Integer divisibility

MOPSS

20 March 2025

Suggested readings

- Evan Chen's
 - advice On reading solutions, available at https://blog.evanchen. cc/2017/03/06/on-reading-solutions/.
 - Advice for writing proofs/Remarks on English, available at https: //web.evanchen.cc/handouts/english/english.pdf.
- Evan Chen discusses why math olympiads are a valuable experience for high schoolers in the post on Lessons from math olympiads, available at https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/.

List of problems and examples

1.1	Example
1.2	Example (India RMO 2016g P8)
1.3	Example 3
1.4	Example (USAMO 1974 P1) 3
1.5	Example 3
1.6	Example (IMO 2006 P5) 4
1.7	Example (Tournament of Towns, Spring 2014, Senior, A Level,
	P4 by G.K. Zhukov)

§1 Integer divisibility

Lemma 1

If P is a polynomial with integer coefficients and a, b are integers, then P(a) - P(b) is a multiple of a - b.

Example 1.1. Let P(x) be a polynomial with integer coefficients such that P(0), P(1) are odd. Show that P(x) does not have any integer root.

Solution 1. If P(x) admits an integer root α , then $\alpha, \alpha - 1$ are odd, which is impossible.

Example 1.2 (India RMO 2016g P8). At some integer points a polynomial with integer coefficients take values 1, 2 and 3. Prove that there exist not more than one integer at which the polynomial is equal to 5.

Solution 2. Denote the polynomial by P(x). On the contrary, let us assume that there are at least two distinct integers where P(x) takes the value 5.

Let a, b, c be integers such that

$$P(a) = 1, P(b) = 2, P(c) = 3.$$

Note that a - b divides P(a) - P(b), b - c divides P(b) - P(c). It follows that $a - b = \pm 1, b - c = \pm 1$. Since a, b are of opposite parity, and so are the integers b, c, we obtain that a, c are of the same parity. Noting that c - a divides P(c) - P(a) = 2, it follows that $c - a = \pm 2$. Combining this with $a - b = \pm 1, b - c = \pm 1$, we get a - b = b - c = 1 or a - b = b - c = -1.

This shows that P(b-1) = 1, P(b) = 2, P(b+1) = 3 holds or P(b+1) = 1, P(b) = 2, P(b-1) = 3 holds. Note that in the first case, the polynomial R(x) := P(x-b) takes the values 1, 2, 3 at the integers -1, 0, 1 respectively. In the second case, the polynomial S(x) = P(-x+b) takes the values 1, 2, 3 at

the integers -1, 0, 1 respectively. This proves that there is a polynomial Q(x) with integer coefficients which takes the values 1, 2, 3 at -1, 0, 1 respectively.

From the hypothesis, it follows that there are distinct integers i, j such that Q(i) = Q(j) = 5. Note that i - 1 divides Q(i) - Q(1) = 2, i divides Q(i) - Q(0) = 3, i + 1 divides Q(i) - Q(-1) = 4. Since i divides 3, we obtain $i = \pm 1, \pm 3$. Using Q(-1) = 1, Q(1) = 3, we get $i \neq -1, i \neq 1$. This gives $i = \pm 3$. Noting that i - 1 divides 2, we obtain $i \neq -3$, and hence i = 3. Similarly, it follows that j = 3.

Example 1.3. Let P(x) be a polynomial with integer coefficients such that P(20), P(25) are of absolute value equal to 1. Show that P(x) does not vanish at any integer.

Solution 3. On the contrary, let us assume that P(x) vanishes at an integer α . Note that $\alpha - 20$ divides 1, and so does $\alpha - 25$. This shows that $\alpha - 20, \alpha - 25$ are absolute value equal to 1. Applying triangle inequality, we obtain

$$5 \le |\alpha - 20| + |\alpha - 5| \le 2,$$

which is impossible.

Example 1.4 (USAMO 1974 P1). Let a, b, and c denote three distinct integers, and let P denote a polynomial having all integral coefficients. Show that it is impossible that P(a) = b, P(b) = c, and P(c) = a.

Solution 4. Note that

$$a - b | P(a) - P(b) = b - c | P(b) - P(c) | c - a | P(c) - P(a) = a - b.$$

Consequently, the integers a - b, b - c, c - a are of the same absolute value. Denote their absolute value by k. Note that their sum is zero. However, the sum is equal to mk, for some $m \in \{\pm 1, \pm 3\}$. Hence, k is equal to zero.

This yields that a = b = c.

Here is a more general result.

Example 1.5. Let P(x) be a polynomial with integer coefficients, and let n be an odd positive integer. Suppose that x_1, x_2, \ldots, x_n is a sequence of integers such that $x_2 = P(x_1), x_3 = P(x_2), \ldots, x_n = P(x_{n-1})$, and $x_1 = P(x_n)$. Prove that all the x_i 's are equal.

Walkthrough — Show that

 $a_1 - a_2 \mid a_2 - a_3 \mid a_3 - a_4 \mid \cdots \mid a_n - a_1 \mid a_1 - a_2.$

Note that sum of these differences is an odd multiple of their absolute value.

Lemma 2

Let P be a polynomial with integer coefficients. Suppose a is an integer and k is a positive integer such that $P^k(a) = a$, where P^k denotes the k-fold composite map from $\mathbb{Z} \to \mathbb{Z}$. Show that $P^2(a) = a$.

Proof. Let ℓ denote the smallest positive integer such that $P^{\ell}(a) = a$. If $\ell = 1$ or $\ell = 2$, then we are done. Henceforth, we assume that $\ell \geq 3$.

Note that

$$P(a) - a \mid P^{2}(a) - P(a) \mid \dots \mid P^{\ell}(a) - P^{\ell-1}(a) = a - P^{\ell-1}(a) \mid P(a) - a.$$

Since $a - P^{\ell-1}(a)$ is nonzero, it follows that the above differences are nonzero. Consequently, for any $1 \le i \le \ell$,

$$P^{i+1}(a) - P^{i}(a) = \pm (P^{i}(a) - P^{i-1}(a)).$$

If $P^{i+1}(a) = P^{i-1}(a)$ holds for some $1 \le i \le \ell$, then applying $P^{\ell-i+1}$ to both sides, we obtain $P^2(a) = a$, which contradicts the assumption that $\ell \ge 3$. It follows that for any $1 \le i \le \ell$,

$$P^{i+1}(a) - P^{i}(a) = P(a) - a$$

holds, which implies that

$$\sum_{i=0}^{\ell-1} (P^{i+1}(a) - P^i(a)) = \ell(P(a) - a).$$

This gives P(a) = a, which contradicts the assumption that $\ell \geq 3$. This completes the proof.

Example 1.6 (IMO 2006 P5). (Dan Schwarz, Romania) Let P(x) be a polynomial of degree n > 1 with integer coefficients, and let k be a positive integer. Consider the polynomial $Q(x) = P(P(\ldots P(P(x))\ldots))$, where P occurs k times. Prove that there are at most n integers t such that Q(t) = t.

Solution 5. By the above lemma, it reduces to considering the case $Q(x) = P^2(x)$.

Suppose Q has more than n fixed points. Since P is not linear, it follows that P cannot have n fixed points, and hence not all the fixed points of Q are fixed points of P. Let b be a non-fixed point of P, and Q(b) = b. Suppose a be a fixed point of Q, other than b.

Let us first consider the case that $P(a) \neq a$. Note that

$$P(b) - a \mid P(a) - b \mid P(b) - a$$

holds, and

$$a-b \mid P(a) - P(b) \mid a-b$$

holds too. This yields that

$$|P(a) - b| = |P(b) - a|, \quad |P(a) - P(b)| = |a - b|.$$

 \mathbf{If}

$$P(a) - b = a - P(b)$$
, and $P(a) - P(b) = a - b$

hold, then b would be a fixed point of P. It follows that at least one of

$$P(a) - b = -(a - P(b)), P(a) - P(b) = -(a - b)$$

holds. Consequently, we obtain

$$P(a) + a = P(b) + b.$$

Next, let us consider the case that P(a) = a. Note that

$$P(b) - a \mid b - a \mid P(b) - a.$$

Since b is not a fixed point for P, it follows that

$$P(b) - a = a - b,$$

which yields

$$P(a) + a = P(b) + b.$$

This proves that all the roots of Q(x) = x are the roots of P(x) + x = P(b) + b. Since P(x) has degree n > 1, it follows that the polynomial P(x) + x - P(b) - b is of degree n, and it has more than n roots, which is impossible.

Hence, there are at most n integers t such that Q(t) = t holds.

Example 1.7 (Tournament of Towns, Spring 2014, Senior, A Level, P4 by G.K. Zhukov). In the plane, the points with integer coordinates (x, y) satisfying $0 \le y \le 10$ are marked. Consider a polynomial of degree 20 with integer coefficients. Determine the maximum possible number of marked points which can lie on its graph.