Cubic polynomials

MOPSS

 $4 \ \mathrm{June} \ 2024$

Suggested readings

- Evan Chen's
 - advice On reading solutions, available at https://blog.evanchen. cc/2017/03/06/on-reading-solutions/.
 - Advice for writing proofs/Remarks on English, available at https: //web.evanchen.cc/handouts/english/english.pdf.
- Evan Chen discusses why math olympiads are a valuable experience for high schoolers in the post on Lessons from math olympiads, available at https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/.

List of problems and examples

 1.1
 Example (India RMO 1999 P4)
 10

 1.2
 Example (India RMO 2012b P6)
 10

§1 Cubic polynomials

Example 1.1 (India RMO 1999 P4). If p, q, r are the roots of the cubic equation $x^3 - 3px^2 + 3q^2x - r^3 = 0$, show that p = q = r.

Solution 1. The given conditions imply

$$p+q+r=3p, pq+qr+rp=3q^2, pqr=r^3, \\$$

which gives

$$q + r = 2p, (q + r)^2 + 2qr = 6q^2, (q + r)qr = 2r^3.$$

Thus

$$(q-r)(5q+r) = r(q+2r)(q-r) = 0.$$

If $q \neq r$, then we get

$$5q + r = 0, r(q + 2r) = 0,$$

which gives q = r = 0. So q, r are equal and hence they are equal to p.

Example 1.2 (India RMO 2012b P6). Show that for all real numbers x, y, z such that x + y + z = 0 and xy + yz + zx = -3, the expression $x^3y + y^3z + z^3x$ is a constant.

Solution 2. Consider the polynomial

$$P(t) = t^{3} - (x + y + z)t^{2} + (xy + yz + zx)t - xyz.$$

Since x, y, z are the roots¹ of the equation P(t) = 0, we obtain

$$\begin{aligned} x^{3} - (x + y + z)x^{2} + (xy + yz + zx)x - xyz &= 0, \\ y^{3} - (x + y + z)y^{2} + (xy + yz + zx)y - xyz &= 0, \\ z^{3} - (x + y + z)z^{2} + (xy + yz + zx)z - xyz &= 0. \end{aligned}$$

Using them, we obtain

$$x^{3}y + y^{3}z + z^{3}x = ((x + y + z)x^{2} - (xy + yz + zx)x + xyz)y + ((x + y + z)y^{2} - (xy + yz + zx)y + xyz)z$$

 $^{^1\}mathrm{If}$ it is not clear, then the following equalities may directly be verified.

$$+ ((x + y + z)z^{2} - (xy + yz + zx)z + xyz)x$$

= $(x + y + z)(x^{2}y + y^{2}z + z^{2}x)$
 $- (xy + yz + zx)(xy + yz + zx)$
 $+ xyz(x + y + z)$
= $-(xy + yz + zx)^{2}$ (using $x + y + z = 0$)
= -9 (using $xy + yz + zx = -3$).

This completes the proof.