, and
a− b | P (a)− P (b) | a− b

holds too. This yields that

|P (a)− b| = |P (b)− a|, |P (a)− P (b)| = |a− b|.

If
P (a)− b = a− P (b), and P (a)− P (b) = a− b

hold, then b would be a fixed point of P . It follows that at least one of

P (a)− b = −(a− P (b)), P (a)− P (b) = −(a− b)

holds. Consequently, we obtain

P (a) + a = P (b) + b.

Next, let us consider the case that P (a) = a. Note that

P (b)− a | b− a | P (b)− a.

Since b is not a fixed point for P , it follows that

P (b)− a = a− b,

which yields
P (a) + a = P (b) + b.

This proves that all the roots of Q(x) = x are the roots of P (x)+x = P (b)+b.
Since P (x) has degree n > 1, it follows that the polynomial P (x)+x−P (b)− b
is of degree n, and it has more than n roots, which is impossible.
Hence, there are at most n integers t such that Q(t) = t holds. ■

Example 1.7 (Tournament of Towns, Spring 2014, Senior, A Level, P4 by G.K.
Zhukov). In the plane, the points with integer coordinates (x, y) satisfying
0 ≤ y ≤ 10 are marked. Consider a polynomial of degree 20 with integer
coefficients. Determine the maximum possible number of marked points which
can lie on its graph.
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